Εξώφυλλο

Η χρήση των διαφορετικών τύπων αργίλου ως πρόσθετα του διατρητικού πολφού = The use of the different types of clay as additives to the drilling mud.

Δάφνη Απόστολος Τουλίκα

Περίληψη


Τα αργιλικά ορυκτά είναι από τα πιο σημαντικά ορυκτά που χρησιμοποιούνται στον κατασκευαστικό τομέα και στις βιομηχανίες. Οι άργιλοι ταξινομούνται στις ομάδες του Καολίνη, του Σμεκτίτη ή Μοντμοριλονίτη, του Βερμικουλίτη, του Σεπιόλιθου και του Πυλοφυλλίτη και σχηματίζονται από την ενυδάτωση των πυριτικών αλάτων, από τη διάλυση ασβεστολιθικών πετρωμάτων, από τη διάβρωση της αργίλου που βρίσκεται σε ιζηματογενή πετρώματα και ως προϊόν υδροθερμικής αποσύνθεσης γρανιτικών πετρωμάτων. Σε γενικές γραμμές οι άργιλοι ταξινομούνται σε μια πληθώρα κατηγοριών ανάλογα με το ορυκτό το οποίο είναι επικρατέστερο, τη χρήση τους, την πλαστικότητα, την περιεκτικότητα σε αργιλικό υλικό καθώς και με βάση τη θέση σχηματισμού των αργίλων. Στόχος της εργασίας αυτής είναι η αποτύπωση, καταγραφή και εκτίμηση των διάφορων ιδιοτήτων και τύπων αργίλου ως πρόσθετα του διατρητικού πολφού. Τα υγρά γεώτρησης (drilling fluids), γνωστά και ως λάσπες γεώτρησης (drilling muds), είναι βασική παράμετρος στη μηχανική γεωτρήσεων πετρελαίου, φυσικού αερίου και αρχιτεκτονικής μηχανικής, παρέχοντας μια σημαντική αγορά για μπεντονίτη, παλυγορσκίτη και σεπιόλιθο καθώς μπορούν να πετυχαίνουν το κατάλληλο ιξώδες σε όλη τη διάρκεια της γεώτρησης. Κάθε τύπος ορυκτού παρέχει τα δικά του ανταγωνιστικά πλεονεκτήματα, με τον παλυγορσκίτη να προσφέρει τα μέγιστα δυνατά οφέλη λόγω των εξαιρετικών κολλοειδών ιδιοτήτων (αντοχή σε υψηλή θερμοκρασία, αντοχή σε άλατα-αλκάλια και υψηλή απορροφητική ικανότητα). Φυσικά θα πρέπει να αναφερθεί ότι οι έρευνες που έχουν πραγματοποιηθεί είναι αρκετά περιορισμένες και αφοράνε αποκλειστικά τους συγκεκριμένους τύπους αργίλου, κάτι το οποίο χρήζει την πραγματοποίηση περισσότερων ερευνών. Τα υγρά γεώτρησης παρέχουν μια σημαντική αγορά για την άργιλο, ενώ ο σημαντικός ρόλος των αργίλων στη λάσπη γεώτρησης σχετίζεται με την ικανότητά τους να επιτυγχάνουν κατάλληλο ιξώδες σε σχετικά χαμηλές συγκεντρώσεις στερεών και να διατηρούν το επιθυμητό ιξώδες σε όλη τη διάρκεια της γεώτρησης. Η θετική επίδραση των συγκεκριμένων τύπων αργίλου έχει καταγραφεί από τις μελέτες που πραγματοποιήθηκαν για αυτό και ως υλικό χρησιμοποιείται από τη βιομηχανία. Από την άλλη πλευρά όμως, ιδιαίτερο ενδιαφέρον η περαιτέρω μελέτη και καταγραφή των δυνατοτήτων και ιδιοτήτων και των άλλων τύπων αργίλου, προκειμένου να υπάρχει μια εκτενέστερη και πιο σφαιρική εικόνα των ορυκτών αργίλου ως υγρά γεώτρησης.
Λέξεις-κλειδιά: Αργιλικά ορυκτά, Λάσπες γεώτρησης, Ιδιότητες αργίλου

Clay minerals are among the most important minerals used in construction and industries. Clays are classified into the groups of Kaolin, Smectite or Montmorillonite, Vermiculite, Sepiolite and Pylophyllite and are formed from the hydration of silicates, from the dissolution of limestone rocks, from the weathering of clay found in sedimentary rocks and as a product of hydrothermal of decomposition of granitic rocks. In general, clays are classified into a multitude of categories depending on the mineral that is predominant, their use, plasticity, content of clay material as well as based on the place of formation of the clays. The purpose of this work is to capture, record and evaluate the various properties and types of clay as additives to the drilling pulp. Drilling fluids, also known as drilling muds, are a key parameter in oil, gas and architectural engineering, providing an important market for bentonite, palygorskite and sepiolite as they can achieve the appropriate viscosity in throughout the drilling. Each type of mineral provides its own competitive advantages, with palygorskite offering the greatest possible benefits due to its excellent colloidal properties (high temperature resistance, salt-alkali resistance and high absorbent capacity). Of course, it should be noted that the research that has been carried out is quite limited and concerns only the specific types of clay, something that needs more research. Drilling fluids provide an important market for clay, and the important role of clays in drilling mud is related to their ability to achieve appropriate viscosity at relatively low solids concentrations and maintain the desired viscosity throughout drilling. The positive effect of specific types of clay has been recorded by the studies carried out on it and as a material it is used by industry. On the other hand, it is of particular interest to further study and record the possibilities, obstacles, challenges and properties of other types of clay, in order to have a wider and more global picture of clay minerals as drilling fluids.

Πλήρες Κείμενο:

PDF

Αναφορές


Abdo J. & Haneef M.D. (2013). Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells. Applied Clay Science, 86, 76–82

Abdo J., Al-Sharji H. & Hassan E. (2016). Effects of nano-sepiolite on rheological properties and filtration loss of water-based drilling fluids. Surface and Interface Analysis, 48, 522– 526.

Abdou M.I., Al-sabagh A.M. & Dardir M.M. (2013). Evaluation of Egyptian bentonite and nano-bentonite as drilling mud. Egyptian Journal of Petroleum, 22, 53–59.

Abu-Jdayil B. (2011). Rheology of sodium and calcium bentonite-water dispersions: effect of electrolytes and aging time. International Journal of Mineral Processing, 98, 208–213

Afolabi R.O., Orodu O.D. & Efeovbokhan V.E. (2017). Properties and application of Nigerian bentonite clay deposits for drilling mud formulation: recent advances and future prospects. Applied Clay Science, 143, 39–49.

Al-Zubaidi N.S., Alwasiti A.A. & Mahmood D. (2016). A comparison of nano bentonite and some nano chemical additives to improve drilling fluid using local clay and commercial bentonites. Egyptian Journal of Petroleum, 26, 811–818

Au P.I. & Leong Y.K. (2013). Rheological and zeta potential behaviour of kaolin and bentonite composite. Colloids & Surfaces A: Physicochemical and Engineering Aspects, 436, 530– 541

Bailey L., Lekkerkerker H.N.W. & Maitland G.C. (2015). Smectite clay – inorganic nanoparticle mixed suspensions: phase behaviour and rheology. Soft Matter, 11, 222– 236.

Baltar C.A.M., Luz A.B.D., Baltar L.M., Oliveira H.D. & Bezerra F.J. (2009). Influence of morphology and surface charge on the suitability of palygorskite as drilling fluid. Applied Clay Science, 42, 597–600

Barast G., Razakamanantsoa A.R., Djeran-Maigre I., Nicholson T. & Williams D. (2017) Swelling properties of natural and modified bentonites by rheological description. Applied Clay Science, 142, 60–68.

Baravian C., Vantelon D. & Thomas F. (2003). Rheological determination of interaction potential energy for aqueous clay suspensions. Langmuir, 19, 8109–8114

Benna-Zayani M., Mgaidi A., Stambouli M., Kbir-Ariguib N., Trabelsi-Ayadi M. & Grossiord

J.L. (2009). Fractal nature of bentonite–water–NaCl gel systems evidenced by viscoelastic properties and model of gels. Applied Clay Science, 46, 260–264

Benslimane A., Bahlouli I.M., Bekkour K. & Hammiche D. (2016). Thermal gelation properties of carboxymethyl cellulose and bentonite–carboxymethyl cellulose dispersions: rheological considerations.Applied Clay Science, 132–133, 702–710

Bergaya F. & Lagaly G. (2013). Handbook of Clay Science, Part A: Fundamentals, 2nd edn.Elsevier, Amsterdam, The Netherlands

Briscoe B.J., Luckham P.F. & Ren S.R. (1994). The properties of drilling muds at high- pressures and high-temperatures. Philosophical Transactions: Physical Sciences and Engineering, 348, 179–207.

Chemeda Y.C., Christidis G.E., Tauhid Khan N.M., Koutsopoulou E., Hatzistamou V. & Kelessidis V.C. (2014). Rheological properties of palygorskite–bentonite and sepiolite– bentonite mixed clay suspensions. Applied Clay Science, 90, 165–174

Chesworth, W., (2007). Encyclopedia of Soil Science. Springer, Netherlands

Choo K.Y. & Bai K. (2015). Effects of bentonite concentration and solution pH on the rheological properties and long-term stabilities of bentonite suspensions. Applied Clay Science, 108, 182–190

Christidis G.E., Katsiki P., Pratikakis A. & Kacandes G. (2010). Rheological properties of palygorskite–smectite suspensions from the Ventzia basin,W. Macedonia, Greece. Bulletin of the Geological Society of Greece, 43, 2552–2569

Christine, M. D. (2013). Methods for Determination of Heavy Metals and Metalloids in soils, Univ. of Strathclyde.295, Glasgow, Scotland, UK 22: 97-121.

Darley H.C.H. & Gray G.R. (1988) Composition and Properties of Drilling and Completion Fluids. Gulf Publishing Company, Houston, TX, USA

Delgado, A., Gonzalez-Caballero, F. & Bruque, J.M. (1986). On the zeta potential and surface charge density of montmorillonite in aqueous electrolyte solutions. Journal of Colloid and Interface Science, 113, 203–211.

Dias F.T.G., Souza R.R. & Lucas E.F. (2015). Influence of modified starches composition on their performance as fluid loss additives in invert-emulsion drilling fluids. Fuel, 140, 711– 716.

Dill H.G. (2016) Kaolin: soil, rock and ore: from the mineral to the magmatic, sedimentary and metamorphic environments. Earth-Science Reviews, 161, 16–129

Falode O.A., Ehinola O.A. & Nebeife P.C. (2008). Evaluation of local bentonitic clay as oil well drilling fluids in Nigeria. Applied Clay Science, 39, 19–27

Farrow T.C., Rasmussen C.A., Menking W.R. & Durham D.H. (2003). Organoclay Compositions for Gelling Unsaturated Polyester Resin Systems. US 6635108 B1.

Fernandez-Barranco C., Kozioł A.E., Skrzypiec K., Rawski M., Drewniak M. & Yebra- Rodriguez A. (2016). Reprint of study of spatial distribution of sepiolite in sepiolite/polyamide 6,6 nanocomposites. Applied Clay Science, 127–128, 129–133

Garcia-Lopez D., Fernandez J.F., Merino J.C. & Pastor J.M. (2013). Influence of organic modifier characteristic on the mechanical properties of polyamide organosepiolite nanocomposites. Composites Part B: Engineering, 45, 459–465

Giustetto R. & Chiari G. (2004). Crystal structure refinements of palygorskite and Maya Blue from molecular modeling and powder synchrotron diffraction. European Journal of Mineralogy, 16, 521–532.

Guggenheim, S and Martin, R. T. (1995), Definition of clay and clay mineral: Joint Report of the AIPEA nomenclature and CMS nomenclature committees; a Journal of Clays and Clay Minerals. 44:713-715.

Heath D. & Tadros T.F. (1983). Influence of pH, electrolyte and poly(vinyl alcohol) addition on the rheological characteristics of aqueous dispersions. Journal of Colloid and Interface Science, 93, 307–319.

Hiller K.H. (1963). Rheological measurements on clay suspensions and drilling fluids at high temperatures and pressures. Journal of Petroleum Technology, 15, 779–788

Kelessidis V.C., Tsamantaki, C. & Dalamarinis, P. (2007). Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Applied Clay Science, 38, 86–96

Khil’Ko S.L. & Titov E.V. (2002). Flow peculiarities of the aqueous suspensions of palygorskite and bentonite clays. Colloid Journal, 64, 631–636.

Lagaly G. & Ziesmer S. (2003). Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. Advances in Colloid and Interface Science, 100–102, 105– 128.

Lee J.D. (1999). Concise Inorganic Chemistry, 5th Ed, Wiley

Li M.C., Wu Q.L., Song K.L., Lee S.Y., Jin C.D. & Ren S.X. (2015). Soy protein isolate as fluid loss additive in bentonite–water-based drilling fluids. ACS Applied Materials and Interfaces, 7, 24799–24809.

Lin Y., Cheah L.K.-J., Phan-Thiena N. & Khoo B.C. (2016). Effect of temperature on rheological behavior of kaolinite and bentonite suspensions. Colloids & Surfaces A: Physicochemical and Engineering Aspects, 506, 1–5

Luckham P.F. & Rossi S. (1999). The colloidal and rheological properties of bentonite suspensions. Advances in Colloid and Interface Science, 82, 43–92.

Luo Z.H., Wang L.X., Pei J.J., Yu P.Z. & Xi B. (2018). A novel star-shaped copolymer as a rheology modifier in water-based drilling fluids. Journal of Petroleum Science and Engineering, 168, 98–106.

Ma X.M., Chen Y. & Qi L.H. (2014). Research and application of gas-lift reverse circulation drilling technology to geothermal well construction in Dalian Jiaoliu Island. Procedia Engineering, 73, 252–257.

Mainye W. & Teutsch M.B. (2015). Synergistic Organophilic Clay Mixture as an Additive to Oil-Based Drilling Fluids. WO 2015/138407 A1.

Meunier, A., Velde, B.D., (2013). Illite: Origins, Evolution and Metamorphism. Springer Berlin Heidelberg

Miyahara K., Ohtsubo M., Nakaishi K. & Adachi Y. (2001). Sedimentation rate of sodium montmorillonite suspension under high ionic strength. Journal of the Clay Science Society of Japan, 40, 179–184.

Mpofu P., Addai-Mensah J. & Ralston J. (2005). Interfacial chemistry, particle interactions and improved dewatering behaviour of smectite clay dispersions. International Journal of Mineral Processing, 75, 155–171.

Murray, H.H., (2006). Applied Clay Mineralogy: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskitesepiolite, and Common Clays. Elsevier Science

Neaman A. & Singer A. (2000). Rheological properties of aqueous suspensions of palygorskite.

Soil Science Society of America Journal, 64, 427–436.

Núñez K., Gallego R., Pastor J.M. & Merino J.C. (2014). The structure of sepiolite as support of metallocene co-catalyst during in situ polymerization of polyolefin (nano)composites. Applied Clay Science, 101, 73–81

Omole O., Adeleye J.O., Falode O., Malomo S. & Oyedeji O. (2013) Investigation into the rheological and filtration properties of drilling mud formulated with clays from northern Nigeria. Journal of Petroleum and Gas Engineering, 4, 1–7

Oyewole A., Salami T. & Plank J. (2013). Preparation and properties of a dispersing fluid loss additive based on humic acid graft copolymer suitable for cementing high temperature (200°C) oil wells. Journal of Applied Polymer Science, 129, 1–10

Paineau E., Bihannic I., Baravian C., Philippe A.M., Davidson P., Levitz P., Funari S.S., Rochas

C. & Michot L.J. (2011a). Aqueous suspensions of natural swelling clay minerals. 1. Structure and electrostatic interactions. Langmuir, 27, 5562–5573.

Paineau E., Michot L.J., Bihannic I. & Baravian C. (2011b). Aqueous suspensions of natural swelling clay minerals. 2. Rheological characterization. Langmuir, 27, 7806–7819

Rossi S., Luckham P.F., Zhu S. & Briscoe B.J. (1999). High-pressure/hightemperature rheology of Na+-montmorillonite clay suspensions, Presented at: SPE International Symposium on Oilfield Chemistry, 16–19 February 1999, Houston, TX, USA.

Santoyo E., Santoyo-Gutierrez S., Garcia A., Espinosa G. & Moya S.I. (2001). Rheological property measurement of drilling fluids used in geothermal wells. Applied Thermal Engineering, 21, 283–302

Shi L.Y., Li T.T., Zhang X.F., Zhang B. & Liang H.J. (2008). Effects of temperature and clay content on water-based drilling fluids’ rehological property. Petroleum Drilling Techniques, 36, 20–22.

Sparks, D.L., (2013). Environmental Soil Chemistry. Elsevier Science, USA

Sposito, G., (1995). The Environmental Chemistry of Aluminum, Second Edition, CRC Press, London

Suárez M. & García-Romero E. (2011). Advances in the crystal chemistry of sepiolite and palygorskite. Developments in Clay Science, 3, 33–65

Tombácz E. & Szekeres M. (2004). Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27, 75–94

Velde, B., (2013). Origin and Mineralogy of Clays: Clays and the Environment. Springer Berlin Heidelberg

Vryzas Z., Kelessidis V.C., Nalbantian L., Zaspalis V., Gerogiorgis D.I. & Wubulikasimu Y. (2017). Effect of temperature on the rheological properties of neat aqueous Wyoming sodium bentonite dispersions. Applied Clay Science, 136, 26–36.

Wan T., Yao J., Zishun S., Li W. & Juan W. (2011) Solution and drilling fluid properties of water soluble AM–AA–SSS copolymers by inverse microemulsion. Journal of Petroleum Science and Engineering, 78, 334–337.

Wang W.B. & Wang A.Q. (2016). Recent progress in dispersion of palygorskite crystal bundles for nanocomposites. Applied Clay Science, 119, 18–30.

Weng J.L., Gong Z.J., Liao L.L., Lv G.C. & Tan J.J. (2018). Comparison of organo-sepiolite modified by different surfactants and their rheological

behavior in oil-based drilling fluids. Applied Clay Science, 159, 94–101.

Wu M.Y. & Adachi Y. (2016). Effects of electrolyte concentration and pH on the sedimentation rate of coagulated suspension of sodium montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506, 686–693

Xu J., Wang W. & Wang A. (2013). Superior dispersion properties of palygorskite in dimethyl sulfoxide via high-pressure homogenization process. Applied Clay Science, 86, 174–178.

Yan Z., Wang H., Sun D. & Zhu Z. (2016). Microstructure and adsorption mechanism of intercalated modified Na-bentonite. Chinese Journal of Environmental Engineering, 10, 4879–4886

Yotsumoto, H., (2011). Electron micrographs of clay minerals. Elsevier Science.

Zhang L.M. & Yin D.Y. (2002). Preparation of a new lignosulfonate based thinner: introduction of ferrous ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 210, 13–21

Zhuang G.Z., Zhang Z.P., Jaber M., Gao J.H. & Peng S. (2017). Comparative study on the structures and properties of organo-montmorillonite and organo-palygorskite in oil-based drilling fluids. Journal of Industrial and Engineering Chemistry, 56, 248–257


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.