Εξώφυλλο

Γεωχημική ανάλυση του λιγνίτη της Αχλάδας, Φλώρινα. Κατανομή κύριων στοιχείων και ιχνοστοιχείων, εμπλουτισμός και κινητικότητα αυτών = Geochemical analysis of lignite of Achlada, Florina. Distribution of major and trace elements, enrichment and mobility.

Κωνσταντίνος Ιωάννης Αναστασίου

Περίληψη


Κύρια πηγή ενέργειας στην Ελλάδα είναι τα λιγνιτικά κοιτάσματα που βρίσκονται στη λεκάνη Πτολεμαΐδας – Κοζάνης – Φλώρινας, στη Δυτική Μακεδονία και στη Μεγαλόπολη, του νομού Αρκαδίας. Η παρούσα διατριβή ειδίκευσης εξετάζει το λιγνιτικό κοίτασμα που βρίσκεται στην περιοχή της Αχλάδας, του νομού Φλώρινας. Από γεωτεκτονική άποψη, η περιοχή μελέτης ανήκει στην Πελαγονική ζώνη των Εσωτερικών Ελληνίδων. Εξετάζονται δεδομένα από σαράντα γεωτρήσεις και ειδικότερα τα ποσοστά υγρασίας (%), τέφρας (%) καθώς και η θερμογόνος δύναμη (cal/gr) των δειγμάτων. Σε δεκατρία επιλεγμένα δείγματα λιγνίτη προσδιορίστηκαν οι συγκεντρώσεις σε κύρια στοιχεία και ιχνοστοιχεία. Τα ίδια δείγματα τεφροποιήθηκαν στους 750°C και πραγματοποιήθηκε ο ίδιος προσδιορισμός κύριων στοιχείων και ιχνοστοιχείων. Ο προσδιορισμός έγινε με τη μέθοδο ICP-MS στα κύρια στοιχεία Fe (%), Al (%), στα ιχνοστοιχεία Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Ag, Cd, Cs, Ba, Pb, Bi, Th, U (περιεκτικότητα σε ppm) και σε σπάνιες γαίες (REE) La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu (περιεκτικότητα σε ppm). Συγκρίνοντας τις συγκεντρώσεις των δειγμάτων λιγνίτη και τέφρας, εξάγονται συμπεράσματα για τον εμπλουτισμό και την κινητικότητα κύριων στοιχείων και ιχνοστοιχείων, καθώς και για την πιθανή οργανική συγγένεια αυτών με το λιγνίτη. Τέλος γίνεται μια εκτίμηση για το ποιά μπορεί να είναι η προέλευση των στοιχείων σε σχέση με τα ορυκτολογικά/πετρολογικά δεδομένα της περιοχής. Τα περισσότερα στοιχεία εμφανίζουν υψηλούς συντελεστές εμπλουτισμού στην τέφρα, γεγονός που τα συνδέει γενετικά με την πετρολογία της περιοχής.

The main sources of energy in Greece are the lignite deposits, located in the Ptolemais – Kozani – Florina Basin, Western Macedonia, and in Megalopolis, Arcadia Prefecture. The present study investigates the lignite deposit located in Achlada, Florina. The study area is located in the Pelagonian zone of the Inner Hellenides. Data from 40 boreholes, including moisture (%), ash (%), and calorific value (cal/gr) are examined, as well as thirteen lignite samples for the major and trace element concentrations. The same samples were ashed at 750 °C and the major and trace element concentrations were determined in the ashed samples. Chemical analyses were done by ICP-MS for major elements Fe (%), Al (%), for trace elements Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Ag, Cd, Cs, Ba, Pb, Bi, Th, U (ppm), and for rare-earth elements (REE) La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu (ppm). The lignite samples were obtained from different wells and depths, to cover the entire study area. By comparing the concentrations between the lignite and ash samples, we conclude the mobility of the elements, the enrichment of the samples, their association with the mineralogy and petrology of the area, and the possible organic relationship with lignite.

Πλήρες Κείμενο:

PDF

Αναφορές


Ξένη Βιβλιογραφία

ASTM-D3172-07, (2013). Standard Practice for Proximate Analysis of Coal and Coke. Book of Standards

Adriano D. C., (1986). Trace elements in the terrestrial environment. New York, NY, USA, Springer-Verlag Inc. 533 pp.

Antoniadis, P., Mavridou, E., Papazisimou, S., Christanis, K., Gentzis, T., 2006. Palaeoenvironmental conditions of the Mavropigi lignites, Ptolemais Basin, Greece: a petrological study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 28 (4), 311–327

Aubouin J., (1957). Essai de corrélation stratigraphique de la Grèce occidentale, Bulletin de la Société Géologique de France, 7, pp. 281-304. B.P., 1971.

Brunn J.H. (1956). Etude geologique du Pinde septentrional et de la Macedoine occidentale. Ann. Geol. Pays Hellen., 7, pp1-358.

Brunn, J. (1956). Contribution à l’étude du Pinde septentrional et d’une partie de la Macédoine occidentale. Annales Géologiques des Pays Helléniques, 7, pp 358.

Chatziapostolou A., Kalaitzidis S., Papazisimou, S. Christanis K, Vagias, D. (2006). Mode of occurrence of trace elements in the Pellana lignite (SE Peloponnese, Greece). International Journal of Coal Geology, 65 pp. 3-16.

Chadwick M J, Highton N H, Lindman N (1987). The environmental significance of trace elements from coal combustion and conversion processes. In: Environmental impacts of coal mining and utilisation. National Energy Administration, Sweden. Oxford, UK, Pergammon Press. pp 171-217.

Christanis K., Georgakopoulos A., Fernández-Turiel J.L., Bouzinos A. (1998). Geological factors influencing the concentration of trace elements in the Philippi peatland, eastern Macedonia, Greece. International Journal of Coal Geology, 36(3-4): 295-313.

Clarke, L.B., Sloss, L.L. (1992). Trace elements—emissions from coal combustion and gasification. International Energy Agency Coal Research Report, (IEACR/49), London 111 p

Dai, S., Ren, D., Chou, C.-l., Finkelman, R.B., Seredin, V.V. and Zhou, Y. (2012). Geochemistry of trace elements in Chinese coals: a review of abundances,

genetic types, impacts on human health, and industrial utilization. Internat. Jour. Coal Geol., v.94, pp.3–21.

Dai, S.F., Ren D.Y., Tang, Y.G., Yue, M. And Hao, L.M. (2005). Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. Internat. Jour. Coal Geol., v.61, pp.119–137.

Davison, R.L., Natusch, D.F.S., Wallace, J.R., and Evans, Jr C.A., (1974). Trace elements in fly ash dependence of concentration on particle size. Environmental Science and Technology 8, (1107-1113).

Fedjea, K.K., Ekbergb, C. Skarnemarkc, G., Britt-Marie, S. (2010). Removal of hazardous metals from MSW fly ash—an evaluation of ash leaching methods. Journal of Hazardous Materials, 173, pp. 310-317.

Filippidis, A., Georgakopoulos, A. and Kassoli-Fournaraki, A. (1996). Mineralogical components of some thermally decomposed lignite and lignite ash samples from the Ptolemais Basin, Greece. International Journal of Coal Geology, 30: 303-314.

Filippidis, A., Georgakopoulos, A., Kassoli-Fournaraki, A., Blondin, J., and Fernandez-Turiel, J.L., (1997). The sulfocalsic coal fly ashes of Ptolemais (Macedonia, Greece) and Gardanne (Provence, France). Coal Fly Ash, European Sem. Marseilles. Proceedings (pp. 149-158).

Gamaletsos, P., Godelitsas, A., Dotsika, E., Tzamos, E., Gӧttlicher, J., and Filippidis, A., (2013). Geological sources of As in the Environment of Greece: A Review.

Gavrilescu, M., Pavel, L.V., Cretescu I. (2009).Characterization and remediation of soils contaminated with uranium. J. Hazard. Mater., 163, pp. 475-510

Georgakopoulos, A. (2000). The Drama Lignite Deposit, Northern Greece: Insights from Traditional Coal Analyses, Rock-Eval Data and Natural Radionuclides Concentrations. Energy Sources, 22(6): 497-513.

Georgakopoulos A., (2001). Trace elements in the Lava Xylite/Lignite Deposit, Servia Basin, Northern Greece. Energy Sources 23(2): 143-156.

Goldschmidt V.M. (1935). Rare elements in coal ashes. Industrial and Engineering Chemistry, 27 (9), pp 1100-1102.

Goodarzi, F. (1987). Concentration of elements in lacustrine coals from Zone A Hat Creek Deposit No.1, British Columbia, Canada. Int. J. Coal Geol., 8.

Goodarzi, F., Huggins, F.E., Sanei, H. (2008). Assessment of elements, speciation of As, Cr, Ni and emitted Hg for a Canadian power plant burning bituminous coal. International Journal of Coal Geology, 74, pp. 1-12

Hulett, L.D., Weinberger, A.J., Northcutt, K.J., Ferguson, M. (1980). Chemical species in fly ash from coal-burning power plants. Science, 210, pp. 1356-1358

Iordanidis, A., Georgakopoulos, A. (2003). Pliocene lignites from Apofysis mine, Amynteo basin, Northwestern Greece: petrographical characteristics and depositional environment, International Journal of Coal Geology, 54 (1–2): 57-68.

Iordanidis, A., Georgakopoulos, A., Markova, K., Filippidis, A., Kassoli-Fournaraki, A. (2001). Application of TG–DTA to the study of Amynteon lignites, northern Greece, Thermochimica Acta, 371( 1–2): 137-141.

Iyer, R., (2002). The surface chemistry of leaching coal fly ash. Journal of Hazardous Materials. Journal of Hazardous Materials. (321-329).

Izquierdo, M., Koukouzas, N., Touliou, S., Panopoulos, K. D., Querol, X., &Itskos, G. (2011). Geochemical controls on leaching of lignite-fired combustion by-products from Greece. Applied Geochemistry, 26(9-10): 1599-1606.

Jankowski, J., Ward, C.R., French, D., Groves, S. (2006). Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems. Fuel, 85 pp. 243-256.

Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants. (fourth ed.), CRC Press Taylor & Francis Group, 6000 Broken Sound Parkway NW.

Kalaitzidis, S., Christanis, K. (2002). Mineral Matter in the Philippi peat in relation to peat/lignite-forming conditions in Greece. Energy sources 24(1): 69-81.

Kalaitzidis, S., Christanis, K., Georgakopoulos, A., Fernández-Turiel J.L., Papazismou S. (2002). Influence Of geological condition during peat accumulation on trace element affinities and their behavior during peat combustion. Energy & Fuels, 16: pp. 1476-1482.

Kantiranis N., FilippidisA., Georgakopoulos A. (2005). Investigation of the uptake ability of fly ashes produced after lignite combustion. Volume 76, Issue 2, July 2005, Pages 119-123.

Kauffman, G., Kockel, F. and Mollat, H. (1976). Notes on the stratigraphicand paleogeographic position of the Svoula formation in the Innermost Zone of the Hellenides (Northern Greece). Bull. Soc. Geol., France, 18, pp 225-230

Kockel F., Mollat H., and Walter H.W. (1971). Geologie des Servomazedonischen Massivs und seines MesozoischenRahmens. Geol. Jahrb., 83, 7, pp 575-602.

Kolovos, N., Georgakopoulos, A., Filippidis, A., Kavouridis, C. (2002). Environmental Effects of Lignite and Intermediate SterilesCoexcavation in the Southern Lignite Field Mine of Ptolemais, Northern Greece. Energy Sources, 24(6): 561-573

Kopp K., (1964). GeologieThraziens II. N. Jb. Geol. Paleont. Abh, pp 119.

Kopp K., (1966). GeologieThraziens III. Ann. Geol. Pays. Hell., 16 , pp315-362.

Koroneos, A., Christofides, G., del Moro, A., Kilias, A. (1993). Rb-Sr geochronology and geochemical aspects of the Eastern Varnountasplutonite (NW Macedonia, Greece). Neues Jarbuch Miner. Abh. 165: 297 – 315; Stuttgart 1993.

Kossmat, F., 1924. Geologie der zentralen Balkan halbinsel. Borntrager, Berlin, 1: 198 pp.

Koukouzas, N., Colin, R., Zhongsheng L. (2010). Mineralogy of lignites and associated strata in the Mavropigi field of the Ptolemais Basin, northern Greece, International Journal of Coal Geology, 81(3): 182-190.

Koukouzas, N., Tasianas A., Gemeni V., Alexopoulos D., Vasilatos Ch., (2015). Geological modelling for investigating CO2 emissions in Florina Basin, Greece. Open Geoscience, vol:7, pp 465–489.

Kronberg P., Meyer W. and Pilger A. (1970). Geologie der Rila-Rhodope Masse zwischenStrimon und Nestos (Nord Griechenland). Beih. Geol. Jb., 88, pp 133-180.

Li, Z., Ward, C.R, Gurba, L.W. (2007). Occurrence of non-mineral inorganic elements in low-rank coal macerals as shown by electron microprobe element mapping techniques. International Journal of Coal Geology, 70, pp. 137-149.

Llorens, F., Fernández-Turiel, J.L., Querol, X. (2000).The fate of trace elements in a large coal-fired power plant. Environmental Geology, 40 pp. 409-416.

Mattigod, S.V., Rai, D., Eary, L.E., Ainsworth, C.C. (1990). Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: I. review of the major elements. Journal of Environmental Quality, 19, pp. 188-201.

Mercier J., (1968). Etude geologique des zones ointernes des Hellenidesen Macedoine centrale (Grece). Contrtibution a l’ etude Metamorphismet de l’ evolution magamtique des zones internes des Hellenides. Theses, Paris 1966, Ann. Geol. Pays Hell., 20, pp 1-792.

Meij, R., TeWinkel, B.H. (2009).Trace elements in world steam coal and their behavior in Dutch coal-fired power stations: a review. International Journal of Coal Geology, 77, pp. 289-293.

Mountrakis D., Sapountzis E., Kilias A., Eleftheriadis G. and Christofides G. (1983). Paleogeographic conditions in the western Pelagonian margin in Greece duriNG the initial riftingof the continental area. Canadian Journal of Earth Sciences, 1983, 20(11): pp. 1673-1681.

Mountrakis D. (1984). Structural evolution of the Pelagonia zone in Northwestern Macedonia. Journal of Geol. Society, London, sp. Publ. 17, pp. 581-590.

Mountrakis D. (1986). The Pelagonian zone in Greece. A polyphase-deformed grafment of the Cimmerian continentand its role in the geotectonic evolution of the Eastern Mediterrranean . Journal of Geology, 94, pp. 335-347.

Mountrakis D. (1994). Introduction to the Geology of the Macedonia and Thrace. Aspects of the geotectonic evolution of the Hellenic Hinterland and Internal Hellenides. Bulletin of the Geol. Society of Greece, Thessaloniki, vol. XXX/1, pp. 31-46.

Noli, F., Tsamos, P. (2018). Seasonal variations of natural radionuclides, minor and trace elements in lake sediments and water in a lignite mining area of North-Western Greece. Environ Sci Pollut Res 25, 12222–12233.

Osswald K. (1938). Geologischegeschichte von Grienchisch – Nordmakedonien. Υπόμνημα Γεωλ. Υπηρεσίας Ελλάδος, 3.

Papastergios G., Georgakopoulos A., Fernandez-Turiel J.L., Gimeno D, Kapetanios C (2005). Leachability of environmentally hazardous elements from ashes produced after lignite combustion in Agios Dimitrios power plant, northern Greece. In: Proceedings of the 5th international scientific conference of modern

management of mine producing, geology and environmental protection (SGEM), Albena Complex, Bulgaria, 13–17 June 2005, pp 299–306.

Pappas R.S., Ting B.G., Jarrett J.M., Paschal D.C., Caudill S.P., Miller D.T. Determination of uranium-235, uranium-238, and thorium-232 in urine by magnetic sector inductively coupled plasma-mass spectrometry. Journal of Analytical Atomic Spectrometry. 2002; 17:131–134.

Pavlidis S., Mountrakis D. (1987). Extensional tectonics of northwestern Macedonia, Greece, since the late Miocene. Journal of Structural Geology. Vol.9 pp.385-392.

Pentari, D., Foscolos, A.E., Perdikatsis, V. (2004). Trace element contents in the Domeniko lignite deposit, Elassona basin, Central Greece. International journal of coal geology, 58(4), 261-268.

R. Steven Pappas (2012). Sample Preparation Problem Solving for Inductively Coupled Plasma-Mass Spectrometry with Liquid Introduction Systems I.

Solubility, Chelation, and Memory Effects. Spectroscopy (Springf).1; 27(5): 20–31.

Raask, E. (1985). The mode of occurrence and concentration of trace elements in coal. Proc. Energy Combustion Science 11, pp. 97–118.

Richaud, R., Lachas, H., Lazaro, M.J., Clarke, L.J., Jarvis, K.E., Herod, A.A., Gibb, T.C., Kandiyoti, R. (2000). Trace elements in coal derived liquids: analysis by ICP-MS and Mössbauer spectroscopy. Fuel, 79, pp. 57-67.

Robertson A.H.F., Clift P.D., Degnan P.J. and Jones G. (1991). Tectonic evolution of the Mesozoic-Cenozoic Pindos Ocean, Greece. Bull. Geol. Soc. Greece, XXV/1, pp. 55-64.

Ruth E. Wolf (2005). What is ICP-MS? And more importantly, what can it do? Ph.D., Research Chemist, USGS/CR/CICT, March 2005

Sabbioni E., Goetz L., Springer A., Pietra R. (1983). Trace metals from coal-fired power plants: derivation of an average database for assessment studies of the situation in the European Communities. The Science of the Total Environment, 29, 213-227 (1983).

Saikia, B.K., Khound, B.P. (2014). Baruah Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids. Energy Convers. Managt., 81: 298-305.

Singh, P.K., Singh, V.K., Rajak, P.K. (2016). Distribution and geochemistry of selected trace elements in the lignites of Cambay basin, Gujarat, western India. J Geol Soc India 88, 131–146.

Sloss, L.L. (1991). NO, emissions from coal combustion. IEACR/36, London, UK, IEA Coal Research, 62 pp (Mar 1991).

Smith, R.D. (1980). The trace element chemistry of coal during combustion and the emissions from coal-fired plants, Progress in Energy and Combustion Science, 6 (1), 53-119 (1980).

Swaine D. J. (1990). Trace elements in coal. London, UK, Butterworth and Co Ltd, 276 pp (1990).

Ting B.G., Paschal D.C., Jarrett J.M., Pirkle J.L., Jackson R.J., Sampson E.J., Miller D.T., Caudill, S. (1999). Uranium and thorium in urine of U.S. residents:

Reference range concentrations. Environmental Research, 81:45–51.

Vassilev, S.V., Vassileva, C.G. (1997). Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations. Fuel Processing Technology, 51 pp. 19-45

Xu, M., Yan, R., Zheng, C., Qiao, Y., Han, J., and Sheng, C. (2003). Status of trace element emission in a coal combustion process: a review. Fuel Processing Technology 85, 215-237.

Zeng D., Clark M., Gunderson T., Hecker W.C., Fletcher T.H. (2005). Swelling properties and intrinsic reactivities of coal chars produced at elevated pressures and high heating rates. Proc Combust Inst, 30: pp. 2213-2221.

Zhao, P., Zhong, L., Zhao, Y., Luo, Z. (2015). Comparative studies on the effect of mineral matter on physico-chemical properties, inherent moisture and drying kinetics of Chinese lignite, Energy Conversion and Management, 93: 197-204.

Zivotic, D., Vulic, P., Grzetic, I., and Simic, V. (2019). Distribution of major and trace elements in the Kovin lignite (Serbia), GeologiaCroatica, Vol. 72 No. 1.

Wulfsberg G. Inorganic Chemistry. University Science Books; Sausalito, CA, USA: 2000. pp. 191–228.

Ελληνική Βιβλιογραφία

Κίλιας, Α. (1980). Γεωλογική και τεκτονική μελέτη της ανατολικής περιοχής του Ανατολικού Βαρνούντα (ΒΔ Μακεδονία). Διδακτ. Διατρ., Πανεπιστήμιο Θεσσαλονίκης, 271 σ.

Μουντράκης Δ. (1983). Η γεωλογική δομή της Βόρειας Πελαγονικής ζώνης και η γεωτεκτονική εξέλιξη των Εσωτερικών Ελληνίδων. Πραγματεία για Υφηγεσία, Πανεπιστήμιο Θεσσαλονικής, Σελ. 11-289.

Μουντράκης Δ. (2010). Γεωλογία της Ελλάδος. ΕΚΔΟΣΕΙΣ University Studio Press.

Οικονομόπουλος Ι. (2010). ΟΡΥΚΤΟΛΟΓΙΚΗ, ΑΝΘΡΑΚΟΠΕΤΡΟΓΡΑΦΙΚΗ ΚΑΙ ΠΑΛΑΙΟΒΟΤΑΝΙΚΗ ΕΡΕΥΝΑ ΤΟΥ ΛΙΓΝΙΤΙΚΟΥ ΚΟΙΤΑΣΜΑΤΟΣ ΑΧΛΑΔΑΣ, Ν ΦΛΩΡΙΝΑΣ. Διδακτορική διατριβή, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Μηχανικών Μεταλλείων – Μεταλλουργών, Τομέας Γεωλογικών Επιστημών.

Χατζηαποστόλου Α., Καλαιτζίδης Σ., Παπαζησίμου Σ., Χρηστάνης Κ., Βάγιας Δ. (2004). ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΧΗΜΙΚΗ ΚΑΙ ΟΡΥΚΤΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΤΟΥ

ΛΙΓΝΙΤΙΚΟΥ ΚΟΙΤΑΣΜΑΤΟΣ ΠΕΛΛΑΝΑΣ (Ν. ΛΑΚΩΝΙΑΣ). Δελτίο της Ελληνικής Γεωλογικής Εταιρίας, τομ XXXVI. Πρακτικά 10ου Διεθνούς Συνεδρίου, Θεσσαλονίκη, Απρίλιος 2004

Άλλες πηγές

Αναστασίου Κ. και Ψαράς Α. (2014). ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΠΛΟΥΤΩΝΙΚΩΝ ΠΕΤΡΩΜΑΤΩΝ ΚΑΙ ΟΦΘΑΛΜΟΓΝΕΥΣΙΩΝ ΑΠΟ ΤΟΝ ΑΝΑΤΟΛΙΚΟ ΒΑΡΝΟΥΝΤΑ (ΔΥΤΙΚΗ ΜΑΚΕΔΟΝΙΑ). Διπλωματική Εργασία. Κατεύθυνση: Ορυκτολογία – Πετρολογία. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Σχολή Θετικών Επιστημών, Τμήμα Γεωλογίας.

Τρύφωνος Αν. (2007). ΓΕΩΧΗΜΙΚΗ ΜΕΛΕΤΗ ΑΔΙΑΤΑΡΑΚΤΩΝ ΕΔΑΦΩΝ ΣΕ ΠΕΡΙΟΧΕΣ ΤΟΥ ΔΗΜΟΥ ΜΕΛΙΤΗΣ ΤΟΥ ΝΟΜΟΥ ΦΛΩΡΙΝΑΣ. Διατριβή Ειδίκευσης. Πρόγραμμα Μεταπτυχιακών Σπουδών Γεωλογίας, Ειδίκευση: Ορυκτοί Πόροι – Περιβάλλον. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Σχολή Θετικών Επιστημών, Τμήμα Γεωλογίας.

Διαδικτυακές πηγές

http://www.myco-instrumentation.com/equipments/perkinelmer-elan-6100-icpms-system/

https://www.camlab.co.uk/ecocell-22-eco-line-convection-oven/

https://www.nabertherm.com/produkte/details/en/thermprozesstechnik_1-kammeroefen


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.