Εξώφυλλο

Τα κρίσιμα μέταλλα Γάλλιο, Ίνδιο και Γερμάνιο = The critical metals Gallium, Indium and Germanium.

Χρήστος-Αθανάσιος Στυλιανός Ζερβουδάκης

Περίληψη


Η παρούσα διπλωματική πτυχιακή εργασία αφορά την μελέτη των μετάλλων του γαλλίου, ινδίου και γερμάνιου. Πρόκειται για σπάνια μέταλλα που αποτελούν σημαντικό παράγοντα για την σημερινή high-tech κοινωνία και τα ηλεκτρικά εξαρτήματα γενικότερα. Ανήκουν στην κατηγορία των κρίσιμων μετάλλων και παίζουν σημαντικό ρόλο στην αποτελεσματικότητα της χρήσης των διαθέσιμων πόρων, που χρησιμοποιούνται και καταναλώνονται στις τάξεις εκατομμυρίων τόνων. Το γάλλιο χρησιμοποιείται σε μεγάλο βαθμό σε ημιαγωγούς, το γερμάνιο έχει σημαντικές εφαρμογές σε οπτικά υλικά και το ίνδιο σε οθόνες υγρών κρυστάλλων (LCD). Επί του παρόντος, το γάλλιο παράγεται ως υποπροϊόν της επεξεργασίας βωξίτη και από τα υπολείμματα επεξεργασίας ψευδαργύρου, αν και τα μεγαλύτερα αποθέματα συνδέονται με τα φωσφορικά μεταλλεύματα. Το γερμάνιο και το ίνδιο ανακτώνται κατά τη διαδικασία παραγωγής του ψευδαργύρου.

This diploma thesis focuses on the study of the metals gallium, indium and germanium. These rare metals are important factors in today's high-tech society and electrical components in general. They belong in the category of the critical metals and play an important role in the efficiency of the use of available resources, used and consumed in millions of tons. Gallium is widely used in semiconductors, germanium has significant applications in optical materials and indium in liquid crystal displays (LCD). Gallium is currently produced as a by-product of bauxite processing and from zinc processing residues, although the largest reserves are associated with phosphate ores. Germanium and indium are recovered during the zinc production process.

Πλήρες Κείμενο:

PDF

Αναφορές


Angerer, G., Erdmann, L., Marscheider-Weidemann,F. et al. (2009) Rohstoffe für Zukunftstechnologien.Einuss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die künftige Rohstoffnachfrage. ISI-Schriftenreihe “Innovationspotenziale“, Fraunhofer Institut für System- und Innovationsforschung. Fraunhofer IRB-Verlag.

Arndt, N., Kesler, S., & Ganino, C. (2012). Metals and society. An introduction to economic geology.

Banerjee, N.N., Ghosh, B. and Das, A. (eds.) (2000) Trace Metals in Indian Coals. Allied Publishers Ltd., New Delhi. pp. 100.

Bennett, B.R., Magno, R., Boos, J.B., Kruppa, W. and Ancona, M.G. (2005) Antimonide-based compound semiconductors for electronic devices: A review. Elsevier, Solid-State Electronics 49, 1875-1895.

Bernstein, L.R. (1985) Germanium geochemistry and mineralogy. Geochimica et Cosmochimica Acta 49,2409-2422.

Bernstein, L.R. (1986) Geology and mineralogy of the Apex germanium-gallium mine, Washington County, Utah. United States Geological Survey,Bulletin 1577.

Bertrand, G., Cassard, D., Arvanitidis, N., & Stanley, G. (2016). Map of critical raw material deposits in Europe. Energy Procedia, 97, 44-50.

Bhatt, C.K. (2002) Estimation of gallium in a bauxiteore deposit using an energy-dispersive X-ray fluorescence technique. Radiation Physics and Chemistry 65, 193-197.

Bleiwas, D.I. (2010) By-product mineral commodities used for the production of photovoltaic cells. USGS Circular 1365.

Blengini, Gian & Latunussa, Cynthia & Eynard, Umberto & Matos, Cristina & Georgitzikis, Konstantinos & Pavel, Claudiu & Carrara, Samuel &

Mancini, Lucia & Unguru, Manuela & Blagoeva, Darina & Mathieux, Fabrice & Pennington, David. (2020). Study on the EU's list of Critical Raw

Materials (2020) Final Report. 10.2873/11619.

Butcher, T., & Brown, T. (1988). 7. Gallium. Critical metals handbook, 150.

Cassard, D., Chabod, J.C., Marcoux, E., Bourgine, B.,Castaing, C., Gros, Y., Kosakevich, A., Moisy, M. and Villefond, L. (1996) Mise en place et origine des minéralisations du gisement à Zn, Ge, Ag, (Pb, Cd) de Noailhac-Saint Salvy (Tarn, France). Chronique de la Recherche Minière 514, 3-37.

Christie, T. and Brathwaite, B. (2002) Mineral commodity report 19 - beryllium, gallium, lithium, magnesium, uranium and zirconium. Institute of Geological and Nuclear Sciences Ltd, The New Zealand Ministry of Economic Development.

Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W.,Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta 73, 4761-4791.

Dai, S., Wang, X., Seredin, V.V. et al. (2012) Petrology,mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications.International Journal of Coal Geology 90-91, 72-99.

Dasch, E.J. (ed.) (1996) Encyclopedia of Earth Sciences,Volume I. MacMillan Reference USA, New York.

Dittrich, T., Seifert, T. and Gutzmer, J. (2011) Gallium -can future demand be met by geological and technological availability? Department of Mineralogy,Technische Universität Bergakademie Freiberg, Germany. https://sga.conference-services.net/ resources/1054/2590/pdf/SGA2011_0203.pdf

Driesner, T., Pintea, I., 1994. Constraints on the conditions of wurtzite formation at the Agios Philippos Pb-Zn deposit, NE-Greece. Berichte der Deutschen Mineralogischen Gesellschaft, Beiheft zum. Eur. J. Mineral. 6, 54.

Du, G., Zhuang, X., Querol, X. et al. (2009) Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China. International Journal of Coal Geology 78, 16-26.

Dutrizac, J.E., Jambor, J.L. and Chen, T.T. (1986) Host minerals for the gallium-germanium ores of the Apex Mine, Utah. Scientific Communications in Economic Geology 81, 946-950.

Dutta, P. S., Bhat, H. L. and Kumar, V. (1997) The physics and technology of gallium antimonide: An emerging optoelectronic material. Journal of Applied Physics 81 (9) 1 May 1997, 5822.

Evdokimov, A.P., Ozerskii, A.Y. and Ehanin, A.G. (2004) Germanium-bearing lignites of the southeastern rim of the West Siberian Platform. Razvedka i ohrana nedr 6, 26-29.

Feiser, J. (1966) Nebenmetalle. Die Metallischen Rohstoffe, ihre Lagerungsverhältnisse und ihre wirtschaftliche Bedeutung. 17, Band, Ferdinand Enke Verlag Stuttgart, 61-90.

Fisher, D. and Bahl, I.J. (1995) Gallium Arsenide IC Applications Handbook, Volume 1. Academic Press, Inc., San Diego, California, USA, pp. 81.

Foley, N. K., Jaskula, B. W., Kimball, B. E., & Schulte, R. F. (2017). Gallium (No. 1802-H). US Geological Survey.

Font, O., Querol, X., Juan, R., Casado, R., Ruiz, C.R.,López-Soler, A., Coca, P. and García Peña, F (2007) Recovery of gallium and vanadium from gasification fly ash. Journal of Hazardous Materials 139 (3),413-423.

Galley, A.G., Hannington, M.D. and Jonasson, I.R. (2007) Volcanogenic massive sulphide deposits. In:Goodfellow, W.D. (ed.) Mineral deposits of

Canada:A synthesis of major deposit-types, district metallogeny,the evolution of geological provinces, and exploration methods. Geological

Association of Canada,Mineral Deposits Division, Special Publication No.5, 141-161.

Geier, B.H. and Ottemann, J. (1970) New primary vanadium-, germanium-, gallium- and tin-minerals from the Pb-Zn-Cu-deposit Tsumeb, South West Africa. Mineralium Deposita 5, (1), 29-40.

Gerber, G.B. and Leonard, A. (1997) Mutagenicity, carcinogenicity and teratogenicity of germanium compounds. Mutation Research 387, 141-146.

Global Industry Analysts Inc. (2010) Germanium - a global strategic business report. MCP-2637.

Goldschmidt, V.M. (1930) Über das Vorkommen des Germaniums in Steinkohlen und Steinkohlenprodukten.Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, 28, 398-401.

Goldschmidt, V.M. and Peters, C. (1933) Zur Geochemie der Germaniums. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 31, 141-166.

Goodfellow, W.D. and Lydon, J.W. (2007) Sedimentary exhalative (SEDEX) deposits. In: Goodfellow,W.D. (ed.) Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5: 163-183.

Gouin, J., Lerouge, C., Deschamps, Y. et al. (2007) Petrological and geochemical characterisation of germanium-bearing coals from the eastern Rhodopes, Bulgaria. Proceedings of the Ninth Biennial SGA Meeting, Dublin, 1521-1524.

Guberman, D.E. (2008) Germanium. USGS 2007 Minerals Yearbook, United States Geological Survey.

Guberman, D.E. (2011) Germanium. USGS 2009 Minerals Yearbook, United States Geological Survey.

Guberman, D.E. (2013) Germanium: Mineral Commodity Summaries 2013, United States Geological Survey, 64-65.

Hall, W.E. and Heyl, A.V. (1968) Distribution of minor elements in ore and host rock, Illinois-Kentucky Fluorite District and Upper Mississippi Valley Zinc-Lead District. Economic Geology 63, 655-670.

Haller, E.E. (2006) Germanium: from its discovery to SiGe devices. Materials Science in Semiconductor Processing 9, 408-422.

Heald, P., Hayba, D.O. and Foley, N.K. (1987) Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types.Economic Geology 82, 1-26.

Hedenquist, J.W. (1987) Mineralization associated with volcanic-related hydrothermal systems in the circum-Pacific Basin. In: Horn, M.K. (ed.) Transactions of the Fourth Circum-Pacific Energy and Mineral Resources Conference, Singapore. American Association of Petroleum Geologists, 513-524.

Hill, V.G. and Sehnke, E.D. (2006) Bauxite. In: Kogel, J.E., Trivedi, N.C., Barker, J.M. and Krukowski, S.T. (eds.) Industrial Minerals and Rocks, Society for Mining Metallurgy and Exploration Inc: Littleton,Colorado, USA.

Höll, R., Kling, M. and Schroll, E. (2007) Metallogenesis of germanium - A review. Ore Geology Reviews 30, 145-180.

Hu, R.Z., Qi, H-W., Zhou, M-F. et al. (2009) Geological and geochemical constraints on the origin of the giant Lincang coal seam-hosted germanium deposit,Yunnan, South West China: A review. Ore Geology Reviews 36, 221-234.

Jambor, J.L., Owens, D.R., Grice, J.D. and Feinglos, M.N. (1996) Gallobeudantite, PbGa3[ (AsO4), (SO4)]2 (OH)6, a new mineral species from Tsumeb, Namibia and associated new gallium analogues of the alunite-jarosite family. The Canadian Mineralogist 34, 1305-1315.

Jaskula, B.W. (2011a) Gallium in Mineral Commodity Summaries. United States Geological Survey.

Kampunzu, A.B., Cailteux, J.L.H., Kamona, A.F.,Intiomale, M.M. and Melcher, F. (2009) Sedimenthosted Zn-Pb-Cu deposits in the Central African Copperbelt. Ore Geology Reviews 35, 263-297.

Kats, A.Ya., Kremenetsky, A.A., Podkopaev, O.I. (1998) The germanium mineral resource base of the Russian Federation. Mineral Resources of Russia, Economics and Management 1998 (3), 5-9.

Kelley, K.D., Leach, D.L., Johnson, C.A. et al. (2004) Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: implications for ore formation. Economic Geology 99, 1509-1532.

Ketris, M.P, Yudovich, Ya.E. (2009) Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology 78,135-148.

Kovalenker, V.A., Laputina, I.P., Znamenskii, V.S. and Zotov, I.A. (1993) Indium mineralization of the Great Kuril Island Arc. Geology of Ore Deposits 35, 491- 495.

Kramer, D.A. (1988) Gallium. United States Bureau of Mines Minerals Yearbook 1988, Volume 1, 407-411.

Leach, D.L., Sangster, D.F., Kelley, K.D., et al. (2005) Sediment-hosted lead- zinc deposits: A global perspective.Economic Geology 100th Anniversary Volume 561-607.

Leutwein, F. and Rösler, H.J. (1956) Geochemische Untersuchungen an paläozoischen und mesozoischen Kohlen Mittel- und Ostdeutschlands. Freiberger Forschungshefte, C19, 1-196.

Levine, R.M. and Wallace, G.J. (2000) The mineral industries of Armenia, Azerbaijan, Belarus, Georgia,Kazakhstan, Kyrgyzstan, Moldova, Russia,

Tajikistan,Turkmenistan, Ukraine, and Uzbekistan. 2000 Minerals Yearbook, United States Geological Survey, 1-48.

Mavrogonatos, C., Voudouris, P., Berndt, J., Klemme, S., Zaccarini, F., Spry, P.G.,Melfos,V., Tarantola, А., Keith, M., Klemd, R., Haase, K., 2019. Trace elements in magnetite from the Pagoni Rachi porphyry prospect, NE Greece: Implications for ore genesis and exploration. Minerals 9, 725.

Mavrogonatos, C., Voudouris, P., Zaccarini, F., Klemme, S., Berndt, J., Tarantola, A., Melfos, V., Spry, P.G., 2020. Multi-stage introduction of precious and critical metals in pyrite: a case study from the Konos Hill and Pagoni Rachi porphyry/epithermal prospects, NE Greece. Minerals 10, 784.

Melcher, F., & Buchholz, P. (1988). 8. Germanium. Critical metals handbook, 177.

Melcher, F. (2003) The Otavi Mountain Land in Namibia: Tsumeb, germanium and Snowball Earth.Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 148, 413-435.

Melcher, F., Oberthür, T. and Rammlmair, D. (2006)Geochemical and mineralogical distribution of germanium in the Khusib Springs Cu-Zn-Pb-Ag sulfide deposit, Otavi Mountain Land, Namibia. Ore Geology Reviews 28, 32-56.

Melfos, V., & Voudouris, P. C. (2012). Geological, mineralogical and geochemical aspects for critical and rare metals in Greece. Minerals, 2 (4), 300-317.

Mikolajczak C. and Harrower, M. (2012) Indium Sources and Applications. Minor Metals Conference, February 2012.

Mordberg, L.E., Stanley, C.J. and Germann, K. (2001)Mineralogy and geochemistry of trace elements in bauxites: the Devonian Schugorsk deposit, Russia.Mineralogical Magazine 65 (1) 81-101.

Moskalyk, R.R. (2003) Gallium: the backbone of the electronics industry. Minerals Engineering 16, 921-929.

Queneau, P.B., Avotins, P.V. and Farris, L.F. (1986)Germanium recovery from Fargo Oil´s Lang Bay property. CIM Bulletin 79 (886), 92-97.

Roskill Information Services Ltd. (1988) The economics of germanium.

Roskill (2011) Gallium: Global Industry Markets and Outlook, 8th Edition. Roskill Information Services Ltd., London, UK.

Rytuba, J.J., John, D.A., Foster, A., Ludington, S.D. and Kotlyar, B. (2003) Hydrothermal enrichment of gallium in zones of advanced argillic alteration -examples from the Paradise Peak and McDermitt ore deposits, Nevada. United States Geological Survey Bulletin 2209-C. http://pubs.usgs.gov/bul/b2209-c/

SAFC (2011) Triethylgallium - TEGa. http://www.safcglobal.com/safc-hitech/en-us/home/overview/products/gallium/triethylgallium.html

Sahlström, F., Arribas, A., Dirks, P., Corral, I., & Chang, Z. (2017). Mineralogical distribution of germanium, gallium and indium at the Mt Carlton high-sulfidation epithermal deposit, NE Australia, and comparison with similar deposits worldwide. Minerals, 7(11), 213.

Saini-Eidukat, B., Melcher, F. and Lodziak, J. (2009)Zinc-germanium ores of the Tres Marias Mine,Chihuahua, Mexico. Mineralium Deposita 44, 363-370.

Savage, N. (2011) Solar Cell Breaks Efficiency Record.IEEE spectrum. http://spectrum.ieee.org/green-tech/solar/solar-cell-breaks-efficiency-record

Schneider, J., Melcher, F. and Brauns, M. (2007) Concordant ages for the giant Kipushi base metal deposit from direct Rb-Sr and Re-Os dating of sulfides. Mineralium Deposita 42, 791-797.

Schwarz-Schampera, U. and Herzig, P.M. (2002) Indium:Geology, Mineralogy, and Economics. Springer-Verlag,Berlin.

Schwarz-Schampera, U., Terblanche, H. and Oberthür,T.H. (2010) Volcanic-hosted massive sulphide deposits in the Murchison greenstone belt, South Africa. Mineralium Deposita 45/2, 113-145.

Schwarz-Schampera, U. (2014). Indium. Critical metals handbook, 204-229.

Scott, J.D. (1971) Crystal structure of a new mineral,sohngeite. In Mineralogical Notes. The American Mineralogist 56, 355.

Seifert, T.H. and Sandmann, D. (2006) Mineralogy and geochemistry of indium-bearing polymetallic veintype deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany. Ore Geology Reviews 28 (1), 1-31.

Semaw, S. (1997). Late Pliocene Archaeology of the Gona River Deposits, Afar, Ethiopia. Rutgers The State University of New Jersey-New Brunswick.

Seredin, V.V. and Finkelman, R.B. (2008) Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology 76, 253-289.

Seredin, V.V. (2012) Proizvodstvo germaniya iz buryh uglei mestorozhdeniya Ulantuga. Energetik 2012, N3, 19-23 (in Russian)

Seredin, V.V., Dai, S., Sun, Y., Chekryzhov, I.Yu. (2013)Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies.Applied Geochemistry (2013), 31, 1-11 doi: http://dx.doi.org/10.1016/j.apgeochem.2013.01.009

Sinclair, W.D., Kooiman, G.J.A., Martin, D.A. and Kjarsgaard, I.M. (2006) Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick. Ore Geology Reviews 28, 123-145.

Skarpelis, N., 1999. The Agios Filippos ore deposit, Kirki (Western Thrace). A base metal part of a high sulfidation epithermal system. Bull. Geol. Soc. Greece XXXIII, 51 60.

Smirnov, V. I. (1977) Deposits of Germanium. In:Smirnov, V.I. Ore Deposits of the USSR. Vol III.Pitman Publishing Pty. Ltd. 455-462.

Solarbuzz (2011) Global PV Market. http://www.solarbuzz.com/facts-and-figures/market-facts/globalpv-market

Stoiber, R.E. (1940) Minor elements in sphalerite.Economic Geology 1 June 1940, 35 (4), 501-519.

Swaine, D.J. (1990) Trace Elements in Coal.Butterworths, London, pp. 278.

Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: its Composition and Evolution. Blackwell,Oxford.

Tsirambidis, A.E., 2005. The Mineral Wealth of Greece.

Van Nostrand, D., Abreu, S.H., Callaghan, J.J., Atkins, F.B.,Stoops, H.C. and Savory, C.G. (1988) In-111-labeled white blood cell uptake in noninfected closed fracture in humans: prospective study. Radiology 167, 495-498.

Voudouris, P., 2006. Te-rich magmatic-hydrothermal systems in northeastern Greece. Mineral. Petrol. 87, 241-275.

Voudouris, P., Melfos, V., Spry, P.G., Kartal, T., Schleicher, H., Moritz, R., Ortelli, M.,2013. The Pagoni Rachi/Kirki Cu-Mo-Re-Au-Ag-Te deposit, northern Greece:mineralogical and fluid inclusion constraints on the evolution of a telescoped porphyry-epithermal system. Can. Mineral. 51, 411-442.

Voudouris, P., Mavrogonatos, C., Spry, P.G., Baker, T., Melfos, V., Klemd, R., Haase, K., Repstock, A., Djiba, A., Bismayer, U., Tarantola, A., Scheffer,

C., Moritz, R.,Kouzmanov,K., Alfieris, D., Papavassiliou, K., Schaarschmidt, A., Galanopoulos, E.,Galanos, E.,Kołodziejczyk, J., Stergiou, C., Melfou,

M., 2019. Porphyry andepithermal deposits in Greece: an overview, new discoveries, and mineralogical constraints on their genesis. Ore Geol. Rev. 107, 654-691. https://doi.org/10.1016/j.oregeorev.2019.03.01.

Voudouris, P., Repstock, A., Spry, P. G., Frenzel, M., Mavrogonatos, C., Keith, M.,... & Falkenberg, J. J. (2022). Physicochemical constraints on indium-, tin-, germanium-, gallium-, gold-, and tellurium-bearing mineralizations in the Pefka and St Philippos polymetallic vein-and breccia-type deposits, Greece. Ore Geology Reviews, 140, 104348.

Weeks, R.A. (1989) Gallium, Germanium and Indium Resources. In: Carr, D.D. and Herz, N. (eds.) Concise Encyclopedia of Mineral Resources, Pergamon Press,Oxford, UK. pp. 133.

Werner, T. T., Mudd, G. M., & Jowitt, S. M. (2017). The world’s by-product and critical metal resources part III: A global assessment of indium. Ore Geology Reviews, 86, 939-956.

Yang, X., Yun, Z., Yuxia, G. and Banghui, G. (2003) A novel biotechnological process for germanium recovery from brown coal. Proceedings International Biohydrometallurgy Symposium IBS 2003, Athens.

Ye, L., Cook, N.J., Ciobanu, C.L. et al. (2011) Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICP-MS study. Ore Geology Reviews 39, 188-217.

ZSW-Zentrum für Sonnenenergie - und Wasserstoff-Forschung (2012) Results - Annual Report 2011, pp. 88


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.