Εξώφυλλο

Χρονικά Εξαρτώμενη Σεισμικότητα στην Ιταλία = Time-Dependent Seismicity in Italy.

Κωνσταντίνος Κωνσταντίνος Δουλκερίδης

Περίληψη


Η χρονικά εξαρτώμενη σεισμικότητα στην ευρύτερη περιοχή της Ιταλίας εξετάστηκε μέσω του μοντέλου Επιβραδυνόμενης – Επιταχυνόμενης σεισμικής παραμόρφωσης (D-AS). Για τις ανάγκες της εργασίας, δημιουργήθηκε κατάλογος σεισμών της περιοχής που περιέχει καταγραφές από εθνικά και διεθνή σεισμολογικά κέντρα και ομογενοποιήθηκε ώστε τα μεγέθη των σεισμών του να εκφράζονται σε ενιαία κλίμακα μεγέθους, αυτήν του μεγέθους σεισμικής ροπής. Εξετάστηκε η πληρότητα του καταλόγου καθώς και η χρονική και χωρική διακύμανσή της. Το μοντέλο D-AS εφαρμόστηκε σε δύο φάσεις. Αρχικά αναζητήθηκαν περιπτώσεις επιβραδυνόμενης και επιταχυνόμενης σεισμικότητας οι οποίες μπορούν να συσχετιστούν με ισχυρούς επιφανειακούς σεισμούς που εκδηλώθηκαν στην περιοχή μελέτης. Συγκεκριμένα, εξετάστηκαν οι περιπτώσεις ισχυρών (Mw6.0) κύριων σεισμών που εκδηλώθηκαν στην περιοχή της Ιταλίας τα τελευταία 20 χρόνια (2000-2020). Ο έλεγχος πραγματοποιήθηκε στους κόμβους ενός πλέγματος 0.2ox0.2o με στόχο τον εντοπισμό πρόδρομης επιβραδυνόμενης και επιταχυνόμενης σεισμικότητας, οι οποίες ενδεχομένως προηγήθηκαν ισχυρών σεισμών της περιοχής. Δείχθηκε πως πριν την εκδήλωση των σεισμών “στόχων” είχε προηγηθεί έντονα επιβραδυνόμενος ρυθμός σεισμικότητας στο χώρο γένεσης αυτών ενώ η επιταχυνόμενη σεισμικότητα ήταν λιγότερο έντονη. Στη 2η φάση, έγινε προσπάθεια ανίχνευσης πρόσφατης επιβραδυνόμενης και επιταχυνόμενης σεισμικότητας, που μπορεί να σχετίζονται με πιθανά επερχόμενους ισχυρούς σεισμούς στην περιοχή. Εντοπίστηκαν τρείς περιοχές στις οποίες παρατηρήθηκε τρέχουσα επιβραδυνόμενη και επιταχυνόμενη σεισμικότητα που συνδέονται με πιθανά επερχόμενους ισχυρούς σεισμούς μέσα στα επόμενα λίγα χρόνια στις περιοχές αυτές.

The time-dependent seismicity in the broader region of Italy is examined by applying the Decelerating – Accelerating Strain release (D-AS) model. For the needs of this study, an earthquake catalog of the broader region is compiled. The catalog includes information on the focal parameters of its earthquakes, extracted from various national and international seismological centers. The catalogue is homogeneous in respect to the magnitudes as they are all expressed in the moment magnitude scale. The D-AS model is applied in two phases. First, an attempt is made to identify decelerating and accelerating seismicity patterns prior to strong earthquakes that occurred in the study area. Specifically, all the earthquakes, which occurred in the broader region of Italy within the last 20 years (2000-2020) with magnitudes Mw6.0 were examined. Grid search was performed with step 0.2o aiming at identifying precursory patterns which may had started several years before the occurrence of the examined strong earthquakes. It is shown that some of these target earthquakes had been preceded by decelerating and accelerating seismicity. Furthermore, such decelerating and accelerating seismic strain release is currently observed in three regions for which an attempt is made to estimate (predict) the basic focal parameters of the respective three, probably ensuing, strong earthquakes.

Πλήρες Κείμενο:

PDF

Αναφορές


Alexander D. (2010), The L’Aquila Earthquake of 6 April 2009 and Italian Government Policy on Disaster Responce, “Journl of Natural Resources Policy Research”, 2:4, 325-342.

Baba A., Papadimitriou E., Papazachos B., Papaioannou C., Karakostas B. (2000), Unified Local Magnitude Scale for Earthquakes of South Balkan Area, “Pure appl. Geophys.”, 157, 765-783.

Boncio P., Lavecchia G., Pace B. (2004), Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: the case of central Apennines (Italy), “J. Seismol.”, 8, 407-425.

Bufe C., Varnes D. (1993), Predictive modeling of seismic cycle of the Great San Francisco Bay Region, “J. Geophys. Res.”, 98, 9871-9883.

Chiaraluce L., Di Stefano R., Tinti E., Scognamiglio L., Michele M., Casarotti E., Marzorati S. (2017), The 2016 Central Italy seismic sequence: A first look at the manichocs, aftershocks, ad source models, “Seismological Research Letters”, 88(3), 757-771.

D’ Agostino, N., Avallone, A., Cheloni, D., D’ Anastasio, E., Mantenuto, S. and Selvaggi, G. (2008). Active tectonics of the Adriatic region from GPS and earthquake slip vectors. J. Geophys. Res., 113, B12413, doi:10.1029/2008JB005860.

De Santis A., Cianchini G., Di Giovambattista R., Karakostas V. (2015), Accelerating moment release revisited: Examples of application to Italian seismic sequences, “Tectonophysics.”, 639, 82-98.

Duni L., Kuka S., Kuka N. (2010), Local Relations For Converting ML to Mw in Souther-Western Balkan Region, “Acta Good. Geoph. Hung.”, 45 (3), 317-323.

Gentili S. (2010), Distribution of Seismicity Before the Larger Earthquakes in Italy in the Time Interval 1994-2004, “Pure Appl. Geophys.”, 933-958.

Gumbel E.J., (1958), Extreme value statistics, “Columbia Univ. Press.”,pp 375.

Gutenberg B., Richter C.F. (1944), Frequency of earthquakes in California. “Bull. Seism. Soc. Am.”, 34,185-188.

Kagan, Y.Y. and Jackson, D.D. (1991). The seismic gap hypothesis: Then years after. “J. geophys. Res.”, 96, 21419-21431.

Karnik, V. (1996). Seismicity of Europe and the Mediterranean. Editor: K. Klima, Academy of Sciences of the Czech Republic, Geophysical Institute, 28pp plus earthquake catalogue.

Lavecchia G., Boncio P., Brozzetti F., Strucchi M., Leshiutta I. (2002a), New criteria for seismotectonic zoning in Central Italy: insights from the Umbria-Marche Apennines, “Bollettino della Societa Geologica Italiana”, 1,881-890.

Lavecchia G., Creati G., Boncio P. (2002b), The intra-montane Ultra-alkanine Probince (IUP) of Italy: a brief review with considerations on the thickness of the unrelying lithosphere, “Bollettino della Societa Geologica Italiana”, 1, 87-98.

Lavecchia G., Boncio P., Brozzetti F., De Nardis R., Di Naccio D., Ferrarini F., Pizzi A., Pomposo G. (2009), The April 2009 L’Aquila (Central Italy) Seismic Sequence (Mw6.3): A Preliminary Seismotectonic Picture, “Nova Science Publishers”, 1-17.

Mignan A., Di Giovambattista R., (2008), Relationship between accelerating seismicity and quiescence, two precursors to large earthquakes, “Geophys. Res. Letters.”, 35, 1-5.

Mignan A. (2011), Retrospective on the Accelerating Seismic Release (ASR) hypothesis: Controversy and new horizons, “Tectonophysics”, 505, 1-16.

Mogi, K. (1969), Some features of the recent seismic activity in and near Japan. 2, activity before and after great earthquakes.“Bull. Earth. Res. Inst.”, 47, 395-417.

Montone, P., Mariucci, M.T., Pondrelli, S. and Amato, A. (2004). An improved stress map for Italy and surrounding regions (central Mediterranean). “J. Geophys. Res.”, 109, B10410, doi:10.1029/2003JB002703

Nalbant S., Hubert S., King G. (1998), Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea, “Jurnal Geophys. Res.”, 24, 469-486.

Omori F. (1894), On the aftershocks of earthquakes, “J. Coll. Sci. Imp. Univ. Tokyo”, 7, 113-200.

Pace B., Peruzza L., Lavecchia G., Boncio P. (2006), Layered Seismogenic Source Mondel and Probabilistic Seismic-Hazard Analyses in Central Italy, “Bull. Seism. Soc. Am.”, 96,107-132.

Palano, M. (2015). On the present-day crustal stress, strain-rate fields and mantle anisotropy patterns of Italy. Geophys. J. Int., 200, 969-985, doi:10.1093/gji/ggu451.

Papazachos, B.C., Kiratzi, A.A., Karakostas, V.G. (1997). Toward a Homogenous Moment-Magnitude Determination for Earthquakes in Greece and the Surrounding Area, “Bull. Seism. Soc. Am.”, 87, 474-483.

Papazachos, B.C., Karakostas, V.G., Kiratzi, A.A., Margaris, B.N., Papazachos, C.B. and Scordilis, E.M., (2002). Uncertainties in the estimation of earthquake magnitudes in Greece, “J. Seismol.”, 6, 557-570.

Παπαζάχος, Β.Κ., Καρακαϊσης, Γ.Φ., Χατζηδημητρίου, Π.Μ. (2005), Εισαγωγή στη Σεισμολογία, “ΕκδόσειςΖήτη”, 220-282.

Papazachos, C.B. (2001), An algorithm of intermediate-term earthquake prediction using a model of accelerating seismic deformation. “2nd Hellenic Conference on

Earthquake Engineering and Engineering Seismology”, 28–30 November 2001, pp. 107–115.

Papazachos C., Karakaisis G., Scordilis E., Papazachos B. (2004), Probabilities of activation of seismic faults in critical regions of the Aegean area, “Geophys. J. Int.”, 159,679-687.

Papazachos C., Karakaisis G., Scordilis E., Papazachos B. (2005), Global Observational Properties of the Critical Earthquake Model, “Bull. Seismol. Soc. Am.”, Vol. 95, 1841-1855.

Papazachos C., Karakaisis G., Scordilis E., Papazachos B. (2006), New observational information on the precursory accelerating and decelerating strain energy release,“Tectonophysics”. 423, 83-96.

Picha F. (2002), The 2016 Central Italy seismic sequence: A first look at the manichocs, aftershocks, ad source models, “Seismological Research Letters”, 88(3), 757-771.

Pizzi A., Calamita F., Coltorti M., Pieruccini P. (2002), Quaternary normal faults intramontane basins and seismicity in the Umbria-Marche-Abruzzi Apennine Ridge (Italy): Contribution of neotectonic analysis to seismic hazard assessment, “Bollettino della Societa Geologica Italiana”, 1, 923-929.

Pizzi A., Di Domenica A., Gallovic F., Luzi L., Puglia R. (2017), Fault Segmentation as Constraint to the Occurrence of the Main Shocks of the 2016 Central Italy Seismic Sequence, “Tectonics”, 36, 2370-2387.

Reid, H.F. (1910). The mechanism of the earthquake. In: The California earthquake of April 18, 1906, report of the State Earthquake Investigation Commission, 2. Washington D.C., Carnegie Institution, pp. 1-192.

Scognamiglio L., Margheriti L., Mele F. M., Tinti E., Bono A., De Gori P., Lauciani V., Lucente F., Mandiello A., Morcocci C., Mazza., Pintore S., Quintiliani M. (2012), The 2012 PianuraPadanaEmiliana seismic sequence: locations, moment tensors and magnitudes, “Annals of Geophysics”, 55, 549-560.

Scordilis E., Papazachos C., Karakaisis G., Karakostas V. (2004), Accelerating seismic crustal deformation before strong mainshocks in Adriatic and its importance for earthquake preditction, “J. Seismol.”, 8, 57-70.

Scordilis E. (2006), Empirical global relations Ms and mb to moment magnitude, “J. Seismol.”,10, 225-236.

Selvaggi G., Amato A. (1992), Subcrustal earthquakes in the Northern Apennines (Italy): evidence for a still active subduction? “Geophysical Research Letters”, 19, 2127-2130.

Shimazaki K., Nakata T. (1980), Time predictable recurrence model for larger earthquakes, “Geophysical Research Letters”, 7(4), 279-282.

Smeraglia L., Billi A., Carminati E., Cavallo A., Doglioni C. (2016), Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy, “Tectonophysics”, 713, 159-169.

Sparkman W. (1993), Iterative strategies for nonlinear travel-time tomography using global earthquake data, In: Seismic Tomography: theory and practice H. M. Iyer and K. Hirahara, (eds), “Chapman & Half, London”, 190-206.

Stein R., King G., Lin J. (1993), Change in failure stress on the San Andreas and surrounding faults caused by the 1992 M=7.4, Landers earthquake, “Science”, 258, 283-300.

Τσαμπάς, Α. (2006) Το μοντέλο του κρίσιμου σεισμού σε περιοχές χαμηλής σεισμικότητας της Ευρώπης, “Διατριβή Ειδίκευσης”, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 135σελ.

Wiemer S., Wyss M. (2000), Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States and Japan, “Bull.

Seism. Soc. Am.”, 90, 859-869.

Wiemer S. (2001), A Software Package to Analyze Seismicity: ZMAP., “Seism. Res. Letters.”, 72, 373-382.

Wyss M., Hasegawa A., Wiemer S., Umino N. (1999), Quantitative mapping of precursory seismic quiescence before the 1989, M7.1 off-sanriku earthquake, Japan, “Annali Di Geofisica”, 42, 851-869.

Websites -urls

Γεωδυναμικό Ινστιτούτο του Εθνικού Αστεροσκοπείου Αθηνών: www.gein.noa.gr

Εργαστήριο Γεωφυσικής, Α.Π.Θ.: http://geophysics.geo.auth.gr

Ευρω-Μεσογειακό Σεισμολογικό Κέντρο: www.emsc-csem.org

Εθνικό Ινστιτούτο Γεωφυσικής και Ηφαιστειολογίας της Ιταλίας, INGV: http://terremoti.ingv.it) National Earthquake Information Center (NEIC), ιστοσελίδα: http://earthquake.usgs.gov/contactus/golden/neic.php

Geophysical Survey of Russian Academy of Sciences, ιστοσελίδα: http://www.gcras.ru/eng/

Global Centroid Moment Tensor Catalog (GCMT), ιστοσελίδα: http://www.globalcmt.org/

International Seismological Centre (isc), ιστοσελίδα: http://www.isc.ac.uk/

Adriatic Sea biggest earthquakes, ιστοσελίδα: https://earthquaketrack.com/r/adriatic-sea/biggest

Σχήμα 3.1, πηγή: https://virtualexplorer.com.au/article/2002/57/western-alps-reconstruction/media/figure13-full.png

Σχήμα 3.2, πηγή: https://www.earthmagazine.org/article/when-and-why-laquila-came-tumbling-down

Σχήμα 3.3, πηγή: https://en.wikipedia.org/wiki/2012_Northern_Italy_earthquakes#/media/File:Al_Munis%C3%ACpi_ad_Sant_Agust%C3%A8n.jpg

Σχήμα 3.4, πηγή: https://abcnews.go.com/International/amatrice%E2%80%90town%E2%80%90hard%E2%80%90hit%E2%80%90italys%E2%80%90earthquake/story?id=41616175

Σχήμα 3.5, πηγή: https://www.nytimes.com/2016/10/31/world/europe/italy-earthquake-norcia.html

Βιβλιογραφία Παραρτήματος

Baba A., Papadimitriou E., Papazachos B., Papaioannou C., Karakostas B. (2000), Unified Local Magnitude Scale for Earthquakes of South Balkan Area, “Pure appl. Geophys.”, 157, 765-783.

Duni L., Kuka S., Kuka N. (2010), Local Relations For Converting ML to Mw in Souther-Western Balkan Region, “Acta Good. Geoph. Hung.”, 45 (3), 317-323.

Papazachos, B.C., Karakostas, V.G., Kiratzi, A.A., Margaris, B.N., Papazachos, C.B. and Scordilis, E.M., (2002). Uncertainties in the estimation of earthquake magnitudes in Greece, “J. Seismol.”, 6, 557-570.

Scordilis, E.M., (2006). Emprical global relations converting Ms and mb to moment magnitude. “J. Seismol.”, 10:225-236, doi: 10.1007/s10950-006-9012-4

Τσαμπάς, Α. (2006) Το μοντέλο του κρίσιμου σεισμού σε περιοχές χαμηλής σεισμικότητας της Ευρώπης, “Διατριβή Ειδίκευσης”, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 135 σελ.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.