Εξώφυλλο

Διαδικασίες μετασωμάτωσης στον ωκεάνιο φλοιό = Metasomatic processes within the oceanic crust.

Σέλια-Γεωργία Βασίλειος Κατσίκη

Περίληψη


Η παρούσα εργασία εξετάζει τις διαδικασίες μετασωμάτωσης στον ωκεάνιο φλοιό. Ο ωκεάνιος φλοιός υφίσταται εκτενείς χημικές τροποποιήσεις όταν αλληλοεπιδράει με το θαλασσινό νερό, οι οποίες παίζουν καθοριστικό ρόλο στη ρύθμιση της χημικής και ισοτοπικής σύστασης των ωκεανών και των πετρωμάτων τους. Οι αλλαγές αυτές είναι αποτέλεσμα της μετασωμάτωσης, μίας διαδικασίας που έχει την ικανότητα να αλλάζει την χημική και την ορυκτολογική σύσταση των πετρωμάτων. Για να γίνει κατανοητή η δράση της μετασωμάτωσης, είναι αναγκαίο να επεξηγηθούν οι αιτίες που την προκαλούν και τα κριτήρια που απαιτούνται για να ολοκληρωθεί η διαδικασία. Φαίνεται, λοιπόν, πόσο σημαντική είναι η λειτουργία των διαλυμάτων που προκαλούν τις μετασωματικές διαδικασίες, γνωστά και ως υδροθερμικά διαλύματα, καθώς επίσης και η διηθητική ή διαχυτική μεταφορά της ύλης, ο χώρος του ωκεάνιου φλοιού που επιδρούν και τα χημικά τους συστατικά. Έτσι, η μετασωμάτωση πέρα από μία διαδικασία ρύθμισης της χημικής σύστασης των ωκεανών και του ωκεάνιου φλοιού, θεωρείται ένας από τους βασικούς παράγοντες σχηματισμού κοιτασμάτων πολύτιμων μετάλλων, τόσο παγκοσμίως, όσο και στον ελληνικό χώρο. Καταλήγοντας, η παρούσα βιβλιογραφική έρευνα παρουσιάζει την πιθανή μελλοντική συμβολή των διαλυμάτων αυτών στην πρόκληση γεωδυναμικών γεγονότων, ενώ όσον αφορά τα μετασωματικά πετρώματα, η παρουσία τους είναι ένδειξη ύπαρξης πολύτιμων κοιτασμάτων.
Λέξεις-κλειδιά: μετασωμάτωση, υδροθερμικά διαλύματα, ωκεάνιος φλοιός, διάχυση, διήθηση, κοιτάσματα, πολύτιμα μέταλλα

The present study examines the metasomatic processes within the oceanic crust. The oceanic crust undergoes extensive chemical changes when it reacts with seawater, which play a decisive role in setting the chemical and isotopic composition of the oceans and their rocks. These changes are the result of metasomatism, a process that has the ability to alter the chemical and mineralogical composition of rocks. In order to understand the effect of metasomatism, it is necessary to explain the reasons that cause this process and the criteria that are required to complete it. Consequently, the function of fluids that cause all these metasomatic processes, also known as hydrothermal fluids, is very important. Additionally, of high importance are diffusional or infiltrational mass-transfer, the area of the oceanic crust that is affected and their chemical components. Thus, metasomatism beyond being a process that controls the chemical composition of oceans and oceanic crust, it is also considered one of the main factors for the formation of precious-metal ore deposits, both globally, and in the Greek area as well. To summarize, the present bibliographic survey presents the possible future contribution of these fluids to the rise of geodynamic events. As for metasomatic rocks, their presence is an indicator for the existence of precious ore deposits.
Key-words: metasomatism, hydrothermal fluids, oceanic crust, infiltration, diffusion, ore deposits, precious metals

Πλήρες Κείμενο:

PDF

Αναφορές


Anonymous, (1972), Penrose field conference report: Geotimes, v. 17, no. 12, 24-25

Alt, J. C. (1995). Subseafloor processes in mid-ocean ridge hydrothermal systems. In Geophysical Monograph Series (Vol. 91, pp. 85–114). https://doi.org/10.1029/GM091p0085

Alt, J. C., & Teagle, D. A. H. (1999). The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/S0016-7037(99)00123-4

Austrheim, H., & Prestvik, T. (2008). Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, north-central Norway. Lithos, 104(1–4), 177–198. https://doi.org/10.1016/j.lithos.2007.12.006

Aydal, D. (1990). Gold‐bearing listwaenites in the Araç Massif, Kastamonu, Turkey. Terra Nova. https://doi.org/10.1111/j.1365-3121.1990.tb00035.x

Bach, W., Garrido, C. J., Paulick, H., Harvey, J., & Rosner, M. (2004). Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N. Geochemistry, Geophysics, Geosystems, 5(9). https://doi.org/10.1029/2004GC000744

Bach, W., Jöns, N., & Klein, F. (2013). Metasomatism within the ocean crust. In Lecture Notes in Earth System Sciences. https://doi.org/10.1007/978-3-642-28394-9_8

Bach, W., & Klein, F. (2009). The petrology of seafloor rodingites: Insights from geochemical reaction path modeling. Lithos, 112(1–2), 103–117. https://doi.org/10.1016/j.lithos.2008.10.022

Barriga, F., & Fyfe, W. S. (1983). Development of rodingite in basaltic rocks in serpentinites, East Liguria, Italy. Contributions to Mineralogy and Petrology. https://doi.org/10.1007/BF00371281

Belogub, E. V., Melekestseva, I. Y., Novoselov, K. A., Zabotina, M. V., Tret’yakov, G. A., Zaykov, V. V., & Yuminov, A. M. (2017). Listvenite-related gold deposits of the South Urals (Russia): A review. Ore Geology Reviews, 85, 247–270. https://doi.org/10.1016/j.oregeorev.2016.11.008

Banerjee, N. R., Gillis, K. M., & Muehlenbachs, K. (2000). Discovery of epidosites in a modern oceanic setting, the Tonga forearc. Geology, 28(2), 151–154. https://doi.org/10.1130/0091- 7613(2000)28<151:DOEIAM>2.0.CO;2

Bjerga, A., Konopásek, J., & Pedersen, R. B. (2015). Talc-carbonate alteration of ultramafic rocks within the Leka Ophiolite Complex, Central Norway. Lithos, 227, 21–36. https://doi.org/10.1016/j.lithos.2015.03.016

Bray, I. S. J., & Sanderson, D. (1994). Geochemical Methods for Provenance Studies of Steatite. In Department of.

Buisson, G., & Leblanc, M. (1986). Gold-bearing listwaenites (carbonatized ultramafic rocks) from ophiolite complexes. Metallogeny of Basic and Ultrabasic Rocks.

Burg, J. P. (2012). Rhodope: From mesozoic convergence to cenozoic extension. Review of petro- structural data in the geochronological frame. In Journal of the Virtual Explorer. https://doi.org/10.3809/jvirtex.2011.00270

CHIDESTER, A. H., & CADY, W. M. (1972). Origin and Emplacement of Alpine-type Ultramafic Rocks. Nature Physical Science. https://doi.org/10.1038/physci240027a0

Cogley, J. G. (1984). Continental margins and the extent and number of the continents. In Reviews of Geophysics. https://doi.org/10.1029/RG022i002p00101

Cogné, J. P., & Humler, E. (2006). Trends and rhythms in global seafloor generation rate. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2005GC001148

Coleman, R.G., (1967) Low-temperature reaction zones and alpine rocks of California, Oregon, and Washington, vol 1247, US Geological Survey Bulletin. U.S. Govt. Print. Off, Washington, DC

Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., Von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., & Van Andel, T. H. (1979). Submarine thermal springs on the Galápagos Rift. Science. https://doi.org/10.1126/science.203.4385.1073

Eldorado Gold Corporation, 2017a, Resources and reserves, www.eldoradogold.com/assets/ resources-and-reserves, accessed October 29, 2017.

Ilich——2017b, Eldorado Gold provides an update on 2017 exploration programs, www.eldoradogold.com/news-and-media/news-releases/press-releasedetails/2017/Eldorado- Gold-Provides-an-Update-on-2017-Exploration-Programs/default.aspx, accessed June 26, 2018.

El-Shazly, A. K., & Al-Belushi, M. (2004). Petrology and chemistry of metasomatic blocks from bawshir, Northeastern Oman. International Geology Review. https://doi.org/10.2747/0020- 6814.46.10.904

Evans, B. W. (1977). Metamorphism of Alpine Peridotite and Serpentinite. Annual Review of Earth and Planetary Sciences, 5(1), 397–447. https://doi.org/10.1146/annurev.ea.05.050177.002145

Forward, P., Francis, A., and Liddell, N. (2010), Technical report on the Stratoni project Pb-Zn-Ag deposit, northern Greece: European Goldfields Limited, NI 43-101 Report, 54

Fowler, C. M. R. (2012). Ocean floor tectonics. In Regional Geology and Tectonics. Elsevier B.V. https://doi.org/10.1016/B978-0-444-53042-4.00026-1

Fowler, C. M. R. (2020). The Earth: core, mantle and crust. In Regional Geology and Tectonics: Principles of Geologic Analysis. https://doi.org/10.1016/b978-0-444-64134-2.00002-x

Frost, B. R. (1975). Contact metamorphism of serpentinite, chloritic blackwall and rodingite at paddy-go-easy pass, central cascades, Washington. Journal of Petrology, 16(1), 272–313. https://doi.org/10.1093/petrology/16.1.272

Frost, B. R., Beard, J. S., Mccaig, A., & Condliffe, E. (2008). The formation of micro-rodingites from IODP hole U1309D: Key to understanding the process of serpentinization. Journal of Petrology. https://doi.org/10.1093/petrology/egn038

Gartman, A., Yücel, M., & Luther, G. W. (2014). An Introduction to the Major Chemical Components Released from Hydrothermal Vents. Reference Module in Earth Systems and Environmental Sciences, Ii, 1–11. https://doi.org/10.1016/b978-0-12-409548-9.09105-3

Gartzos, E. (2004). COMPARATIVE STABLE ISOTOPES STUDY OF THE MAGNESITE DEPOSITS OF GREECE. Bulletin of the Geological Society of Greece. https://doi.org/10.12681/bgsg.16619

German, C. R., & Von Damm, K. L. (2003). Hydrothermal Processes. In Treatise on Geochemistry. https://doi.org/10.1016/B0-08-043751-6/06109-0

Gilg, H. A., & Frei, R. (1994). Chronology of magmatism and mineralization in the Kassandra mining area, Greece: The potentials and limitations of dating hydrothermal illites. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/0016-7037(94)90289-5

Gilgen, S. A., Diamond, L. W., & Mercolli, I. (2016). Sub-seafloor epidosite alteration: Timing, depth and stratigraphic distribution in the Semail ophiolite, Oman. Lithos, 260, 191–210. https://doi.org/10.1016/j.lithos.2016.05.014

Gussone, N., Austrheim, H., Westhues, A., & Mezger, K. (2020). Origin of Rodingite Forming Fluids Constrained by Calcium and Strontium Isotope Ratios in the Leka Ophiolite Complex. Chemical Geology, 542(March), 119598. https://doi.org/10.1016/j.chemgeo.2020.119598

Guthrie, J. P. (2001). High-involvement work practices, turnover, and productivity: Evidence from New Zealand. Academy of Management Journal. https://doi.org/10.2307/3069345

Halls, C., & Zhao, R. (1995). Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineralium Deposita. https://doi.org/10.1007/BF00196366

Harlov, D. E., & Austrheim, H. (2013). Metasomatism and the Chemical Transformation of Rock - The Role of Fluids in Terrestrial and Extraterrestrial Processes. In Metasomatism and the Chemical Transformation of Rock SE - 8.

Harper, G. D., Bowman, J. R., & Kuhns, R. (1988). A field, chemical, and stable isotope study of subseafloor metamorphism of the Josephine ophiolite, California-Oregon. Journal of Geophysical Research. https://doi.org/10.1029/JB093iB05p04625

Hatzipanagiotou, K., & Tsikouras, B. (2001). Rodingite formation from diorite in the Samothraki ophiolite, NE Aegean, Greece. Geological Journal. https://doi.org/10.1002/gj.887

Hess, H. H. (1933a) The problem of serpentinisation and the origin of certain chrysotile asbestos, talc and soapstone deposits. Ecom. Geol. 28, 638

Honnorez, J., & Kirst, P. (1975). Petrology of rodingites from the equatorial Mid-Atlantic fracture zones and their geotectonic significance. Contributions to Mineralogy and Petrology. https://doi.org/10.1007/BF00376590

Humphris, S. E., Alt, J. C., Teagle, D. A. H., & Honnorez, J. J. (1998). Geochemical changes during hydrothermal alteration of basement in the stockwork beneath the active TAG hydrothermal mound. Proceedings of the Ocean Drilling Program: Scientific Results. https://doi.org/10.2973/odp.proc.sr.158.220.1998

Ilich, M.; Toshovich, R. (2005) Geology and Origin the Golesh Vein Magnesite Deposit: A Brief Survey. Available online:http://www.geologicacarpathica.com/data/files/files/special%20issue/I/Ilich_ Toshovich.pdf (accessed on 10 July 2020).

Jedrysek, M. O., & Halas, S. (1990). The origin of magnesite deposits from the Polish Foresudetic Block ophiolites: preliminary δ13C and δ18O investigations. Terra Nova. https://doi.org/10.1111/j.1365-3121.1990.tb00057.x

Kalogeropoulos, S. I., & Economou, G. S. (1987). STUDY OF SPHALERITE FROM THE CARBONATE- HOSTED Pb-Zn SULFIDE DEPOSITS OF THE EASTERN CHALKIDIKI PENINSULA, NORTHERN GREECE. Canadian Mineralogist.

Karakida, Y. (1980). (An amphibolite-rodingite xenolith from Tsubokinohana, Kumamoto prefecture.). Science Reports, Department of Geology, Kyushu University.

Katerinopoulos, A., & Zissimopoulou, E. (1994). New mineral occurrences from the Laurium mines, Greece. Mineralogical Record.

Kelemen, P. B., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., & Blusztajn, J. (2011). Rates and mechanisms of mineral carbonation in peridotite: Natural processes and recipes for enhanced, in situ CO2 capture and storage. Annual Review of Earth and Planetary Sciences, 39, 545–576. https://doi.org/10.1146/annurev-earth-092010-152509

Kelemen, P. B., & Matter, J. (2008). In situ carbonation of peridotite for CO2 storage. Proceedings of the National Academy of Sciences, 105(45), 17295-17300.

Klein, F., & Bach, W. (2009). Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. Journal of Petrology. https://doi.org/10.1093/petrology/egn071

Klein, F., & McCollom, T. M. (2013). From serpentinization to carbonation: New insights from a CO2 injection experiment. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2013.08.017

Kobayashi, S., & Kaneda, H. (2010). Rodingite with Ti-and Cr-rich vesuvianite from the Sartuohai chromium deposit, Xinjiang, China. Journal of Mineralogical and Petrological Sciences. https://doi.org/10.2465/jmps.081224

Koons, P. O. (1981). A study of natural and experimental metasomatic assemblages in an ultramafic- quartzofeldspathic metasomatic system from the haast schist, South Island, New Zealand. Contributions to Mineralogy and Petrology, 78(2), 189–195. https://doi.org/10.1007/BF00373780

Koppers, A. A. P., Staudigel, H., & Duncan, R. A. (2003). High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2003GC000574

Korzhinskii, D. S. (1957). Physicochemical Principles of Paragenetic Analysis of Minerals. Korzhinskii, D. S. (1968). The theory of metasomatic zoning. Mineralium Deposita.

https://doi.org/10.1007/BF00207435

Koutsovitis, P., Magganas, A., Pomonis, P., & Ntaflos, T. (2013). Subduction-related rodingites from East Othris, Greece: Mineral reactions and physicochemical conditions of formation. Lithos. https://doi.org/10.1016/j.lithos.2013.04.009

LaFemina, P. C. (2015). Plate Tectonics and Volcanism. In The Encyclopedia of Volcanoes. https://doi.org/10.1016/b978-0-12-385938-9.00003-1

Lesher, C. E., & Spera, F. J. (2015). Thermodynamic and Transport Properties of Silicate Melts and Magma. In The Encyclopedia of Volcanoes (Second Edi). Elsevier Inc. https://doi.org/10.1016/b978-0-12-385938-9.00005-5

Lewis, B. T. R. (1983). The process of formation of ocean crust. Science, 220(4593), 151–157. https://doi.org/10.1126/science.220.4593.151

Li, X. H., Putiš, M., Yang, Y. H., Koppa, M., & Dyda, M. (2014). Accretionary wedge harzburgite serpentinization and rodingitization constrained by perovskite U/Pb SIMS age, trace elements and Sm/Nd isotopes: Case study from the Western Carpathians, Slovakia. Lithos. https://doi.org/10.1016/j.lithos.2014.06.001

Lindgren, W. (1925). Metasomatism. Bulletin of the Geological Society of America. https://doi.org/10.1130/GSAB-36-247

Moore, D. E., & Rymer, M. J. (2007). Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature, 448(7155), 795–797. https://doi.org/10.1038/nature06064

Morishita, T., Hara, K., Nakamura, K., Sawaguchi, T., Tamura, A., Arai, S., ... & Kumagai, H. (2009). Igneous, alteration and exhumation processes recorded in abyssal peridotites and related fault rocks from an oceanic core complex along the Central Indian Ridge. Journal of Petrology, 50(7), 1299-1325.

Müller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2007GC001743

Muraoka, H. (1985). Serpentinization reaction responsible for rodingite formation of the Ashidachi ultramafic complex, southwest Japan. Journal of the Japanese Association of Mineralogists, Petrologists & Economic Geologists. https://doi.org/10.2465/ganko1941.80.413

Nebel, M. L., Hutchinson, R. W., & Zartman, R. E. (1991). Metamorphism and polygenesis of the Madem Lakkos polymetallic sulfide deposit, Chalkidiki, Greece. Economic Geology. https://doi.org/10.2113/gsecongeo.86.1.81

Nehlig, P., Juteau, T., Bendel, V., & Cotten, J. (1994). The root zones of oceanic hydrothermal systems: constraints from the Samail Ophiolite (Oman). Journal of Geophysical Research, 99(B3), 4703–4713. https://doi.org/10.1029/93JB02663

Nishiyama, T., Yoshida-Shiosaki, C., Mori, Y., & Shigeno, M. (2017). Interplay of irreversible reactions and deformation: A case of hydrofracturing in the rodingite–serpentinite system. Progress in Earth and Planetary Science, 4(1), 1–17. https://doi.org/10.1186/s40645-016-0115-4

Normand, C., & Williams-Jones, A. E. (2007). Physicochemical conditions and timing of rodingite formation: Evidence from rodingite-hosted fluid inclusions in the JM Asbestos mine, Asbestos, Québec. Geochemical Transactions, 8. https://doi.org/10.1186/1467-4866-8-11

O’Brien, J. P., & Rodgers, K. A. (1973). Alpine-type serpentinites from the auckland province—II. North auckland serpentinites. Journal of the Royal Society of New Zealand. https://doi.org/10.1080/03036758.1973.10430605

O’Hanley, D. S., Schandl, E. S., & Wicks, F. J. (1992). The origin of rodingites from Cassiar, British Columbia, and their use to estimate T and P(H2O) during serpentinization. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/0016-7037(92)90119-4

Palandri, J. L., & Reed, M. H. (2004). Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochimica et Cosmochimica Acta, 68(5), 1115-1133.

Paulick, H., Bach, W., Godard, M., De Hoog, J. C. M., Suhr, G., & Harvey, J. (2006). Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234(3–4), 179–210. https://doi.org/10.1016/j.chemgeo.2006.04.011

Perfit, M. R. (2001). Mid-ocean Ridge Geochemistry And Petrology. In Encyclopedia of Ocean Sciences. https://doi.org/10.1006/rwos.2001.0096

Perfit, M. R., & Chadwick, W. W. (1998). Magmatism at mid-ocean ridges: Constraints from volcanological and geochemical investigations. In Geophysical Monograph Series. https://doi.org/10.1029/GM106p0059

Pirajno, F. (2013). Effects of metasomatism on mineral systems and their host rocks: Alkali metasomatism, skarns, greisens, tourmalinites, rodingites, black-wall alteration and listvenites. In Lecture Notes in Earth System Sciences. https://doi.org/10.1007/978-3-642-28394-9_7

Pohl, W. (1990). Genesis of magnesite deposits - models and trends. Geologische Rundschau. https://doi.org/10.1007/BF01830626

Pomonis, P., Tsikouras, B., Karipi, S., & Hatzipanagiotou, K. (2008). Rodingite formation in ultramafic rocks from the Koziakas ophiolite, western Thessaly, Greece: Conditions of metasomatic alteration, geochemical exchanges and T-X(CO2) evolutionary path. Canadian Mineralogist, 46(3), 569–581. https://doi.org/10.3749/canmin.46.3.569

Putnis, A., & Austrheim, H. (2010). Fluid-induced processes: Metasomatism and metamorphism. Geofluids, 10(1–2), 254–269. https://doi.org/10.1111/j.1468-8123.2010.00285.x

Ran, Q., Ren, D., Wang, Y., Tong, M., Sun, Y., Yan, L., Dong, J., Wang, Z., Xu, M., Li, N., Peng, H., Chen, F., Yuan, D., Xu, Q., Wang, S., & Wang, Q. (2019). Volcanic Reservoir Mode. In Development of Volcanic Gas Reservoirs. https://doi.org/10.1016/b978-0-12-816132-6.00003-x

Rice, J. M. (1983). Metamorphism of rodingites: part I. Phase relations in a portion of the system CaO-MgO-Al2O3-SiO2-CO2-H2O. American Journal of Science.

Richardson, C. J., Cann, J. R., Richards, H. G., & Cowan, J. G. (1987). Metal-depleted root zones of the Troodos ore-forming hydrothermal systems, Cyprus. Earth and Planetary Science Letters, 84(2– 3), 243–253. https://doi.org/10.1016/0012-821X(87)90089-6

Ritchie, H., & Roser, M. (2020). “Energy”. Published online at OurWorldInData.org. Our World In Data.

Rose, G. (1837). Mineralogisch-geognostische reise nach dem Ural, dem Altai un dem kaspischen meere: bd. Reise nach dem mördlichen Ural und dem Altai (Vol. 1). Verlag der Sanderschen buchandlung (CW Eichhoff).

Schandl, E. S., & Gorton, M. P. (2012). Hydrothermal alteration and CO 2 metasomatism (natural carbon sequestration) of komatiites in the south-western Abitibi greenstone belt. Canadian Mineralogist, 50(1), 129–146. https://doi.org/10.3749/canmin.50.1.129

Schiffman, P., Smith, B. M., Varga, R. J., & Moores, E. M. (1987). Geometry, conditions and timing of off-axis hydrothermal metamorphism and ore-deposition in the Solea graben. Nature. https://doi.org/10.1038/325423a0

Seifritz, W. (1990). CO2 disposal by means of silicates [12]. In Nature (Vol. 345, Issue 6275, p. 486). https://doi.org/10.1038/345486b0

Seyfried, W. E., Berndt, M. E., & Seewald, J. S. (1988). Hydrothermal alteration processes at mid- ocean ridges: constraints from diabase alteration experiments, hot-spring fluids and composition of the oceanic crust. Canadian Mineralogist, 26 pt 3, 787–804.

Sharma, R., & Srivastava, P. K. (2014). Hydrothermal Fluids of Magmatic Origin. 181–208. https://doi.org/10.1007/978-3-319-06471-0_9

Siron, C.R., Thompson, J.F.H., Baker, T., Friedman, R., Tsitsanis, P., Russell, S., Randall, S., and Mortensen, J., (2016), Magmatic and metallogenic framework of Au-Cu porphyry and polymetallic carbonate-hosted replacement deposits of the Kassandra mining district, northern Greece: Society of Economic Geologists, Special Publication 19, Forward29–55.

Siron, C. R., Rhys, D., Thompson, J. F. H., Baker, T., Veligrakis, T., Camacho, A., & Dalampiras, L. (2018). Structural controls on porphyry Au-Cu and Au-rich polymetallic Carbonate-hosted replacement deposits of the Kassandra mining District, Northern Greece. Economic Geology. https://doi.org/10.5382/econgeo.2018.4552

Siron, C. R., Thompson, J. F. H., Baker, T., Darling, R., & Dipple, G. (2019). Origin of AU-rich carbonate-hosted replacement deposits of the Kassandra mining district, northern Greece: Evidence for late Oligocene, structurally controlled, and zoned hydrothermal systems. Economic Geology, 114(7), 1389–1414. https://doi.org/10.5382/econgeo.4664

Skarpelis, N. (2007). The Lavrion deposit (SE Attica, Greece): Geology, mineralogy and minor elements chemistry. Neues Jahrbuch Fur Mineralogie, Abhandlungen. https://doi.org/10.1127/0077-7757/2007/0067

Spry PG, Tombros SF, Seymour KSt, Williams-Jones A, Zouzias DP (2006) Geology, mineralogy and geochemistry of granite-hosted gold telluride mineralization at Panormos Bay, Tinos Island, Greece. GSA, Abstracts with Programs, 38, 55

Tarantola, A., Voudouris, P., Eglinger, A., Scheffer, C., Trebus, K., Bitte, M., Rondeau, B., Mavrogonatos, C., Graham, I., Etienne, M., & Peiffert, C. (2019). Metamorphic and metasomatic kyanite-bearing mineral assemblages of thassos island (Rhodope, Greece). Minerals. https://doi.org/10.3390/MIN9040252

Teagle, D. A. H., Alt, J. C., & Halliday, A. N. (1998). Tracing the chemical evolution of fluids during hydrothermal recharge: Constraints from anhydrite recovered in ODP Hole 504B. Earth and Planetary Science Letters. https://doi.org/10.1016/s0012-821x(97)00209-4

Tivey, M. A., Paul Johnson, H., Fleutelot, C., Hussenoeder, S., Lawrence, R., Waters, C., & Wooding, B. (1998). Direct measurement of magnetic reversal polarity boundaries in a cross-section of oceanic crust. Geophysical Research Letters. https://doi.org/10.1029/98GL02752

Tzamos, E., Bussolesi, M., Grieco, G., Marescotti, P., Crispini, L., Kasinos, A., Storni, N., Simeonidis, K., & Zouboulis, A. (2020). Mineralogy and geochemistry of ultramafic rocks from rachoni magnesite mine, Gerakini (Chalkidiki, Northern Greece). Minerals. https://doi.org/10.3390/min10110934

Valsami, E., & Cann, J. R. (1992). Mobility of rare earth elements in zones of intense hydrothermal alteration in the Pindos ophiolite, Greece. Geological Society Special Publication, 60(60), 219– 232. https://doi.org/10.1144/GSL.SP.1992.060.01.13

Vavelidis, M., & Michailidis, K., (1990) Gold composition in the Fe–Pb–Cu–(Ag–Zn) hydrothermal quartz veins of Kallianou area, Southern Evia (Greece). Bull Geol Soc Greece 32, 87–96

Von Damm, K. L. (2019). Chemistry of hydrothermal vent fluids. In Encyclopedia of Ocean Sciences. Elsevier Inc. https://doi.org/10.1016/B978-0-12-409548-9.10859-0

Voudouris, P., Melfos, V., Spry, P. G., Bonsall, T. A., Tarkian, M., & Solomos, C. (2008). Carbonate- replacement Pb-Zn-Ag±Au mineralization in the Kamariza area, Lavrion, Greece: Mineralogy and thermochemical conditions of formation. Mineralogy and Petrology, 94(1–2), 85–106. https://doi.org/10.1007/s00710-008-0007-4

Voudouris, P., Melfos, V., Spry, P. G., Bonsall, T., Tarkian, M., & Economou-Eliopoulos, M. (2008). Mineralogical and fluid inclusion constraints on the evolution of the Plaka intrusion-related ore system, Lavrion, Greece. Mineralogy and Petrology. https://doi.org/10.1007/s00710-007-0218- 0

Voudouris P, Spry PG (2007) The mineralogy and genesis of precious metal telluride deposits of Greece. GSA Abstracts with Programs, 39, 625

Wares, R. P., & Martin, R. F. (1980). Rodingitization of granite and serpentinite in the Jeffrey Mine, Asbestos, Quebec. The Canadian Mineralogist.

White, W. M., & Klein, E. M. (2013). Composition of the Oceanic Crust. In Treatise on Geochemistry: Second Edition (2nd ed., Vol. 4). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975- 7.00315-6

Yardley, B. W. D. (2013). The chemical composition of metasomatic fluids in the crust. In Lecture Notes in Earth System Sciences. https://doi.org/10.1007/978-3-642-28394-9_2

Zachmann, D. W., & Johannes, W. (1989). Cryptocrystalline magnesite. Magnesite: Geology, Mineralogy, Geochemistry, Formation of Mg-carbonates. Monograph Series on Mineral Deposits, 28, 15-28.

Zharikov, V. A., Rusinov, V. L., Marakushev, A. A., Zaraysky, G. P., Omel’yanchenko, B. I., Pertsev, N. N., ... & Podlesski, K. V. (1998). Metasomatism and metasomatic rocks, 489 p.

Σολωμός, Χ., Βουδούρης, Π., & Κατερινόπουλος, Α. (2004). MlNERALOGICAL STUDY OF BISMUTH - GOLD - ANTIMONY MINERALIZATION AT THE AREA OF KAMARIZA, LAVRION. Bulletin of the Geological Society of Greece. https://doi.org/10.12681/bgsg.16722


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.