Εξώφυλλο

Contribution to the study of the impacts of climate in Greek viticulture. Trends in grape production, wine quality, challenges, perspectives and uncertainties = Συμβολή στην μελέτη των επιδράσεων του κλίματος στην ελληνική αμπελοκαλλιέργεια: τάσεις στην παραγωγή και ποιότητα των οίνων, προκλήσεις-προοπτικές και αβεβαιότητες.

Georgios Charalampos Koufos

Περίληψη


Climate and more specifically air temperature, chiefly determine whether a given region can be considered suitable for viable viticulture and the production of wines of optimum quality. The cultural importance and status of wine making in Greece is very important and hence wine sector attracts considerable attention due to its economic contribution in Greek domestic product. The aims of this thesis were to define the climate structure for each one of the principal winegrape areas in Greece during the recent past and future periods and to classify the winegrape areas according to the main bioclimatic indices from the literature. In addition, we investigate the temporal and spatial evolution of harvest dates and berry composition (potential alcohol level and acidity) in principal winegrape varieties in Greece and also we attempt to estimate heat demands of the currently cultivated winegrape varieties. The results were used to simulate future harvest dates of the studied varieties according to their heat requirements. Finally, we investigate wine quality trends and their relationships with recent and future climate conditions. The first chapters introduce the topics of interest through literature review. For the purposes of this dissertation, the following chapters used historical daily climatic temperature and precipitation data, harvest dates and berry composition records, and wine ratings from the Thessaloniki International Wine and Spirits Competition. Finally, the last chapter provides the conclusions of all chapters, tying together the findings of the thesis. The results showed that mainland locations were generally colder while coastal and island are experiencing more extreme events and drier periods. Moreover, minimum temperatures significantly increased at a higher rate than the respective maximum in most of the cases. Climate change scenarios suggested significant shifts towards warmer and drier conditions according to the bioclimatic indices used putting additional pressure to the already hot regions in Greece. Furthermore, harvest dates are shifted significantly earlier, due to warmer conditions mainly during ripening period. In addition, trends in potential alcohol (acid) levels were found to be positively (negatively) correlated with maximum air temperatures in most cases. Future projection analysis showed that harvest dates are projected to shift earlier for over a month depending on the variety and the emission pathway. The late ripening indigenous Greek varieties appear better adapted to the recent and projected future climate of the region, responding less to warming as compared to international varieties. Finally, wine quality trend analysis showed a statistically significant upward trend over the recent past and in the future periods in most of the varieties, mainly driven by higher maximum temperatures and drier conditions during the growing season of the grapevines. This thesis presents a potential valuable tool for the producers to consult in order to manipulate phenological and region-specific climate changes under future conditions. However, there is a necessity for better understanding the upper thresholds of the traditional bioclimatic indices for each variety as well as the probability of underestimating the progress in wine making procedures and techniques and the implementation of the adaptive measures by the growers.

Η παράμετρος του κλίματος και ιδιαίτερα η θερμοκρασία του αέρα, καθορίζει σε μεγάλο βαθμό αν μια περιοχή μπορεί να θεωρηθεί κατάλληλη για αμπελοκαλλιέργεια και για την παραγωγή οίνων υψηλής ποιότητας. Στην Ελλάδα, η αμπελοκαλλιέργεια έχει μεγάλη παράδοση και ο κλάδος της οινοποιίας είναι ένας από τους σημαντικότερους τομείς της οικονομίας. Σκοπός της παρούσας διατριβής είναι να καθορίσει τις κλιματικές συνθήκες που επικρατούν σε κάθε μια από τις περιοχές μελέτης στο πρόσφατο παρελθόν αλλά και σε μελλοντικές περιόδους σύμφωνα με τους βιοκλιματικούς δείκτες της βιβλιογραφίας. Επιπλέον, διερευνήθηκε η διαχρονική εξέλιξη των αμπελουργικών παραμέτρων (ημερομηνίες τρύγου, ποσοστό αλκοόλ και επίπεδα οξύτητας) και οι θερμικές ανάγκες για έναν σημαντικό αριθμό ποικιλιών που καλλιεργούνται στην Ελλάδα. Τα αποτελέσματα αυτά χρησιμοποιήθηκαν για την προσομοίωση της εξέλιξης του σταδίου του τρύγου των ποικιλιών. Τέλος, διερευνήθηκε η διαχρονική εξέλιξη της ποιότητας του παραγόμενου οίνου στην Ελλάδα καθώς και η επίδραση του κλίματος στην μεταβολή της ποιότητας του σε τωρινές και μελλοντικές συνθήκες. Τα πρώτα κεφάλαια της διατριβής παρουσιάζουν τα ερευνητικά ερωτήματα καθώς και μια βιβλιογραφική ανασκόπηση αυτών. Προκειμένου να απαντηθούν τα ερευνητικά ερωτήματα της διατριβής, στα επόμενα τρία κεφάλαια χρησιμοποιούνται ημερήσια κλιματικά δεδομένα, ημερομηνίες τρύγου, ποσοστό αλκοόλ, επίπεδα οξύτητας καθώς και οινικές αξιολογήσεις από τον Διεθνή Διαγωνισμό Οίνου και Αποσταγμάτων Θεσσαλονίκης. Τέλος, το τελευταίο κεφάλαιο αποτελεί μια ανακεφαλαίωση των ερευνητικών αποτελεσμάτων της διατριβής. Η ανάλυση των κλιματικών παραμέτρων έδειξε μια διαφοροποίηση του κλίματος κυρίως στις περιοχές της νησιωτικής Ελλάδας με θερμότερες και ξηρότερες συνθήκες κατά τον ετήσιο κύκλο της αμπέλου και κατά την περίοδο της ωρίμανσης της παραγωγής. Η ελάχιστη θερμοκρασία αέρα αυξάνεται με ταχύτερο ρυθμό και ένταση, από την αντίστοιχη μέγιστη στην πλειοψηφία των περιοχών μελέτης. Η ανάλυση του μελλοντικού κλίματος υπαγορεύει ακόμα θερμότερες και ξηρότερες συνθήκες, σύμφωνα με τους χρησιμοποιούμενους από την βιβλιογραφία δείκτες. Το στάδιο του τρύγου παρουσίασε στατιστικά σημαντική πρωίμιση στην πλειοψηφία των περιπτώσεων ενώ η περιεκτικότητα του γλεύκους σε αλκοόλ και οξέα, παρουσίασε αυξητική και πτωτική τάση, αντίστοιχα. Η ανάλυση της προβολής του σταδίου του τρύγου στο μέλλον έδειξε ότι αυτό θα μετακινηθεί έως και 40 ημέρες νωρίτερα, ανάλογα με την ποικιλία και το σενάριο μελέτης. Οι ελληνικές όψιμες ποικιλίες εμφανίζουν μεγαλύτερη ανθεκτικότητα σε σχέση με τις αντίστοιχες μέσης και πρώιμης ωρίμανσης και διεθνείς ποικιλίες. Τέλος, η ανάλυση της ποιότητας του οίνου στο πρόσφατο παρελθόν αλλά και στο μέλλον, παρουσιάζει σημαντική αυξητική τάση επηρεαζόμενη κυρίως από τις θερμότερες και ξηρότερες συνθήκες που επικρατούν κατά την βλαστική περίοδο ανάπτυξης του φυτού. Η παρούσα διδακτορική διατριβή θα μπορούσε δυνητικά να αποτελέσει ένα σημαντικό συμβουλευτικό εργαλείο για την υποστήριξη των παραγωγών στα πλαίσια των φαινολογικών αποκρίσεων των ποικιλιών και των κλιματικών συνθηκών των περιοχών υπό το πρίσμα της κλιματικής αλλαγής. Ωστόσο, τα ανώτερα θερμοκρασιακά όρια μέσα στα οποία μια ποικιλία μπορεί να παράγει οίνους εξαιρετικής ποιότητας, πρέπει να οριοθετηθούν. Τέλος, σημαντικό ρόλο στην αυξητική πορεία της ποιότητας του ελληνικού οίνου πιθανότητα διαδραματίζει η βελτίωση των τεχνικών οινοποίησης αλλά και η αποτελεσματική εφαρμογή των μέτρων αντιμετώπισης που υιοθετούν οι παραγωγοί.


Πλήρες Κείμενο:

PDF

Αναφορές


Adams, R.M., Hurd, B.H., Lenhart, S., & Leary, N. (1998). Effects of global climate change on agriculture: an interpretative review. Climate Research, 11, 19–30. doi:10.3354/cr011019.

Agosta, E., Canziani, P. (2012). Regional climate variability impacts on the annual grape yield in Mendoza, Argentina. Journal of Applied Meteorology and Climatology, 51,993–1009. https://doi.org/10.1175/Jamc-D-11-0165.1.

Aguilar, E., Peterson, T., C., Obando, P., R., Frutos, R., Retana, J., A., Solera, M., Soley, J., Garcia, I., G., Araujo, R., M., Santos, A., R., Valle, V., E., Brunet, M., Aguilar, L., Alvarez, L., Bautista, M., Castanon, C., Herrera, L., Ruano, E., Sinay, J., J., Sanchez, E., Oviedo, G., I., H., Obed, F., Salgado, J., E., Vazquez, J., L., Baca, M.,

Gutierrez, M., Centella, C., Espinosa, J., Martinez, D., Olmedo, B., Espinoza, C., E., O., Nunez, R., Haylock, M., Benavides, H., Mayorga, R., (2005). Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. Journal of Geophysical Research, 110, doi:10.1029/2005JD006119.

Alatzas, A., Theocharis, S., Miliordos, D.E., Leontaridou, K., Kanellis, A.K., Kotseridis, Y., Hatzopoulos, P., & Koundouras, S. (2021). The effect of water deficit on two Greek Vitis vinifera L. cultivars: Physiology, Grape Composition and Gene Expression during berry development. Plants 10, 1947. https://doi.org/10.3390/plants10091947.

Alexander, L., V., Zhang, X., Peterson T., C., Caesar, J., Gleason, B., Klein Tank, A., M., G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Kumar Rupa, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D., B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., Vazquez – Aguirre, J., L., (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, D05109, doi:10.1029/2005JD006290.

Alikadic, A., Pertot, I., Eccel, E., Dolcia, C., Zarbo, C., Caffarra, A., De Filippi, R., & Furlanello, C. (2019). The impact of climate change on grapevine phenology and the influence of altitude: A regional study. Agricultural and Forest Meteorology, 271, 73–82. https://doi.org/10.1016/j.agrformet.2019.02.030.

Amerine, M., & Winkler, M. (1944). Composition and quality of musts and wines of California grapes. Hilgardia, 15, 493–675.

Anderson, J.D., Jones, G.V., Tait, A., Hall, A., Trought, M.T.C., 2012. Analysis of viticulture region climate structure and suitability in New Zealand. International Journal of Vine and Wine Sciences, 46(3):149-165.

Anderson, J.D., Dimou, P., Jones, G.V., Kalivas, D., Koufos, G., Mavromatis, T., Koundouras, S., & Fyllas, N.M. (2014). Harvest dates, climate, and viticultural region zoning in Greece. Proceedings of the 10th International Terroir Congress, 7-10 July 2014, 2, 55–60. Tokaj, Hungary

Araujo, J.A., Abiodun, B.J., & Crespo O. (2016). Impacts of drought on grape yields in Western Cape, South Africa. Theoretical and Applied Climatology, 123 (1–2), 117-130.

Ashenfelter, O., Ashmore, D., and Lalonde, R. (1995). “Bordeaux wine quality and the weather”, Chance, 8(4), 7–19.

Ashenfelter, O. (2008). Predicting the Quality and Prices of Bordeaux Wine. Economic Journal, 118, 174-184.

Baciocco, K.A., Davis, R.E., & Jones, G.V. (2014). Climate and Bordeaux wine quality: identifying the key factors that differentiate vintages based on consensus rankings. Journal of wine research 25:2, 75-90, DOI: 10.1080/09571264.2014.888649

Barnard, H., Dooley, A.N., Areshian, G., Gasparyan, B., Faull, K.F. (2011). Chemical evidence for wine production around 4000 BCE in the Late Chalcolithic Near Eastern highlands. Journal of Archaeological Science, 38(5), 977–984. https://doi.org/10.1016/j.jas.2010.11.012.

Beguería, S., Vicente-Serrano, S.M. (2013). SPEI: Calculation of the Standardized Precipitation-Evapotranspiration Index. R package version 1.6. http://CRAN.R-project.org/package=SPEI (accessed 13 October 2017).

Bernáth, S., Paulen, O., Šiška, B., Kusá, Z., Tóth, F. (2021). Influence of Climate Warming on Grapevine (Vitis vinifera L.) Phenology in Conditions of Central Europe (Slovakia). Plants 10, 1020. https://doi.org/10.3390/plants10051020.

Bindi, M., Fibbi, L., Gozzini, B., Orlandini, S., Miglietta, F. (1996). Modeling the impact of future climate scenarios on yield and variability of grapevine. Climate Research 7, 213–224. https://doi.org/10.3354/cr007213.

Blanco-Ward, D., Queijeiro, J.M.G., Jones, G.V. (2007). Spatial climate variability and viticulture in the Mino River Valley of Spain. Vitis, 46(2),63–70.

Blanco-Ward, D., Monteiro, A., Lopes, M., Borrego, C., Silveira, C., Viceto, C., Rocha, A., Ribeiro, A., Andrade, J., Feliciano, M., Castro, J., Barreales, D., Neto, J., Carlos, C., Peixoto, C., & Miranda, A. (2019). Climate change impact on a wine-producing region using a dynamical downscaling approach: Climate parameters, bioclimatic indices and extreme indices. International Journal of Climatology, 39, 5741–5760. https://doi.org/10.1002/joc.6185.

Bock, A., Sparks, T., Estrella, N., & Menzel, A. (2011). Changes in the phenology and composition of wine from Franconia, Germany. Climate Research 50, 69–81. https://doi.org/10.3354/cr01048.

Bock, A., Sparks, T.H., Estrella, N., & Menzel, A. (2013). Climate-induced changes in grapevine yield and must sugar content in Franconia (Germany) between 1805 and 2010. PLoS ONE, 8(7), e69015. doi:10.1371/journal.pone.0069015.

Buttrose, MS. (1970). Fruitfulness in grape-vines: the response of different cultivars to light, temperature and daylength. Vitis, 9: 121-125.

Cahill, K.N., Lobell, D.B., Field, C.B., Bonfils, C., & Hayhoe, K. (2007). Modelling climate change impacts on wine grape yields and quality in California. Réchauffement climatique, quels impacts probables sur les vignobles? Dijon, France.

Camps, J.O., and Ramos, M.C. (2012) Grape harvest and yield responses to inter-annual changes in temperature and precipitation in an area of north-east Spain with a Mediterranean climate. International Journal of Biometeorol, 56:853–864.

Christy, J.R., Norris, W.B., Redmond K. & Gallo K.P. (2006). Methodology and Results of Calculating Central California Surface Temperature Trends: Evidence of Human-Induced Climate Change?. Journal of Climate, 19(4), 548-563. https://doi.org/10.1175/JCLI3627.1

Chuine, I., Yiou, P., Viory, N., Seguin, B., Daux, V., & Le Roy, L.E. (2004). Grape ripening as a past climate indicator. Nature, 432:289–290.

Cifre, J., Bota, J., Escalona, J.M., Medrano, H., & Flexas, J. (2005). Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.). An open gate to improve water-use efficiency? Agriculture, Ecosystems & Environment, 106, 159– 170. https://doi.org/10.1016/j.agee.2004.10.005.

Compés, R., & Sotés, V. (2018). El sector vitivinícola frente al desafío del cambio climático. 45-64, Monografías Cajamar: Murcia.

Conde, C., Silva, P., Fontes, N., Dias, A. C. P., Tavares, R. M. S. M. J., Sousa M.J., Agasse, A., Delrot, S., & Gerós, H. (2007). Biochemical changes throughout grape berry development and fruit and wine quality. Food, 1, 1–22.

Cook, B. I., & Wolkovich, E. M. (2016). Climate change decouples drought from early wine grape harvests in France. Nature Climate Change, doi: 10.1038/nclimate2960.

Coombe, B.G. (1987). Influence of temperature on composition and quality of grapes. In Proceedings of the International Symposium on Grapevine Canopy and Vigor Management, Vol. XXII IHC. ISHS Acta Horticulturae 206: Davis, CA; 23–35.

Coombe, B.G. (1995). Growth Stages of the Grapevine: Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1(2):104-110.

Davies, C., & Robinson, S. P. (1996). Sugar Accumulation in Grape Berries (Cloning of Two Putative Vacuolar Invertase cDNAs and Their Expression in Grapevine Tissues). Plant Physiology, 111(1), 275–283. doi:10.1104/pp.111.1.275.

Davis, R.E., Dimon, R.A., Jones, G.V., Bois, B. (2019). The effect of climate on Burgundy vintage quality rankings. OENO One, 1, 59-73, DOI: 10.20870/oeno-one.2019.53.1.2359.

Daux, V., Garcia de Cortazar-Atauri, I., Yiou, P., Chuine, I., Garnier, E., Le Roy Ladurie, E., Mestre, O., & Tardaguila, J. (2012). An open-access database of grape harvest dates for climate research: Data description and quality assessment. Climate of the Past, 8(5), 1403–1418. https://doi.org/10.5194/cp-8-1403-2012.

de Blij, H.J. (1983). Geography of Viticulture: Rationale and Resource. Journal of Geography, 82(3), 112-121. https://doi.org/10.1080/00221348308980792.

de Orduña, R.M. (2010). Climate change associated effects on grape and wine quality and production. Food Research International, 43:1844–1855. https://doi.org/10.1016/j.foodres.2010.05.001.

de Rességuier, L., Mary, S., Le Roux, R., Petitjean, T., Quénol, H., & van Leeuwen, C. (2020). Temperature variability at local scale in the Bordeaux area. Relations with environmental factors and impact on vine phenology. Frontiers in Plant Science, 11.

Dougherty, P.H. (2012). The Geography of Wine, Regions, Terroir and Techniques; Springer: New York, NY, USA.

Duchêne, E., & Schneider, C. (2005). Grapevine and climatic changes: a glance at the situation in Alsace. Agronomy for Sustainable Development, 25, 93– 99. https://doi.org/10.1051/agro:2004057.

Easterling, D.R., Horton, B., Jones, P.D., Peterson, T.C., Karl, T.R., Parker, D.E., Salinger, M.J., Razuvayev, V., Plummer, N., Jamason, P., & Folland, C.K. (1997). Maximum and minimum temperatures for the globe. Science 277, 364– 366. DOI: 10.1126/science.277.5324.364.

Eccel, E., Zollo, A.L., Mercogliano, P., & Zorer, R. (2016). Simulations of quantitative shift in bio-climatic indices in the viticultural areas of Trentino (Italian Alps) by an open source R package. Computers and Electronics in Agriculture, 127: 92– 100. https://doi.org/10.1016/j.compag.2016.05.019.

Feidas, H., Makrogiannis, T., & Bora-Senta, E. (2004). Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theoretical and Applied Climatology, 79: 185– 208. https://doi.org/10.1007/s00704-004-0064-5.

Feidas, H., Noulopoulou, C., Makrogiannis, T., Bora-Senta, E. (2007). Trend analysis of precipitation time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theoretical and Applied Climatology, 87,155–177.

Fourment, M., Ferrer, M., González-Neves, G., Barbeau, G., Bonnardot, V., & Quénol, H. (2017). Tannat grape composition responses to spatial variability of temperature in an Uruguay’s coastal wine region. International Journal of Biometeorology, 61, 1617-1628. DOI: 10.1007/s00484-017-1340-2.

Fraga, H., Malheiro, A., Moutinho-Perreira, J., and Santos, J.A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security, 1(2), 94–11

Fraga, H., Santos, J. A., Malheiro, A. C., Oliveira, A. A., Moutinho‐Pereira, J., & Jones, G. V. (2015). Climatic suitability of Portuguese grapevine varieties and climate change adaptation. International Journal of Climatology, 36(1), 1–12. https://doi.org/10.1002/joc.4325.

Fraga, H., Garcia de Cortazar-Atauri, I., Malheiro, A. C., & Santos, J. A. (2016). Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biology, 22(11), 3774–3788. https://doi.org/10.1111/gcb.13382.

Friend, A.P., & Trought, M. C. T. (2007). Delayed winter spur-pruning in New Zealand can alter yield component of Merlot. Australian Journal of Grape and Wine Research, 13(3), 157–164. https://doi.org/10.1111/j.1755-0238.2007.tb00246.x.

Gaiotti, F., Pastore, C., Filippetti, I., Lovat, L., Belfiore, N., & Tomasi, D. (2018). Low night temperature at veraison enhances the accumulation of anthocyanins in

Corvina grapes (Vitis Vinifera L.). Scientific Reports, 8, 8719. https://doi.org/10.1038/s41598-018-26921-4.

Gambetta, G., & Kurtural, S.K. (2021). Global warming and wine quality: are we close to the tipping point? OENO One, 3, 353-361. DOI:10.20870/oeno-one.2021.55.3.4774

Ganichot, B. (2002). Evolution de la date des vendanges dans les Côtes du Rhône méridionales. In 6emes Recontres Rhodaniennes. Institut Rhodanien: Orange, France; 38–41.

García de Cortázar-Atauri, I., Brisson, N., & Gaudillere, J. P. (2009). Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). International Journal of Biometeorology, 53, 317–326. https://doi.org/10.1007/s00484-009-0217-4.

Garcia de Cort´azar-Atauri, I., Daux, V., Garnier, E., Yiou, P., Viovy, N., Seguin, B., Boursiquot, J.M., Parker, A.K., Van Leeuwen, C., & Chuine, I. (2010). Climate reconstructions from grape harvest dates: Methodology and uncertainties. The Holocene, 20, 599–608. DOI: 10.1177/0959683609356585.

García de Cortázar-Atauri, I., Duchêne, E., Destrac Irvine, A., Barbeau, G., Rességuier, L., Lacombe, T., Parker, A. K., Saurin, N., & van Leeuwen, C. (2017). Grapevine phenology in France: from past observations to future evolutions in the context of climate change. OENO One, 51, 115. https://doi.org/10.20870/oeno-one.2017.51.2.1622.

Gatti, M., Pirez, F. J., Frioni, T., Squeri, C., & Poni, S. (2018). Calibrated, delayed‐cane winter pruning controls yield and significantly postpones berry ripening parameters in Vitis vinifera L. cv. Pinot Noir. Australian Journal of Grape and Wine Research, 24(3), 303-316. https://doi.org/10.1111/ajgw.12330.

Gaudillère, J.P. (2007). Les réponses de la vigne face aux changements climatiques `a Bordeaux. In 8 èmes Journées Techniques du CIVB Actes, 13 Mars, Bordeaux-Lac, France, 81–89.

Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M.B., Bi, X., Elguindi1, N., Diro, G.T., Nair, V., Giuliani, G., Turuncoglu, U.U., Cozzini, S., Güttler, I., O’Brien, T.A., Tawfik, A.B., Shalaby, A., Zakey, A.S., Steiner, A.L., Stordal, F., Sloan, L.C., & Brankovic, C. (2012). RegCM4: model description and preliminary tests over multiple

CORDEX domains. Climate Research, 52, 7–29. https://doi.org/10.3354/cr01018.

Gladstones J. (1992). Viticulture and Environment. Winetitles. Adelaide.

Gladstones J. (2011). Wine, terroir and climate change. Wakefield. Adelaide.

Greer, D. H., & Weedon, M. M. (2014). Temperature-dependent responses of the berry developmental processes of three grapevine (Vitis vinifera) cultivars. New

Zealand Journal of Crop and Horticultural Science, 42, 233–246. https://doi.org/10.1080/01140671.2014.894921.

Grifoni, D., Mancini, M., Maracchi, G., Orlandini S, Zipoli G. (2006). Analysis of Italian wine quality using freely available meteorological information. American Journal of Enology and Viticulture, 57(3), 339– 346.

Hall, A., & Jones, G.V. (2008). Effect of potential atmospheric warming on temperature based indices describing Australian winegrape growing conditions. Australian Journal of Grape and Wine Research, 15(2), 97– 119. https://doi.org/10.1111/j.1755-0238.2008.00035.x.

Hall, A., & Jones, G.V. (2010). Spatial analysis of climate in winegrape—growing regions in Australia. Australian Journal of Grape and Wine Research, 16, 389– 404. https://doi.org/10.1111/j.1755-0238.2010.00100.x.

Hall, A., Mathews, A. J., & Holzapfel, B., P. (2016). Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates. International Journal of Biometeorology, 60, 1405-1422. https://doi.org/10.1007/s00484-016-1133-z.

Hannah, L., Roehrdanz, P.R., Ikegami, M., Shepard, A.V., Shaw, M.R., Tabor, G., Zhi, L., Marquet, P.A., and Hijmans, R.J. (2013). Climate change, wine, and conservation. Proceedings of the National Academy of Sciences of the United States of America, 110 (17), 6907–6912. https://doi.org/10.1073/pnas.1210127110.

Hargreaves, G.H., & Samani, Z.A. (1982). Estimating potential evapotranspiration. Journal of Irrigation and Drainage Engineering. 108, 225–230.

Hartigan, J.A., & Wong, M.A. (1979). Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108.

Huglin, MP. 1978. Nouveau mode d'évaluation des possibilités héliothermiques d'un milieu viticole. In Proc Symp Int sur l'ecologie de la Vigne. Ministère de l'Agriculture et de l'Industrie Alimentaire: Constança, Romania, 89–98.

Iland, P.G., & Coombe, B.G. (1988). Malate, Tartrate, Potassium, and Sodium in Flesh and Skin of Shiraz Grapes During Ripening: Concentration and Compartmentation. American Journal of Enology and Viticulture, 39, 71-76.

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy,

J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press

Jackson, D.I., & Lombard, P.B. (1993). Environmental and Management-Practices Affecting Grape Composition and Wine Quality - A Review. American Journal of

Oenology and Viticulture, 44: 409–430.

Jarvis, C., Barlow, E., Darbyshire, R., Eckard, R. and Goodwin, I. (2017) Relationship between viticultural climatic indices and grape maturity in Australia. International

Journal of Biometeorology 61, 1849–1862. https://doi.org/10.1007/s00484-017-1370-9.

Jones, G.V., & Davis, R.E. (2000). Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. American Journal of Enology and Viticulture, 51, 249– 261.

Jones, G.V., Duchene, E., Tomasi, D., Yuste, J., Braslavksa, O., Schultz, H.R., Martinez, C., Boso, S., Langellier, F., Perruchot, C. & Guimberteau, G. (2005a). Changes in European winegrape phenology and relationships with climate. In: GESCO 2005.

Jones, G.V., White, M.A., Cooper, O.R., Storchmann, K. (2005b). Climate change and global wine quality. Climatic Change, 73, 319–343. https://doi.org/10.1007/s10584-005-4704-2.

Jones, G.V. (2006). Climate and terroir: impacts of climate variability and change on wine. In Fine Wine and Terroir—The Geoscience Perspective, RW Macqueen, LD Meinert (eds). Geoscience Canada, Geological Association of Canada: Newfoundland, Canada.

Jones, G.V. & Goodrich, G.B. (2008). Influence of climate variability on wine regions

in the western USA and on wine quality in the Napa Valley. Climate research, 35, 241-254. https://doi.org/10.3354/cr00708.

Jones, G.V., Duff, A.A., Hall, A., & Myers, J.W. (2010). Spatial analysis of climate in winegrape growing regions in the western United States. American Jouranl of Enology and Viticulture, 61(3), 313– 326.

Jones, G.V., Reid, R., & Vilks, A. (2012). Climate, Grapes and Wine: Structure and Suitability in a Variable and Changing Climate. pp.109–133 in The Geography of Wine: Regions, Terrior and Techniques, (Ed.): Dougherty, P. Springer Press, p.255.

Jones, G.V. (2018). The Climate Component of Terroir. Elements, 14, 167–172. https://doi.org/10.2138/gselements.14.3.167.

Jorquera-Fontena, E., & Orrego-Verdugo, R. (2010). Impact of global warming on the phenology of a variety of grapevine grown in southern Chile. Agrociencia, 44, 427-435.

Keller, M. (2010). The science of grapevines: Anatomy and physiology. New York: Academic Press.

Kenny, G.J., Harrison, P.A. (1992). The effects of climate variability and change on grape suitability in Europe. Journal of Wine Research 3(3), 163–183. https://doi.org/10.1080/09571269208717931.

Kliewer, W.M. (1973). Berry composition of Vitis vinifera cultivars as influenced by photo and nycto-temperatures during maturation. Journal of the American Society for Horticultural Science, 2,153–159.

Koch, B. Oehl, F. (2018). Climate change favors grapevine production in temperate zones. Agricultural Sciencies, 9, 247–263. 10.4236/as.2018.93019.

Koundouras, S., Marinos, V., Gkoulioti, A., Kotseridis, Y., & van Leeuwen, C. (2006). Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. Journal of Agricultural and Food Chemistry, 54(14), 5077-5086.

Koufos, G., Mavromatis, T., Koundouras, S., Fyllas, M.N., & Jones, G.V. (2014). Viticulture–climate relationships in Greece: the impact of recent climate trends on harvest dates variation. International Journal of Climatology, 34(5), 1445–1459. https://doi.org/10.1002/joc.3775.

Koufos, G., Mavromatis, T., Koundouras, S., & Jones, G.V. (2017). Response of viticulture‑related climatic indices and zoning to historical and future climate conditions in Greece. International Journal of Climatology, 38, 2097–2111. https://doi.org/10.1002/JOC.5320.

Koufos, G.C., Mavromatis, T., Koundouras, S., & Jones, G.V. (2020). Adaptive capacity of winegrape varieties cultivated in Greece to cliamte change: current trends and future projections. OENO One, 4, 1201-1219. https://doi.org/10.20870/oeno-one.2020.54.4.3129.

Koufos, G.C., Mavromatis, T., Koundouras, S., Fyllas, N.M., Theocharis, S., Jones, G.V. (2022). Greek Wine Quality Assessment and Relationships with Climate: Trends, Future Projections and Uncertainties. Water 2022, 14, 573. https://doi.org/10.3390/w14040573

Kriedemann, P., & Smart, R. (1971). Effect of irradiance, temperature and leaf water potential on photosynthesis of vine leaves. Photosynthetica 5: 6–15.

Lacombe, T., Audeguin, L., Boselli, M., Bucchetti, B., Cabello, F., Chatelet, P., Crespan, M., D'Onofrio, C., Eiras Dias, J., Ercisli, S., Gardiman, M., Grando, M.S., Imazio,

S., Jandurova, O., Jung, A., Kiss, E., Kozma, P., Maul, E., Maghradze, D., Martinez, M.C., Muñoz, G., Pátková, J.K., Pejic, I., Peterlunger, E., Pitsoli, D., Preiner, D., Raimondi, S., Regner, F., Savin, G., Savvides, S., Schneider, A., Spring, J.L., Szoke, A., Veres, A., Boursiquot, J.M., Bacilieri, R., & This, P. (2011). Grapevine European catalogue: towards a comprehensive list. Vitis, 50(2), 65– 68.

Lazoglou, G., Anagnostopoulou, C., & Koundouras, S (2017). Climate change projections for Greek viticulture as simulated by a regional climate model. Theoretical and Applied Climatology, 133:551–567. DOI 10.1007/s00704-017-2198-2

Lebon, E. (2002). Changements climatiques: quelles cons´equences pour la viticulture. In 6emes Recontres Rhodaniennes. Institut Rhodanien: Orange, France, 31–36.

Lebon, E., Dumas, V., Pieri, P., & Schultz, H. (2003). Modelling the seasonal dynamics of the soil water balance of vineyards. Functional Plant Biology, 30(6), 699–710. 10.1071/FP02222.

Leolini, L., Moriondo, M., Romboli, Y., Gardiman, M., Costafreda-Aumedes, S., Garcia de Cortazar-Atauri, I., Bindi, M., Granchi, L., & Brilli, L. (2019). Modelling sugar and acid content in Sangiovese grapes under future climates: An Italian case study. Climate Research, 78, 211-224. 10.3354/cr01571.

Lobell, D.B., Field, C.B., Cahill, K.N., & Bonfils, C. (2006). Impacts on future climate change on California perennial crop yields: model projections with climate and crop uncertainties. Agricultural and Forest Meteorology 141: 208– 218. https://doi.org/10.1016/j.agrformet.2006.10.006.

Lobell, D.B., & Field, C.B. (2007). Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters 2, 014002. 10.1088/1748-9326/2/1/014002.

Lorenzo, M.N., Taboada, J.J., Lorenzo, J.F., Ramos, A.M. (2013). Influence of climate on grape production and wine quality in the Rías Baixas, north-western Spain. Regional Environmental Change, 13,887–896. doi:10.1007/s10113-012-0387-1

Martinez-Zapater, J.M., Carmona, M.J., Díaz-Riquelme, J., Fernández, L., & Lijavetzky, D. (2010). Grapevine genetics after the genome sequence: Challenges and limitations. Australian Journal of Grape and Wine Research, 16, 33–46.

Matese, A., Crisci, A., Di Gennaro, S. F., Primicerio, J., Tomasi, D., Marcuzzo, P., & Guidoni, S. (2014). Spatial variability of meteorological conditions at different scales in viticulture. Agricultural and Forest Meteorology, 189–190, 159–167.

Mavromatis, T., & Stathis, D. (2011). Response of the water balance in Greece to temperature and precipitation trends. Theoretical and Applied Climatology, 104, 13– 24. https://doi.org/10.1007/s00704-010-0320-9.

Mavromatis, T. (2012). Changes in exceptional hydrological and meteorological weekly event frequencies in Greece. Climatic Change, 110, 249– 267. 0.1007/s10584-011-0095-8.

Mavromatis, T. (2014). Pre-season prediction of regional rainfed wheat yield in Northern Greece with CERES-Wheat. Theoretical and Applied Climatology, 117, 3, 653– 665.

Mavromatis, T., & Voulanas, D. (2020). Evaluating ERA-Interim, Agri4Cast, and E-OBS gridded products in reproducing spatiotemporal characteristics of precipitation and drought over a data poor region: The Case of Greece. International Journal of Climatology, 41(3), 2118-2136. 10.1002/joc.6950.

Meier, N., Rutishauser, T., Pfister, C., Wanner, H., & Luterbacher, J. (2007). Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. Geophysical Reseach Letters, 34, L20705. https://doi.org/10.1029/2007GL031381.

Moral, F.J., Rebollo, F.J., Paniagua, L.L., Garcia, A., de Salazar, E.M. (2016). Application of climatic indices to analyse viticultural suitability in Extremadura, south-western Spain. Theoretical and Applied Climatology, 123, 277– 289. https://doi.org/10.1007/s00704-014-1363-0.

Morales‐Castilla, I., Garcia de Cortazar-Atauri, I., Cook, B. I., Lacombe, T., Parker, A., van Leeuwen, C., Nicholas, K. A., & Wolkovich, E. M. (2020). Diversity buffers winegrowing regions from climate change losses. Proceedings of the National Academy of Sciences, 117, 2864-2869. https://doi.org/10.1073/pnas.1906731117.

Mori, K., N.G.-Y, Kitayama, M., Hashizume, K. (2007). Loss of anthocyanins in red-wine grape under high temperature. Journal of Experimental Botany, 58, 1935– 1945. https://doi.org/10.1093/jxb/erm055.

Moriondo, M., Jones, G.V., Bois, B., Dibari, C., Ferrise, R., Trombi, G., & Bindi, M. (2013). Projected shifts of wine regions in response to climate change. Clim. Change 119(3–4), 825–839. https://doi.org/10.1007/s10584-013-0739-y.

Mullins, M.G., Bouquet, A., & Williams, L.E. (1992). Biology of the Grapevine. Cambridge University Press: Cambridge.

Muluneh, M.G. (2021). Impact of climate change on biodiversity and food security: a global perspective—a review article. Agriculture & Food Security, 10, 36. https://doi.org/10.1186/s40066-021-00318-5,

Nastos, P.T., & Matzarakis, A.P. (2008). Variability of tropical days over Greece within the second half of the twentieth century. Theoretical and Applied Climatology, 93, 75– 89. https://doi.org/10.1007/s00704-007-0325-1.

Nastos, P.T., Zerefos, C.S. (2009). Spatial and temporal variability of consecutive dry and wet days in Greece. Atmospheric Research, 94,4,616-628. doi:10.1016/j.atmosres.2009.03.009.

Nastos, P.T., & Kapsomenakis, J. (2015). Regional climate model simulations of extreme air temperature in Greece. Abnormal or common records in the future climate? Atmospheric Research, 152, 43– 60. https://doi.org/10.1016/j.atmosres.2014.02.005.

Neethling, E., Barbeau, G., Bonnefoy, C., & Quenol, H. (2012). Change in climate and berry composition for grapevine varieties cultivated in the Loire Valley. Climate Research, 53:89–101. https://doi.org/10.3354/cr01094.

Nemani, R.R., White, M.A., Cayan, D.R., Jones, G.V., Running, S.W., Coughlan, J.C., Peterson, D.L. (2001). Asymmetric warming over coastal California and its impact on the premium wine industry. Climate Research 19: 25–34. 10.3354/cr019025.

Nesbitt, A., Kemp, B., Steele, C., Lovett, A., & Dorling, S. (2016). Impact of recent climate change and weather variability on the viability of UK viticulture – combining weather and climate records with producers’ perspectives. Australian Journal of Grape and Wine Research, 22(2), 324-335, https://doi.org/10.1111/ajgw.12215.

OIV. State of the World Vitivinicultural Sector in 2020. Available online: https://www.oiv.int/public/medias/7909/oiv-state-of-the-world-vitivinicultural-sector-in-2020.pdf (accessed on 16 October 2021).

Palliotti, A., Panara, F., Silvestroni, O., Lanari, V., Sabbatini, P., Howell, G. S., Gatti, M., & Poni, S. (2013). Influence of mechanical postveraison leaf removal apical to the cluster zone on delay of fruit ripening in Sangiovese (Vitis vinifera L.) grapevines. Australian Journal of Grape and Wine Research, 19, 369–377. https://doi.org/10.1111/ajgw.12033.

Parker, A.K., Garcia de Cortazar-Atauri, I., van Leeuwen, C. & Chuine, I. (2011). General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Australian Journal of Grape and Wine Research, 17, 206-216. https://doi.org/10.1111/j.1755-0238.2011.00140.x.

Parker, A., Garcia de Cortazar-Atauri, I., Chuine, I., Barbeau, G., Bois, B., Boursiquot, J.M., Cahurel, J.Y., Claverie, M., Dufourcq, T., Gény, L., Guimberteau, G., Hofman,

R.W., Jacquet, O., Lacombe, T., Monamy, C., Ojeda, H., Panigai, L., Payan, J.-C., Lovelle, B.R., Rouchaud, E., Schneider, C., Spring, J.-L., Storchi, P., Tomasi, D.,

Trambouze, W., Trought, M. & van Leeuwen, C. (2013). Classification of varieties for their timing of flowering and veraison using a modeling approach. a case study for the grapevine species Vitis vinifera L. Agricultural and Forest Meteorology, 180, 249–264. https://doi.org/10.1016/j.agrformet.2013.06.005.

Parker, A. K., Hofmann, R. W., van Leeuwen, C., McLachlan, A. R. G., & Trought, M. (2014). Leaf area to fruit mass ratio determines the time of veraison in Sauvignon Blanc and Pinot Noir grapevines. Australian Journal of Grape and Wine Research, 20, 422-431. https://doi.org/10.1111/ajgw.12092.

Parker, A.K., Raw, V., Martin, D., Haycock, S., Sherman, E. & Trought M.C.T. (2016). Reduced grapevine canopy size post-flowering via mechanical trimming alters ripening and yield of ‘Pinot noir’. Vitis, 55, 1-9.

Parker, A. K., Garcia de Cortazar-Atauri, I., Gény, L., Spring, J.-L., Destrac Irvine, A., Schultz, H., Molitor, D., Lacombe, T., Graça, A., Monamy, C., Stoll, M., Storchi, P., Trought, M. C. T., Hofmann, R. W., & van Leeuwen, C. (2020). Temperature-based grapevine sugar ripeness modelling for a wide range of Vitis vinifera L. cultivars. Agricultural and Forest Meteorology, 285–286. 10.1016/j.agrformet.2020.107902.

Petrie, P.R., & Sadras, V.O. (2008). Advancement of grapevine maturity in Australia between 1993 and 2006: putative causes, magnitude of trends and viticultural consequences. Australian Journal of Grape and Wine Research 14: 33–45. https://doi.org/10.1111/j.1755-0238.2008.00005.x.

Petrie, P. R., Brooke, S. J., Moran, M. A., & Sadras, V. O. (2017). Pruning after budburst to delay and spread grape maturity. Australian Journal of Grape and Wine Research, 23, 378-389. https://doi.org/10.1111/ajgw.12303.

Politi, N., Sfetsos, A., Vlachogiannis, D., Nastos, P.T., Karozis, S. (2020). A Sensitivity Study of High-Resolution Climate Simulations for Greece. Climate, 8, 44. https://doi.org/10.3390/cli8030044

Poni, S., Gatti, M., Bernizzoni, F., Civardi, S., Bobeica, N., Magnanini, E., & Palliotti, A. (2013). Late leaf removal aimed at delaying ripening in cv. Sangiovese: Physiological assessment and vine performance. Australian Journal of Grape and Wine Research, 19, 378–387. https://doi.org/10.1111/ajgw.12040.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. http://www.R-project.org/ (accessed 13 August 2019).

Ramirez, C.D. (2008). Wine quality, wine prices and the weather: Is Napa “different”? Journal of Wine Economics, 3(2), 114–131.

Ramos, M.C., Martínez-Casasnovas, J.A. (2010). Effects of precipitation patterns and temperature trends on soil water available for vineyards in a Mediterranean climate area. Agricultural Water Management, 97(10), 1495–1505.

Ramos, M.C., Jones, G.V., Yuste, J. (2015). Spatial and temporal variability of cv. Tempranillo phenology and grape quality within the Ribera del Duero DO Spain. and relationships with climate. Int. J. Biometeorol. DOI: 10.1007/s00484-015-0992-z.

Riou, C., Carbonneau, A., Becker, N., Caló, A., Costacurta, A., Castro, R., Pinto, P.A., Carneiro, L.C., Lopes, C., Clímaco, P., Panagiotou, M.M., Sotez, V., Beaumond, H.C.,

Burril, A., Maes, J., Vossen, P. (1994). Le déterminisme climatique de la maturation du raisin: application au zonage de la teneur em sucre dans la communauté

européenne. Office des Publications Officielles des Communautés Européennes: Luxembourg, 322.

Rodo, X., Comin, F.A. (2000). Links between large-scale anomalies, rainfall and wine quality in the Iberian Peninsula during the last three decades. Global Change Biology 6: 267– 273. 10.1046/j.1365-2486.2000.00299.x.

Ruml, M., Nada, K., Vujadinović, M., Vukovic, A., & Ivanišević, D. (2016). Response of grapevine phenology to recent temperature change and variability in the wine-producing area of Sremski Karlovci, Serbia. The Journal of Agricultural Science, 154, 186-206. 10.1017/S0021859615000453.

Sadras, V. O., & Moran, M. A. (2012). Elevated temperature decouples anthocyanins and sugar in berries of Shiraz and Cabernet Franc. Australian Journal of Grape and Wine Research, 18, 115–122. https://doi.org/10.1111/j.1755-0238.2012.00180.x.

Santos, J.A., Costa, R., & Fraga, H. (2018). New insights into thermal growing conditions of Portuguese grapevine varieties under changing climates. Theoretical and Applied Climatology, 135, 1215–1226. https://doi.org/10.1007/s00704-018-2443-3.

Santos, M., Fonseca, A., Fraga, H., Jones, G.V., & Santos, J.A. (2020). Bioclimatic conditions of the Portuguese wine denominations of origin under changing climates. International Journal of Climatology, 40, 927–941. https://doi.org/10.1002/joc.6248.

Schultz, H. R. (2000). Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Australian Journal of Grape and Wine Research, 6, 2–12. https://doi.org/10.1111/j.1755-0238.2000.tb00156.x.

Schultz, H.R., & Jones, G.V. (2010). Climate induced historic and future changes in viticulture. Journal of Wine Research 21: 137–145. https://doi.org/10.1080/09571264.2010.530098.

Tao, F., Yokozawa, M., Liu, J., & Zhang, Z. (2008). Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Research 38, 83– 94. doi: 10.3354/cr00771.

Tarara, J.M., Lee, J., Spayd, S.E., & Scagel, F. (2008). Berry temperature and solar radiation alter acylation, proportion and concentration of anthocyanin in Merlot grapes. American Journal of Enology and Viticulture, 59, 235-247.

Tate, A.B. (2001). Global warming's impact on wine. Journal of Wine Research 12, 95– 109. https://doi.org/10.1080/09571260120095012.

Teslić, N., Vujadinović, M., Ruml, M., Ricci, A., Vuković, A., Parpinello, G.P., & Versari, A. (2019). Future climatic suitability of the Emilia-Romagna (Italy) region for grape production. Regional Environmental Change, 19, 599 – 614. https://doi.org/10.1007/s10113-018-1431-6.

Thornthwaite, C.W. (1948). An approach toward a rational classification of climate. Geographical Review 38, 55– 94.

Tolika, C.K., Zanis, P. & Anagnostopoulou C. (2012). Regional climate change scenarios for Greece: future temperature and precipitation projections from ensembles of

RCMs. Global Nest, 14(4), 407-421.

Tomasi, D., Jones, G.V., Giust, M., Lovat, L., & Gaiotti, F. (2011). Grapevine phenology and climate change: relationships and trends in the Veneto Region of Italy for 1964–2009. American Journal of Enology and Viticulture 62(3), 329–339. Doi: 10.5344/ajev.2011.10108.

Tonietto, J., & Carbonneau, A. (2004). A multicriteria classification system for grape-growing regions worldwide. Agricultural and Forest Meteorology, 124, 81– 97. https://doi.org/10.1016/j.agrformet.2003.06.001.

Torres, N., Martínez-Lüscher, J., Porte, E., & Kurtural, S. K. (2020). Optimal Ranges and Thresholds of Grape Berry Solar Radiation for Flavonoid Biosynthesis in Warm Climates. Frontiers in Plant Science, 11, 931. https://doi.org/10.3389/fpls.2020.00931

Trewin, B. (2010). Exposure, instrumentation, and observing practice effects on land temperature measurements. Wiley Interdisciplinary Reviews Climate Change, 1, 490–506. https ://doi.org/10.1002/wcc.46.

van Leeuwen, C., Friant, P., Choné, X., Tregoat, O., Koundouras, S., & Dubourdieu, D. (2004). Influence of climate, soil, and cultivar on Terroir. American Journal of Enology and Viticulture, 55, 207–217.

van Leeuwen, C., & Seguin, G. (2006). The concept of terroir in viticulture. Journal of Wine Research, 17(1), 1-10, DOI: 10.1080/09571260600633135

van Leeuwen, C., Bois, B., Pieri, P., & Gaudillère, J.-P. (2007). Climate as Terroir Component. Congress on climate and viticulture, Zaragoza, 10–14 April 2007, 1–12.

Van Leeuwen, C., Garnier, C., Agut, C., Baculat, B., Barbeau, G., Besnard, E., Bois, B., Boursiquot, J.M., Chuine, I., Dessup, T., Dufourcq, T., Garcia-Cortazar, I., Marguerit, E., Monamy, C., Koundouras, S., Payan, J.-C., Parker, A., Renouf, V., Rodriguez-Lovelle, B., Roby, J.-P., Tonietto, J., & Trambouze, W. (2008). Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate. In Proceedings of the 7th International Terroir Congress, F Murisier, V Zufferey (eds). Suisse: Nyon, 222– 227.

van Leeuwen, C., Schultz, H., Garcia de Cortazar-Atauri, I., Duchêne, E., Ollat, N., Pieri, P., Bois, B., Goutouly, J.-P., Quénol, H., Touzard, J.-M., Malheiro, A., Bavaresco, L., and Delrot, S. (2013). Why climate change will not dramatically decrease viticultural suitability in main wine producing areas by 2050. Proceedings of the National Academy of Sciences of the United States of America PNAS, 110(33), E3051–E3052.

van Leeuwen, C. & Darriet, P. (2016). The impact of climate change on viticulture and wine quality. Journal of Wine Economics, 11, 150-167. http://dx.doi.org/10.1017/jwe.2015.21.

van Leeuwen, C., & Destrac Irvine, A. (2017). Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One, 51, 147–154. 10.20870/oeno-one.2016.0.0.1647.

Vincent, LA., Peterson, T.C. M. B. Marinod, M. Rusticuccic, G. Carrascoe, E. Ramirezf, L. M. Alvesg, T. Ambrizzih, M. A. Berlatoi, A. M. Grimmj, J. A. Marengog, L. Molionk, D. F. Moncunilll, E. Rebellom, Y. M. T. Anunciaçãom, J. Quintanan, J. L. Santoso, J. Baezp, G. Coronelq, J. Garciar, I. Trebejos, M. Bidegaint, M. R. Haylocku, and D. Karolyv (2005). Observed trends in indices of daily temperature extremes in south America 1960 – 2000. Journal of Climate, 18,5011–5023.

Webb, L.B., Whetton, P.H., & Barlow, E.W.R. (2007). Modelled impact of future climate change on the phenology of winegrapes in Australia. Australian Journal of Grape and Wine Research, 13, 165–175. https://doi.org/10.1111/j.1755-0238.2007.tb00247.x.

Webb, L.B., Whetton, P.H., & Barlow, E.W.R. (2008). Climate change and winegrape quality in Australia. Climate research, 36, 99-111. DOI: https://doi.org/10.3354/cr00740.

Webb, L.B., Whetton, P.H., & Barlow, E.W.R. (2011). Observed trends in winegrape maturity in Australia. Global Change Biology, 17, 2707–2719. doi: 10.1111/j.1365-2486.2011.02434.x.

White, M.A., Diffenbaugh, N.S., Jones, G.V., Pal, J.S., & Giorgi, F. (2006). Extreme heat reduces and shifts United States premium wine production in the 21st century. Proceedings of the National Academy of Sciences,. USA 103, 11217-11222. https://doi.org/10.1073/pnas.0603230103.

Winkler, A.J., Cook, J.A., Kliewer, W.M., & Lider, L.A. (1974). General Viticulture. University of California Press: Berkely, CA, Los Angeles, CA.

Wang, X.L. (2003). Comments on Detection of undocumented changepoints: A revision of the two-phase regression model. Journal of Climate 16, 3383–3385. https://doi.org/10.1175/1520-0442(2003)016<3383:CODOUC>2.0.CO;2.

Wang, X.L., & Feng, Y. (2013a). RHtestV4 User Manual. Climate Research Division. Science and Technology Branch, Environment Canada p. 29. (Published online at http://etccdi.pacificclimate.org/software.shtml) (last access: 03/11/2016).

Wang, X.L., & Feng, Y. (2013b). RHtests_dlyPrcp User Manual. Climate Research Division Atmospheric Science and Technology Directorate Science and Technology Branch, Environment Canada Toronto, Ontario, Canada p.16. (Published online at http://etccdi.pacificclimate.org/software.shtml) (last access: 03/11/2016).

Wolkovich, E. M., Garcia de Cortazar-Atauri, I., Morales‐Castilla, I., Nicholas, K. A., & Lacombe, T. (2018). From Pinot to Xinomavro in the world’s future wine-growing regions. Nature Climate Change, 8, 29-37. https://doi.org/10.1038/s41558-017-0016-6.

Zanis, P., Katragkou, E., Ntogras, C., Marougianni, G., Tsikerdekis, A., Feidas, H., Anadranistakis, E., & Melas, D. (2015). Transient high—resolution regional climate simulation for Greece over the period 1960–2100: evaluation and future projections. Climate Research 64, 123– 140. https://doi.org/10.3354/cr01304.

Zhang, X., Yang, F. (2004). RClimDex (1.0) User Guide. Climate Research Branch Environment Canada. Downsview: Ontario, Canada, 23. http://etccdi.pacificclimate.org/software.shtml accessed 13 October 2017

Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., & Smith, G.M. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.