Εξώφυλλο

Ηφαιστειοιζηματογενή κοιτάσματα συμπαγών σουλφιδίων: Zh-Pb-Cu σιδηροπυρίτης (τύπου Kuroko) = Volcano-sedimentary massive sulfide depositsQ Zn-Pb-Cu-Pyrite (Kuroko type).

Δημήτριος Αναστάσιος Μπαλιάκας

Περίληψη


Η πτυχιακή εργασία αποσκοπεί στην σύνοψη όλων των χαρακτηριστικών ενός ηφαιστειοιζηματογενούς κοιτάσματος (VMS) τύπου Kuroko. Αρχικά, γίνεται διαχωρισμός των κοιτασμάτων Kuroko από τους άλλους τύπους κοιτασμάτων VMS. Έπειτα, γίνεται λόγος για τα γεωλογικά χαρακτηριστικά των κοιτασμάτων, όπως η μορφολογία, τα πετρώματα ξενιστές, η ζώνωση, οι υδροθερμικές εξαλλοιώσεις κ.ά. Στην συνέχεια αναφέρεται το γεωτεκτονικό περιβάλλον και οι τοπικές συνθήκες σχηματισμού των κοιτασμάτων αυτού του τύπου. Τέλος, παρατίθενται παραδείγματα κοιτασμάτων από την Ελλάδα και παγκοσμίως.

This diploma thesis summarizes the main characteristics of the volcano-sedimentary Kuroko type deposits. In the beginning, Kuroko type deposits are distinguished from the other VMS deposits. Then, the geological characteristics of the deposit like the morphology, the host rocks, the zonation, the hydrothermal alteration etc. are described in details. The geotectonic environment and the local conditions of formation are also defined. Finally, Greek and global examples of the most significant Kuroko type deposits are briefly described.

Πλήρες Κείμενο:

PDF

Αναφορές


Barrie, C.T., and Hannington, M.D., 1999, Classification of volcanic-associated massive sulfide deposits based on host-rock composition, in Barrie, C.T., and Hannington, M.D., eds., Volcanic-associated massive sulfide deposits—Processes and examples in modern and ancient settings: Reviews in Economic Geology, v. 8, p. 1–11.

Busby, C.J., Kessel, L., Schulz, K.J., Foose, M.P., and Slack, J.F., 2003, Volcanic setting of the Ordovician Bald Moun-tain massive sulfide deposit, northern Maine, in Goodfellow, W.D., McCutcheon, S.R., and Peter, J.M., eds., Massive sulfide deposits of the Bathurst mining camp, New Bruns-wick, and northern Maine: Economic Geology Monograph 11, p. 219–244.

C.D. Taylor, R.A. Zierenberg, R.J. Goldfarb, J.E. Kilburn, R.R. Seal II, M.D. Kleinkopf Volcanic-Associated Massive Sulfide Deposits (Models 24a-b, 28a; Singer 1986a, b; Cox, 1986) Preliminary Compilation of Descriptive Geoenvironmental Mineral Deposit Models. U.S Geological Survey Open-File Report 90-831 (1995), pp. 137-144

D.P. Cox, D.A. Singer, P.B. Barton Jr. Mineral deposit models D.P. Cox, D.A. Singer (Eds.), Mineral Deposit Models: U.S. Geological Survey Bulletin 1693 (1986), pp. 1-10

de Roo, J.A., and van Staal, C.R., 2003, Sulfide remobiliza-tion and sulfide breccias in the Heath Steele and Bruns-wick deposits, Bathurst mining camp, New Brunswick, in Goodfellow, W.D., McCutcheon, S.R., and Peter, J.M., eds., Massive sulfide deposits of the Bathurst mining camp, New Brunswick, and northern Maine: Economic Geology Mono-graph 11, p. 479–496.

E. Abdioğlu, M. Arslan, S. Kadir, İ. Temizel Alteration mineralogy, lithochemistry and stable isotope geochemistry of the Murgul (Artvin, NE Turkey) volcanic hosted massive sulfide deposit: implications for the alteration age and ore forming fluids Ore Geology Reviews, 66 (2015), pp. 219-242

E. Çiftçi, R.D. Hagni Mineralogy of the Lahanos deposit a Kuroko-type volcanogenic massive sulfide deposit from the eastern Pontides (Giresun, NE Turkey) Geol. Bull. Turk., 48 (1) (2005), pp. 55-64

Eldridge, C.S., Barton, P.B., Jr. and Ohmoto, H., 1983. Mineral textures and their bearing on formation of the Kuroko orebodies. Econ. Geol., Monogr. 5: 241-281.

Ford, K., Keating, P., and Thomas, M.D., 2007, Overview of geophysical signatures associated with Canadian ore depos-its, in Goodfellow, W.D., ed., Mineral deposits of Canada—A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication 5, p. 939–970.

Franklin, J. M., Lydon, J. W., Sangster, D. F., Volcanic-associated massive sulfide deposits, Economic Geology 75th Anniversary Volume, 1981, 485—627.

Franklin, J.M., Gibson, H.L., Jonasson, I.R., and Galley, A.G., 2005, Volcanogenic Massive Sulfide Deposits, in Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., eds., Economic Geology 100th Anniversary Volume: The Economic Geology Publishing Company, p. 523-560.

Galley AG, Hannington M, and Jonasson I (2007) Volcanogenic massive sulphide deposits. In: Goodfellow WD (ed.) Mineral Deposits of Canada: A Synthesis of Major Deposit-types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Special Publication, vol. 5, pp. 141–161. Quebec, QC: Mineral Deposits Division, Geological Association of Canada

Glasby, G.P., Iizasa, K., Hannington, M., Kubota, H., and Notsu, K., 2008, Mineralogy and composition of Kuroko deposits from northeastern Honshu and their possible mod-ern analogues from the Izu-Ogasawara (Bonin) Arc south of Japan—Implications for mode of formation: Ore Geology Reviews, v. 34, no. 4, p. 547–560.

Grant, F.S., and West, G.F., 1965, Interpretation theory in applied geophysics: New York, McGraw-Hill Books Com-pany, 584 p

Guber, A.L. and Merrill, S.M., III, 1983. Paleobathymetric significance of the foraminifera from the Hokuroku district. Econ. Geol., Monogr. 5: 55-70.

Hannington, M.D., Barrie, C.T., and Bleeker, W., 1999, The giant Kidd Creek volcanogenic massive sulfide deposit, western Abitibi Subprovince, Canada—Summary and synthesis, in Hannington, M.D., and Barrie, C.T., eds., The Giant Kidd Creek volcanogenic massive sulfide deposit, western Abitibi subprovince, Canada: Economic Geology Monograph 10, p. 661–672

Hodgson, C. J., Lydon, J. W., The geological setting of volcanogenic massive sulfide deposits and active hydrothermal systems: Some implications for exploration, Canadian Institute of Mining and Metallurgy Bullet

Huston, D.L., Taylor, B.E., Bleeker, W., Stewart, B., Cook, R., and Koopman, E.R., 1995, Isotope mapping around the Kidd Creek deposit, Ontario—Application to exploration and comparison with other geochemical indicators: Explo-ration and Mining Geology, v. 4, p. 175–185.

Hutchinson, R.W., 1973. Volcanogenic sulfide deposits and their metallogenic significance. Econ. Geol., 68: 1223-1246.

Inoue A, Utada M (1991) Hydrothermal alteration in the Kamikita Kuroko mineralization area, northern Honshu, Japan. Mining Geol Jpn 41: 203–218

Izawa E, Yoshida T, Saito R (1978) Geochemical characteristics of hydrothermal alteration around the Fukazawa Kuroko deposit, Akita, Japan Min Geol J 28:325–336

Janecky, D.R., and Seyfried, W.E., Jr., 1984, Formation of massive sulfide deposits on oceanic ridge crests—Incremental reaction models for mixing between hydrothermal solutions and seawater: Geochimica et Cosmochimica Acta, v. 48, p. 2723–2738.

K.C. Misra Sediment-hosted massive zinc-lead sulfide (SMS) deposits Understanding Mineral Deposits, Springer, Dordrecht (2000)

Kalogeropoulos S (1985) Discriminant analysis for evaluating the use of lithogeochemistry along the Tetsusekiei Horizon as an exploration tool in search for Kuroko type ore deposits. Min Deposita 20:135–142

King EM, Barrie CT, Valley JW (1997) Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek Mine, Ontario: magmatic values are preserved in zircon. Geology 25:1079–1082

Koski, R.A., German, C.R., and Hein, J.R., 2003, Fate of hydrothermal products from mid-ocean ridge hydrothermal systems—Near-field to global perspectives, in Halbach, P.E., Tunnicliffe, V., and Hein, J.R., eds., Energy and mass transfer in marine hydrothermal systems: Berlin, Dahlem University Press, p. 317–335.

Large, R.R., 1992, Australian volcanic-hosted massive sulfide deposits: Features, styles, and genetic models: ECONOMIC GEOLOGY, v. 87, p. 471−510.

Lydon, J. W., Volcanogenic massive sulfide deposits: part 2, genetic models, Geoscience Canada, 1988, 15: 43.

McGloin, M.V., 2017. The significance of metaexhalites, seafloor alteration and retrograde processes for metamorphosed mineral deposits: examples of distinct alteration styles from the Aileron Province. Northern Territory Geol. Surv. Ann. Geosc. Expl. Sem. (AGES), Darwin, March 28-29, 2017 Proc., 42-50.

Milkereit, B., Eaton, D., Wu, J., Perron, G., Salisbury, M., Berrer, E., and Morrison, G., 1996, Seismic imaging of massive sulfide deposits—Part II. Reflection seismic profil-ing: Economic Geology, v. 91, p. 829–834.

Mosier, D.L., Singer, D.A. and Salem, B.B., 1983. Geologic and grade-tonnage information on volcanic-hosted copper-zinclead massive sulfide deposits. USGS Open File Rep., 83-89, 77 pp.

Ohashi, R., 1919. On the origin of the Kuroko of the Kosaka mine. Geol. Soc. Tokyo J., 26:107-132 (in Japanese).

Ohmoto H. Formation of volcanogenic massive sulfide deposits: The Kuroko perspective Ore Geol. Rev. 1996, 10, 135-177.

Ohmoto, H. and Takahashi, T., 1983. Geologic setting of the Kuroko Deposits, Japan. Part III. Submarine calderas and Kuroko genesis. Econ. Geol., Monogr. 5: 39-54.

Ohmoto, H., 2003, Nonredox transformations of magnetite-hematite in hydrothermal systems: Economic Geology, v. 98, p. 157–161.

Ohmoto, H., Mizukami, M., Drummond, S.E., Eldridge, C.S., Pisutha-Arnond, V. and Lenagh, T.C., 1983. Chemical processes of Kuroko formation. Econ. Geol., Monogr. 5: 570-604.

Pisutha-Arnond, V. and Ohmoto, H., 1983. Thermal history, and chemical and isotopic compositions of the ore-forming fluids responsible tot the Kuroko massive sulfide deposits in the Hokuroku district of Japan. Econ. Geol., Monogr. 5: 523-558.

Poulsen, H., and Hannington, M., 1995, Auriferous volcanogenic sulfide deposits, in Eckstrand, O.R., Sinclair, W.D., and Thorpe, R.I., eds., Geology of Canadian mineral deposit types: Geological Survey of Canada, Geology of Canada no. 8; Geological Society of America, Decade of North American Geology v. P1, p. 183–196

REVAN, M. K., GENÇ, Y., MASLENNIKOV, V. V., ÜNLÜ, T., DELİBAŞ, O., & HAMZAÇEBİ, S. (2013). Bulletin of the Mineral Research and Exploration. Bulletin of MTA, 147, 73-89.

Sato T. Kuroko deposits: their geology, geochemsitry and origin Geol. Soc. Lond. Spec. Publ., 7 (1977), pp. 153-161

Sato, T. 1972. Behaviors of ore-forming solutions in seawater. Min. Geol., 22: 31-42.

Schardt, C., and Large, R.R., 2009, New insights into the genesis of volcanic-hosted massive sulfide deposits on the seafloor from numerical modeling studies: Ore Geology Reviews, v. 35, p. 333–351.

Shanks, W.C. Pat, III, and Thurston, Roland, eds., 2012, Volcanogenic massive sulfide occurrence model: U.S. Geological Survey Scientific Investigations Report 2010–5070—C, 345 p.

Singer, D.A., 1995, World-class base and precious metal deposits—A quantitative analysis: Economic Geology, v. 90, p. 88–104.

Skarpelis, N. Setting, sulfur isotope variations, and metamorphism of Jurassic massive Zn-Pb-Ag sulfide mineralization associated with arc-type volcanism (Skra, Vardar zone, Νorthern Greece). Resource Geology. 2020; 70: 311– 335.

Solomon, M. and Walshe, J.L., 1979. The formation of massive sulfide deposits on the seafloor. Econ. Geol., 74: 797-813.

Tajeddin, H.A., Rastad, E., Yaghoubpour, A., Maghfouri, S., Peter, J.M., Goldfarb, R., Mohajjel, M., 2019. The Barika Gold-bearing Kuroko-type Volcanogenic Massive Sulfide (VMS) Deposit, Sanandaj-Sirjan Zone, Iran. Ore Geology Reviews, 113: 103081; DOI: 10.1016//j.oregeorev.2019.103081.

Thomas, M.D., Walker, J.A., Keating, P., Shives, R., Kiss, F., and Goodfellow, W.D., 2000, Geophysical atlas of massive sulphide signatures, Bathurst mining camp, New Bruns-wick: Geological Survey of Canada Open File 3887, 105 p.

Toner, B.M., Santelli, C.M., Marcus, M.A., Wirth, R., Chan, C.S., McCollum, T., Bach, W., and Edwards, K.J., 2009, Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents—Juan de Fuca Ridge: Geochimica et Cosmochimica Acta, v. 73, p. 388–403.

Walker, R.R., Matulich, A., Amos, A.C., Watkins, J.J. and Mannard, G.W., 1975. The geology of the Kidd Creek mine. Econ. Geol., 70: 80-89.

Y. Ishikawa, Y. Yanagizawa On the mode of occurrence of graded ore in the Daikoku Deposit, Ainai Mine Mining Geology, 21 (106) (1971), pp. 138-149

Υπουργείο Περιβάλλοντος και Ενέργειας, https://ypen.gov.gr/wp-content/uploads/2021/04/9-DMX-MOLAON-FINAL_24-5-11.pdf (18/09/2021)


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.