Εξώφυλλο

Καθορισμός και προσομοίωση χρόνων επανάληψης ισχυρών σεισμών στον ελληνικό χώρο με τη χρήση στοχαστικών μοντέλων: συμβολή στην εκτίμηση της σεισμικής επικινδυνότητας = Determination and simulation of strong earthquakes’ recurrence times in Greece via the application of stochastic models: contribution on seismic hazard assessment.

Χρήστος Αθανάσιος Κουρούκλας

Περίληψη


Ο καθορισμός του μέσου χρόνου επανάληψης ισχυρών σεισμών που συνδέονται με συγκεκριμένο ρήγμα ή τμήμα αυτού και πάνω από ένα ορισμένο μέγεθος αποτελεί απαραίτητη παράμετρο για την μελέτη της χρονικής συμπεριφοράς των ισχυρών σεισμών και μπορεί να χρησιμοποιηθεί ως δεδομένο εισόδου σε μελέτες εκτίμησης της σεισμικής επικινδυνότητας μίας συγκεκριμένης περιοχής. Χρησιμοποιώντας τον μέσο χρόνο επανάληψης κάθε ρήγματος είναι δυνατόν να εφαρμοσθούν στατιστικά μοντέλα με σκοπό την εκτίμηση της πιθανότητας γένεσης του επόμενου ισχυρού σεισμού του εκάστοτε ρήγματος σε συγκεκριμένο χρονικό διάστημα. Ο καθορισμός του κατωφλιού μέγεθος πάνω από το οποίο οι ενδιάμεσοι χρόνοι της σεισμικότητας είναι στατιστικά ανεξάρτητοι είμαι μία σημαντική παράμετρος πριν την εφαρμογή των στατιστικών μοντέλων. Το κατώφλι αυτό καθορίστηκε σε διακριτές περιοχές του ελληνικού χώρου με εφαρμογή μεθόδων ανάλυσης χρονοσειρών και συνδέθηκε με σεισμούς ενδιάμεσου μεγέθους, διασφαλίζοντας την στατιστική ανεξαρτησία των διαστημάτων επανάληψης των ισχυρών σεισμών του ελληνικού χώρου. Οι περιπτώσεις όπου τα διαθέσιμα διαστήματα επανάληψης ισχυρών σεισμών που συνδέονται με συγκεκριμένο ρήγμα έχουν έναν ικανοποιητικό αριθμό για το στατιστικό καθορισμό του μέσου χρόνου επανάληψης είναι ιδιαίτερα περιορισμένες. Για αυτό το λόγο εφαρμόσθηκε η μέθοδος της διατήρησης της σεισμικής ροπής για τον καθορισμό του μέσου χρόνου επανάληψης. Η μέθοδος εφαρμόσθηκε στο σύνολο των 191 κύριων ρηγμάτων του ελληνικού χώρου και των γειτονικών περιοχών του που καθορίστηκαν. Τα διαστήματα εμπιστοσύνης των εκτιμήσεων του μέσου χρόνου επανάληψης εκτιμήθηκαν επίσης με δύο διαφορετικές προσεγγίσεις. Τα αποτελέσματα των εκτιμήσεων δείχνουν συμφωνία μεταξύ των μεθόδων στην πλειοψηφία των περιπτώσεων των 191 ρηγμάτων. Τα διαστήματα εμπιστοσύνης δείχνουν μία τάση χαμηλής περιοδικότητας του μέσου εκτιμώμενου χρόνου επανάληψης της διάρρηξης των ρηγμάτων που σαν αποτέλεσμα έχουν τη γένεση ισχυρών σεισμών. Τα αποτελέσματα των εκτιμήσεων αυτών χρησιμοποιήθηκαν στη συνέχεια για την εφαρμογή δύο στατιστικών κατανομών, της εκθετικής κατανομής που αντιπροσωπεύει το μακράς διάρκειας χρονο-ανεξάρτητο μοντέλο γένεσης ισχυρών σεισμών και της κατανομής πρώτης μετάβασης της κίνησης Brown που αντιπροσωπεύει ένα μακράς διάρκειας χρονο-εξαρτώμενο μοντέλο ανανέωσης, με στόχο την εκτίμηση των πιθανοτήτων γένεσης των επόμενων ισχυρών σεισμών που συνδέονται με τα κύρια ρήγματα του ελληνικού χώρου και των γειτονικών του περιοχών. Επιπλέον, εφαρμόσθηκε αλγόριθμος προσομοίωσης της σεισμικότητας σε επιλεγμένες ζώνες διάρρηξης του ελληνικού χώρου για την αναπαραγωγή αντιπροσωπευτικών καταλόγων σεισμικότητας για κάθε ζώνη διάρρηξης, που θα καλύπτου διάστημα 10 χιλιάδων ετών. Στόχος αυτής της εφαρμογής είναι η ποσοτική στατιστική ανάλυση του μέσου χρόνου επανάληψης των ισχυρών σεισμών. Από τα αποτελέσματα αυτής της ανάλυσης προκύπτει ότι η χρονο-εξαρτώμενη προσέγγιση μοντελοποίησης των χρονικών ιδιοτήτων των ισχυρών σεισμών εμφανίζει καλύτερη απόδοση από τη χρονο-ανεξάρτητη προσέγγιση.

The study of the mean recurrence time of strong earthquakes in specific fault or fault segment above a certain magnitude threshold is an appropriate parameter for the study of the temporal behavior of strong earthquakes. Mean recurrence time can be later used as an input for the development of earthquake rupture forecast models, aiming at the probability estimation of a future strong earthquake associated with a given fault in a specific time span. Statistical models applications requires the statistical independency of the earthquakes interevent times data. The magnitude threshold is determined through time series analysis methodologies in distinctive sub-areas of the Greek territory and is found to be linked with intermediate magnitude earthquakes, ensuring the statistical independence of the recurrence intervals of strong earthquakes. The cases where the available recurrence intervals of strong earthquakes per fault or fault segment have a sufficient number for a robust statistical estimation of the mean recurrence time is limited. For this reason the alternative method of seismic moment conservation is applied for the estimation of the mean recurrence time of strong earthquakes which associated with the 191 main fault segments of Greece. The confidence intervals of mean recurrence time estimates are also estimated using two different approaches. Results of these estimations showing good agreement between the two approaches for the majority of the fault segments. The estimated confidence intervals shown a trend of low periodicity of the mean estimated recurrence time. The obtained results are later used for the application of the exponential distribution and the Brownian passage time distribution, which represent the long-term time-independent and a renewal model for the occurrence of strong earthquakes, respectively. Additionally, a physics-based earthquake simulation algorithm was applied in selected fault zones of the Greece, aiming at the generation long-lasting and representative simulated earthquake catalogs for each fault zone. The simulated catalogs are covering a period of 10 thousand years, allowing the robust statistical analysis of the strong earthquakes recurrence times. Results of this analysis indicate that the time-dependent approach for modeling the temporal properties of strong earthquakes performs better than the time-independent one.

Πλήρες Κείμενο:

PDF

Αναφορές


Abaimov, S. G., Turcotte, D. L., Shcherbakov, R., Runlde, J. B., Yakovlev, G., Goltz, C., & Newman, W. I., 2008. Earthquakes: recurrence and interoccurrence times, Pure and Applied Geophysics, 165, 777–795. Doi:10.1007/s00024-008-0331-y.

Akaike, H., 1974. A new look at the statistical model identification, IEEE Transactions on Automatic Control, AC- 19, 716–723. Doi:10.1109/tac.1974.1100705

Aki, K., 1965. Maximum likelihood estimation of b in the formula log n a – bm and its confidence limits. Bulletin of Earthquake Research Institute, 43, 237–239.

Akinci, A., Galadini, F., Pantosti, D., Petersen, M., Malagnini, L., & Perkins, D., 2009. Effect of time dependence on probabilistic seismic-hazard maps and deaggregation for the central Apennines, Italy, Bulletin of Seismological Society of America, 99(2A), 585–610. Doi:10.1785/0120080053.

Akinci, A., Vannoli, P., Falcone, G., Taroni, M., Tiberti, M. M., Murru, M., Burrato, P. & Mariucci, M. T., 2016. When time and faults matter: towards a time-dependent probabilistic SHA in Calabria, Italy. Bulletin of Earthquake Engineering, 15, 2497–2524. Doi:10.1007/s10518-016-0065-7.

Aksoy, M.E., Meghraoui, M., Vallee, M. & Ziyadin, C., 2010. Rupture characteristics of the A.D. 1912 Murefte (Ganos) earthquake, segment of the North Anatolian fault (western Turkey), Geology, 38(11), 991–994

Albini, P., Ambraseys, N. N., Monachesi, G., 1994. Materials for the investigation of the seismicity of the Ionian Islands between 1704 and 1766. In: P. Albini and A. Moroni (eds.), Materials of the CEC project "Review of Historical Seismicity in Europe", CNR, Milano, vol. 2, 11-26.

Albini, P., & Pantosti, D., 2004. The 20 and 27 April 1894 (Locris, Central Greece) earthquake sources through coeval records on macroseismic effects, Bulletin of Seismological Society of America, 94, 1305–1326.

Albini, P., Locati, M., Rovida, A., & Stucchi, M., 2013. European Archive of Historical EArthquake Data (AHEAD), Istituto Nazionale di Geofisica e Vulcanologia (INGV). Doi: 10.6092/ingv.it-ahead

Albini, P., & Rovida, A., 2016. From written records to seismic parameters: the case of the 6 April 1667 Dalmatia earthquake, Geoscience Letters, 3, 30. Doi: 10.1186/s40562-016-0063-2.

Αmbraseys, N., 2001. Reassessment of earthquakes, 1900-1999, in the Eastern Mediterranean and Middle East, Geophysical Journal International, 145, 471-485.

Ambraseys, N., 2002. The seismic activity of the Marmara Sea region over the last 2000 years, Bulletin of Seismological Society of America, 92, 1–18.

Ambraseys, N., 2009. Earthquakes in the Eastern Mediterranean and the Middle East: A Multidisciplinary Study of 2000 Years of Seismicity, Cambridge University Press, 947pp.

Ambraseys, N. N., & Jackson, J. A., 1990. Seismicity and associated strain of central Greece between 1890 and 1988, Geophysical Journal International, 101, 663–708. Doi:10. 1111/j.1365-246x.1990.tb05577.x.

Ambraseys, N. N., Melville, C. P., & Adams R. D., 1994. The seismicity of Egypt, Arabia and the Red Sea, Cambridge University Press, 182pp.

Ambraseys, N. N., & Jackson, J. A., 1997. Seismicity and strain in the Gulf of Corinth (Greece) since 1694, Journal of Earthquakes Engineering, 3, 433–474. Doi: 10.1080/13632469708962374.

Ambraseys, N. N., & Jackson, J. A., 1998. Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region, Geophysical Journal International, 133, 390–406. Doi:10.1046/j.1365-246X.1998.00508.x

Ambraseys, N, & Jackson, J. A., 2000. Seismicity of the Sea of Marmara (Turkey) since 1500, Geophysical Journal International, 141: F1–F6.

Anderson, T.W., & Darling, D.A., 1952. Asymptotic theory of certain ‘goodness-of-fit’ criteria based on stochastic processes, Annals of Mathematical Statistics, 23, 193–212. Doi: 10.1214/aoms/1177729437.

Anderson, H. & Jackson, J., 1987. Active tectonics of the Adriatic region, Geophysical Journal of the Royal Astronomical Society, 91, 937–983.

Anderson, J. G., & Luco J. E., 1983. Consequences of slip rate constraints on earthquake occurrence relations, Bulletin of Seismological Society of America, 73, 471–496.

Armijo, R., Lyon-Caen, H., & Papanastassiou, D., 1991. A possible normal fault rupture for the 464 B.C. Sparta earthquake, Nature, 351, 137–139.

Armijo, R., Meyer, B., King, G. C. P., Rigo, A. & Papanastassiou, D., 1996. Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean, Geophysical Journal International, 126, 11–53.

Armijo, R., Meyer, B., Hubert, A. & Barka, A., 1999. Westward propaga- tion of the North Anatolian fault into the northern Aegean: timing and kinematics, Geology, 27(3), 267–270.

Armijo, R., Flerit, F., King, G., & Meyer, B., 2003. Linear elastic fracture mechanics explains the past and present evolution of the Aegean, Earth and Planetary Science Letters, 217, 85–95.

Aristotle University of Thessaloniki, 1981. Aristotle University of Thessaloniki seismological network. Inter. Fed. Dig.Seis. Net. doi:10.7914/SN/HT.

Βαλκανιώτης, Σ., 2009. Συσχέτιση νεοτεκτονικών δομών και σεισμικότητας στην ευρύτερη περιοχή του Κορινθιακού Κόλπου (Κεντρική Ελλάδα), σελ. 223, Διδακτ. Διατριβή, Τμήμα Γεωλογίας, Α.Π.Θ.

Bak, P., Christensen, K., Danon, L., & Scanlon, T., 2002. Unified scaling law for earthquakes, Physical Review Letters, 88, 178501-178504. Doi: 10.1103/PhysRevLett.88.178501.

Baker, C., Hatzfeld, D., Lyon-Caen, H., Papadimitriou, E., Rigo, A., 1997. Earthquake mechanisms of the Adriatic Sea and western Greece, Geophysical Journal International, 131, 559–594.

Barka, A. A., 1996. Slip distribution along the North Anatolian Fault associated with the large earthquakes of the period 1939 to 1967, Bulletin of Seismological Society of America, 86, 1238-1254.

Bell, R. E., McNeill, J L. C., Bull, J. M., Henstock, T. J., Collier, R. E. L., & Leeder, M. R., 2009. Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece, Basin Research, 21, 824–855. Doi: 10.1111/j.1365–2117.2009.00401.x.

Ben-Zion, Y., & Rice, J. R., 1997. Dynamic simulations of slip on a smooth fault in an elastic solid, Journal of Geophysical Research, 102, 17771–17784, Doi:10.1029/97JB01341.

Ben-Zion, Y., 2008. Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Reviews of Geophysics, 46 (4), RG4006. http://dx.doi.org/10.1029/2008RG000260.

Benetatos. C., Roumelioti, Z., Kiratzi, A., & Melis N., 2002. Source parameters of the M 6.5 Skyros Island (North Aegean Sea) earthquake of July 26, 2001, Annals of Geophysics, 45(3-4).

Benetatos, C., & Kiratzi, A., 2006. Finite-fault slip models for the 15 April 1979 (Mw 7.1) Montenegro earthquake and its strongest aftershock of 24 May 1979 (Mw 6.2), Tectonophysics, 421, 129-143. Doi: 10.1016/j.tecto.2006.04.009.

Bernard, P., Briole, P., Meyer, B., Lyon-Caen, H., Gomez, J.-M., Tiberi, C., Berge, C., Cattin, R., Hatzfeld, D., Lachet, C., Lebrun, B., Deschamps, A., Courboulex, F., Larroque, C.,

Rigo, A., Massonet, D., Papadimitriou, P., Kassaras, I., Diagourtas, D., Makropoulos, K., Veis, G., Papazisi, E., Mitsakaki, C., Karakostas, V., Papadimitriou, E., Papanastassiou, D.,

Chouliaras, G., & Stavrakakis, G., 1997. The Ms = 6.2, June 15, 1995 Aigion earthquake (Greece): Evidence for low angle normal faulting in the Corinth rift, Journal of Seismology, 1, 131–150. Doi:10.1023/A:1009795618839.

Berryman, K., Cooper, A., Norris, R., Villamor, P., Sutherland, R., Wright, T., Schermer, E., Langridge, R., & Biasi, G., 2012. Late Holocene rupture history of the Alpine Faults in South Westland, New Zealand, Bulletin of Seismological Society of America, 102(2), 620–638.

Biasi, G. P., Weldon, R. J., II., Fumal, T. E. & Seitz, G. G., 2002. Paleoseismic event dating and the conditional probability of large earthquakes on the Southern San Andreas Fault, California, Bulletin of Seismological Society of America, 92, 2761– 2781.

Biasi, G.P., Langridge, R. M., Berryman, K. R., Clark, K. J. & Cochran, U. A., 2015. Maximum-likelihood recurrence parameters and conditional probability of a ground-rupturing earthquake on the southern Alpine fault, South Island, New Zealand, Bulletin of Seismological Society of America, 105, 96–106.

Biasi, G.P., and Thompson S.C. (2018). Estimating Time-Dependent Seismic Hazard of Faults in the Absence of an Earthquake Recurrence Record, Bulletin of Seismological Society of America, 108, 39–55.

Boiselet, A., 2014. Cycle sismique et aléa sismique d’un réseau de failles actives: le cas du rift de Corinthe (Grèce), PhD Thesis, Ecole Normale Superieure, Paris. (Available at: https://hal.archives-ouvertes.fr/tel-01456400).

Brinkman, B. A. W., LeBlanc, M. P., Uhl, T. J., Ben-Zion, Y., & Dahmen, K. A., 2016. Probabilistic model of waiting times between large failures in sheared media, Physical Review E, 93. Doi:10.1103/PhysRevE.93.013003.

Briole, P., Rigo, A., Lyon-Caen, H., Ruegg, J. C., Papazissi, K., Mitsakaki, C., Balodimou, A., Veis, G., Hatzfeld, D., & Deschamps, A., 2000. Active deformation of the Corinth rift, Greece: Results from repeated Global Positioning System surveys between 1990 and 1995, Journal of Geophysical Research, 105, 25 605–25 625.

Briole, P., Elias, P., Parcharidis, I., Bignami, C., Benekos, G., Samsonov, S., Kyriakopoulos, C., Stramondo, S., Chamot-Rooke, N., Drakatou, M. L., & Drakatos, G., 2015. The seismic sequence of January–February 2014 at Cephalonia Island (Greece): constraints from SAR interferometry and GPS, Geophysical Journal International, 203, 1528–1540. Doi: 10.1093/gji/ggv353.

Briole, P., Ganas, A., Elias, P., & Dimitrov, D., 2021. The GPS velocity field of the Aegean. New observations, contribution of the earthquakes, crustal blocks model, Geophysical Journal International, 226, 468–492. Doi: 10.1093/gji/ggab089.

Bufe, C. G., & Varnes, D. J., 1993. Predictive modeling of the seismic cycle of the greater San Francisco Bay region, Journal of Geophysical Research, 98, 9871–9883.

Bowman, D. D., Ouillon, G., Sammis, C. G., Sornette, A., & Sornette, D., 1998. An observational test of the critical earthquake concept, Journal of Geophysical Research, 103, 24359–24372.

Box, G. E. P. & Pierce, D. A., 1970. Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models, Journal of the American Statistical Association, 332, 1509–1526. Doi: 10.1080/01621459.1970.1048118.

Caputo, R., 1996. The active Nea Anchiale fault system (Central Greece): comparison of geological, morphotectonic, archaeological and seismological data, Annals of Geophysics, 39, 557–574.

Caputo, R., & Pavlides, S., 1993. Late Caenozoic geodynamic evolution of Thessaly and surroundings (central-northern Greece), Tectonophysics, 223, 339–362. Doi:10.1016/0040-1951(93)90144-9.

Caputo, R., Catalano, S., Monaco, C., Romagnioli, G., Tortorici, G., & Tortorici, G., 2010. Active faulting on the island of Crete (Greece), Geophysical Journal International, 183, 111-126.

Caputo, R., & Pavlides, S., 2013. The Greek Database of seismogenic sources (GreDaSS), version 2.0.0: a compilation of potential seismogenic sources (Mw > 5.5) in the aegean region. Doi:10.15160/unife/gredass/0200.

Chartier, T., Scotti, O., Lyon-Caen, H., Richard-Dinger, K., Dieterich, J. H., & Shaw, B., 2021. Modelling earthquake rates and associated uncertainties in the Marmara Region, Turkey, Natural Hazards and Earth System Sciences, 21, 2733–2751. Doi: 10.5194/nhess-21-2733-2021.

Chatzipetros A, Kiratzi A, Sboras S, Zouros N, & Pavlides S., 2013. Active faulting in the north eastern Aegean Sea Islands, Tectonophysics, 597–598, 106–122.

Cheng, Q., Ganas, A., Fuqiong, H., Yong, C., & Drakatos, G., 2007. Recurrence behaviors of earthquakes along the Kefallinia Transform Fault, Ionian Sea, Greece, Earthquake Research in China, 21 (4), 409-419.

Chousianitis, K., Ganas, A. & Gianniou, M., 2013. Kinematic interpretation of present-day crustal deformation in central Greece from continuous GPS measurements, Journal of Geodynamics, 71, 1–13.

Chousianitis, K., Ganas, A. & Evangelidis, C.P., 2015. Strain and rotation rate patterns of mainland Greece from continuous GPS data and com- parison between seismic and geodetic moment release, Journal of Geophysical Research, 120(5), 3909–3931.

Clarke, P. J., Davies, R. R., England, P. C., Parsons, B. E., Billiris, H., Paradissis, D., Veis, G., Denys, P. H., Cross, P. A., Ashkenazi, V., & Bingley, R., 1997. Geodetic estimate of seismic hazard in the Gulf of Korinthos, Geophysical Research Letters, 24, 1303–1306.

Clarke, P. J., Davies, R. R., England, P. C., Parsons, B., Billiris, H., Paradissis, D., Veis, G., Cross, P. A., Denys, P. H., Ashkenazi, V., Bingley, R., Kahle, H.-G., Muller, M.-V., &

Briole, P., 1998. Crustal strain in central Greece from repeated GPS measurements in the interval 1989–1997, Geophysical Journal International, 135(1), 195–214, Doi:10.1046/j.1365-246X.1998.00633.x.

Christophersen, A., Rhoades, D.A. & Colella, H.V., 2017. Precursory seismicity in regions of low strain rate: insights from a physical-based earthquake simulator, Geophysical Journal Internationa, 209, 1513–1525. Doi: 10.1093/gji/ggx104.

Coban, K.H., & Sayil, N., 2020. Conditional Probabilities of Hellenic Arc Earthquakes Based on Different Distribution Models, Pure and Applied Geophysics, 177, 5133–5145. Doi: 10.1007/s00024-020-02576-z.

Cocard, M., Kahle, H.G., Peter, Y., Geiger, A., Veis, G., Felekis, S., Paradissis, D., & Billiris, H., 1999. New constraints on the rapid crustal motion of the Aegean region: recent results inferred from GPS measurements (1993–1998) across the West Hellenic Arc, Greece, Earth and Planetary Science Letters, 172 (1–2), 39–47.

Console, R., 2001. Testing earthquake forecast hypothesis, Tectonophysics, 338, 261–268.

Console, R., & Murru, M., 2001. A simple and testable model for earthquake clustering, Journal of Geophysical Research, 106,8699–8711.

Console, R., Murru, M., Falcone. G., & Catalli, F., 2008. Stress interaction effect on the occurrence probabilities of characteristic earth- quakes in Central Apennines, Journal of Geophysical Research, 113, B08313. Doi:10.1029/2007JB0005418.

Console, R., Falcone, G., Karakostas, V., Murru, M., Papadimitriou, E., & Rhoades, D., 2013. Renewal models and coseismic stress transfer in the Corinth Gulf, Greece, fault system, Journal of Geophysical Research, Solid Earth, 118, 3655–3673. Doi:10.1002/jgrb.50277.

Console, R., Carluccio, R., Papadimitriou, E., & Karakostas, V., 2015. Synthetic earthquake catalogs simulating seismic activity in the Corinth Gulf, Greece, fault system, Journal of Geophysical Research, 120, 326–343. Doi:10.1002/2014JB011765.

Console, R., Nardi, A., Carluccio, R., Murru, M., Falcone, G., & Parsons, T., 2017. A physics-based earthquake simulator and its application to seismic hazard assessment in

Calabria (Southern Italy) region, Acta Geophysica, 65, 243–257. Doi:10.1007/s11600-017-0020-2.

Console, R., Vannoli, P., & Carluccio, R., 2018a. The seismicity of Central Apennines (Italy) studied by means of a physics-based earthquake simulator, Geophysical Journal International, 212, 916–929. Doi:10.1093/gji/ggx451.

Console, R., Chiappini, M., Minelli, L., Speranza, F., Carluccio, R., & Greco, M., 2018b. Seismic hazard in southern Calabria (Italy) based on the analysis of a synthetic earthquake catalog, Acta Geophysica, 66, 931–943. Doi:10.1007/s11600-018-0181-7.

Console, R., Murru, M., Vannoli, P., Carluccio, R., Taroni, M., & Falcone, G., 2020. Physics-based simulation of sequences with multiple mainshocks in Central Italy, Geophysical Journal International, 223, 526–542. Doi:10.1093/gji/ggaa300.

Console, R., Carluccio, R., Murru, M., Papadimitriou, E., & Karakostas, V., 2021. Physics-Based Simulation of Spatiotemporal Patterns of Earthquakes in the Corinth Gulf, Greece, Fault System, Bulletin of Seismological Society of America, 112 (1), 98-117. Doi: 10.1785/0120210038

Convertito, V, & Faenza, L., 2014. Earthquake Recurrence. In: Beer, M., Kougioumtzoglou, I. A., Patelli, E., Siu-Kui Au, I. (eds) Encyclopedia of earthquake engineering. Springer, Berlin, pp 1–22. https://doi. org/10.1007/978-3-642-36197-5-236-1

Corral, A., 2003. Local distributions and rate fluctuations in a unified scaling law for earthquakes, Physical Review E, 68, 035102-1–035102-4. Doi: 10.1103/PhysRevE.68.035102.

Corral, A., 2004. Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Physical Review Letters, 92, 108501. Doi: 10.1103/PhysRevLett.92.108501.

Cramer, C. H., Petersen, M. D., Cao, T., Toppozada, T. R., & Reichle, M., 2000. A Time-dependent probabilistic seismic-hazard model for California, Bulletin of Seismological Society of America, 90, 1–21.

D’Agostino, N., Metois, M., Koci, R., Duni, L., Kuka, N., Ganas, A., Georgiev, I., Jouanne, F., Kaludjerovic, N., & Kandic, R., 2020. Active crustal deformation and rotations in the southwestern Balkans from continuous GPS measurements, Earth and Planetary Science Letters, 539, 116246, Doi: 10.1016/j.epsl.2020.116246.

Davies, R., England, P., Parsons, B., Billiris, H., Paradissis, D. & Veis, G., 1997. Geodetic strain of Greece in the interval 1892–1992, Journal of Geophysical Research, 102, 24 571–24 588.

de Arcangelis, L., Godano, C., Grasso, J.R., & Lippiello, E., 2016. Statistical physics approach to earthquake occurrence and forecasting, Physics Reports, 628, 1–91. Doi: 10.1016/j.physrep.2016.03.002.

Dieterich, J. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering, Journal of Geophysical Research, 99, 2601–2618

DISS Working Group, 2015. Database of Individual Seismogenic Sources (DISS), Version 3.2.0: A Compilation of Potential Sources for Earthquakes Larger than M 5.5 in Italy and Surrounding Areas, Istituto Nazionale di Geofisica e Vulcanologia. doi:10.6092/ingv.it-diss3.2.0.

Drakos, A., Stiros, S. C., & Kiratzi, A. A. (2001). Fault parameters of the 1980 (Mw 6.5) Volos, Central Greece, earthquake from inversion of repeated leveling data, Bulletin of Seismological Society of America, 91 (6), 1673–1684. Doi:10.1785/0120000232

Ellsworth, W. L., Matthews, M. V., Nadeau, R. M., Nishenko, S. P., Reasenberg, P. A. & Simpson, R. W., 1999. A physically based earthquake recurrence model for estimation of long-term earthquake probabilities, U.S. Geological Survey Open-File Report., 99–522.

Erdik, M., Demircioglu, M., Sesetyan, K., Durukal, E., & Siyahi, B., 2004. Earthquake hazard in Marmara region, Turkey, Soil Dynamics and Earthquake Engineering, 24, 605–631.

Evison, F. F., & Rhoades, D. A., 2004. Demarcation and scaling of long-term seismogenesis, Pure and Applied Geophysics, 161,21–45.

Eyidogan, H. (1988), Rates of crustal deformation in western Turkey as deduced from major earthquakes, Tectonophysics, 148, 83–92.

Fan, J., Zhou, D., Shekhtman, L.M., Shapira, A., Hofstetter, R., Marzocchi, W., Ashkenazy, Y., & Havlin, S., 2019. Possible origin of memory in earthquakes: Real catalogs and an epidemic-type aftershock sequence model, Physical Review E, 99, 042210. Doi: 10.1103/PhysRevE.99.042210.

Ferraes, S. G., 1985. The Bayesian probabilistic prediction of strong earthquakes in the Hellenic Arc, Tectonophysics, 2, 339-354.

Fernandes, R. M. S., Ambrosius, B. A. C., Noomen, R., Bastos, L., Wortel, M. J. R., Spakman, W., & Govers, R., 2003. The relative motion between Africa and Eurasia as derived from ITRF2000 and GPS data, Geophysical Research Letters, 30(16), 1828, Doi:10.1029/2003GL017089.

Field, E. H., 2015. Computing elastic-rebound-motivated earthquake probabilities in unsegments fault models: a new methodology supported by physics-based simulators, Bulletin of Seismological Society of America, 105, 544–559. Doi:10.1785/01201140094.

Field, E. H., Jackson, D. D., & Dolan, J. F., 1999 A mutually consistent seismic-hazard source model for Southern California, Bulletin of Seismological Society of America, 89(3), 559–578.

Field, E. H., Dawson, T. E., Felzer, K. R., Frankel, A. D., Gupta, V., Jordan, T. H., Parsons, T., Petersen, M. D., Stein, R. S., Weldon II, R. J., & Wills, C. J., 2009. Uniform California

Earthquake Rupture Forecast, Version 2 (UCERF 2), Bulletin of Seismological Society of America, 99, 2053-2107. Doi:10.1785/0120080049.

Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C., Michael, A. J., Milner, K. R., Page, M. T., Parsons, T., Powers, P. M., Shaw, B. E., Thatcher, W. R., Weldon, R. J., & Zeng, Y., 2014. Uniform California Earthquake Rupture Forecast, version 3 (UCERF3): The time-independent model, Bulletin of Seismological Society of America, 104, 1122–1180. Doi: 10.1785/0120130164.

Field, E. H., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C., Michael, A. J., Milner, K. R., Page, M. T., Parsons, T., Powers, P. M., Shaw, B. E., Thatcher, W. R., Weldon, R. J. II, Zeng, Y. 2015. Long-term time-dependent probabilities for the third uniform California earthquake rupture forecast (UCERF3), Bulletin of Seismological Society of America, 105, 511–543. Doi. org/10.1785/01201 40093.

Fitzenz, D.D., 2018. Conditional probability of what? Example of Nankai Interface in Japan, Bulletin of Seismological Society of America, 108(6), 3169–3179.

Fitzenz, D. D., Ferry, M. A., & Jalobeanu, A., 2010. Long-term slip history discriminates among occurrence models for seismic hazard assessment, Geophysical Research Letters, 37, L20307, doi 10.1029/2010GL044071.

Fitzenz, D. D., Jalobeanu, A., & Ferry, M. A., 2012. A Bayesian Framework to Rank and Combine Candidate Recurrence Models for Specific Faults, Bulletin of Seismological Society of America, 102, 936–947.

Fitzend, D.D. & Nyst, M., 2015. Building time-dependent earthquake recur- rence models for probabilistic risk computations, Bulletin of Seismological Society of America., 105, 120–133.

Flerit, F., Armijo, R., King, G. C. P., Meyer, B. & Barka, A., 2003. Slip partitioning in the Sea of Marmara pull-apart determined from GPS velocity vectors, Geophysical Journal International, 154, 1–7, Doi: 10.1046/j.1365-246X.2003.01899.x.

Flerit, F., Armijo, R., King. G., & Meyer, B., 2004. The mechanical interaction between the propagating North Anatolian fault and the backarc extension in the Aegean, Earth and Planetary Science Letters, 224, 347–362.

Flotte, N., Sorel, D., Müller, C., & Tensi, J., 2005. Along strike changes in the structural evolution over a brittle detachment fault: Example of the Pleistocene Corinth–Patras rift (Greece), Tectonophysics, 403, 77-94.

Floyd, M., A., Billiris, H., Paradissis, D., Veis, G., Avallone, A., Briole, P., McClusky, S., Nocquet, J.-M., Palamartchouk, K., Parsons, B., & England, P. C., 2010. A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean, Journal of Geophysical Research, 115, B10403. Doi: 10.1029/2009JB007040.

Frankel, A. M., 1995. Mapping seismic hazard in the central and eastern United States, Seismological Research Letters, 60, 8–21.

Frankel, A. D., Petersen, M. D., Muller, C. S., Haller, K. M., Wheeler, R. L., Leyendecker, E. V., Wesson, R. L., Harmsen, S. C., Cramer, C. H., Perkins, D. M., &Rukstales, K. S., 2002. Documentation for the 2002 update of the national seismic hazard maps, U.S. Geological Survey Open-File Rept. 02–420, 33 pp.

Galanakis, D., Pavlidis, S., & Mountrakis, D., 1998. Recent brittle tectonic in Almyros-Pagasitikos, Maliakos, N. Euboea and Pilio, Bulletin of Geological Society of Greece, XXXXII/1, 263–273.

Galli, P., & Naso, G., 2008. The “taranta” effect of the 1743 earthquake in Salento (Apulia, southern Italy), Bollettino di Geofisica Teorica ed Applicata, 49, 2, 177-204.

Ganas, A., 2020. NOAFAULTS KMZ layer Version 3.0 (2020 update) (Version V3.0) [Data set]. Zenodo. doi:10.5281/zenodo.4304613.

Ganas, A., & Parsons, T., 2009. Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift, Journal of Geophysical Research, 114, B060404. Doi: 10.1029/2008JB005599.

Ganas, A., Oikonomou, I. A., & Tsimi, C., 2013. NOAFAULTS: a digital database for active faults in Greece, Bulletin of Geological Society of Greece, 47 (2), 518–530. Doi:10.12681/bgsg.11079.

Ganas, A., Elias, P., Kapetanidis, V., Valkaniotis, S., Briole, P., Kassaras, I., Argyrakis, P., Barberopoulou, A., Moshou, A., 2019. The July 20, 2017 M6.6 Kos Earthquake: Seismic and Geodetic Evidence for an Active North-Dipping Normal Fault at the Western End of the Gulf of Gokova (SE Aegean Sea), Pure and Applied Geophysics, 176, 4177-4211. Doi: 10.1007/s00024-019-02154-y.

Ganas, A., Elias, P., Briole, P., Cannavo, F., Valkaniotis, S., Tsironi, V., Partheniou, E.I., 2020. Ground Deformation and Seismic Fault Model of the M6.4 Durres (Albania) Nov. 26, 2019 Earthquake, Based on GNSS/INSAR Observations, Geosciences, 10, 210. Doi: 10.3390/geosciences10060210.

Ganas, A., Briole, P., Bozionelos, G., Barberopoulou, A., Elias, P., Tsironi, V., Valkaniotis, S., Moshou, A., & Mintourakis, A., 2020. The 25 October 2018 Mw = 6.7 Zakynthos earthquake (Ionian Sea, Greece): A low-angle fault model based on GNSS data, relocated seismicity, small tsunami and implications for the seismic hazard in the west Hellenic Arc,

Journal of Geodynamics, 137. Doi: 10.1016/j.jog.2020.101731.

Ganas, A., Hamiel, Y., Serpetsidaki, A., Briole, P., Valkaniotis, S., Fassoulas, C., Piatibratova, O., Kranis, H., Tsironi, V., Karamitros, I., Elias, P., & Vassilakis, E., 2022. The Arkalochori Mw = 5.9 Earthquake of 27 September 2021 Inside the Heraklion Basin: A Shallow, Blind Rupture Event Highlighting the Orthogonal Extension of Central Crete, Geosciences, 12, 220. Doi: 10.3390/geosciences12060220.

Gardner, J.K., & Knopoff, L., 1974. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?, Bulletin of Seismological Society of America, 64, 1363 1367.

Geller, R. J., Mulargia, F., & Stark, P. B., 2015. Why we need a new paradigm of earthquake occurrence. In G. Morra, D. A. Yuen, S. D. King, S.-M. Lee, & S. Stein (Eds.), Subduction Dynamics: From Mantle Flow to Mega Disasters (chap. 11, pp. 183–191). Hoboken, NJ: John Wiley & Sons, Inc. Doi:10.1002/9781118888865.ch10.

Gkarlaouni, C., Papadimitriou, E., Kilias, A., Falalakis, G., & Gemitzi, A., 2007. The evolution of the stress field in Eastern Macedonia and Thrace, Bulletin of Geological Society of Greece, 40 (1), 321-332. Doi: 10.12681/bgsg.16580.

Gkarlaouni, C., Lasocki, S., Papadimitriou, E., & Tsaklidis, G., (2017). Hurst analysis of seismicity in Corinth rift and Mygdonia graben (Greece), Chaos Solitions & Fractals, 96, 30–42. Doi: 10.1016/j.chaos.2017.01.001.

Goldsworthy, M., Jackson, J., & Haines, J., 2002. The continuity of active faults systems in Greece, Geophysical Journal International, 148, 596–618. Doi:10.1046/j.1365-246x.2002.01609.x.

Goldsworthy, M., & Jackson, J. A., 2000. Active normal fault evolution and interaction in Greece revealed by geomorphology and drainage patterns, Journal of Geological Society of London, 157, 967–981. Doi:10.1144/jgs.157.5.967.

Godano, C., 2015. A new expression for the earthquake interevent time distribution, Geophysical Journal International, 202, 219–223. Doi: 10.1093/gji/ggv135.

Govers, R., & Wortel, M. J. R., 2005. Lithosphere tearing at STEP faults: Response to edges of subduction zones, Earth and Planetary Science Letters, 236(1–2), 505–523. Doi:10.1016/j.epsl.2005.03.022.

Guidoboni, E., & Comastri, A., 1997. The large earthquake of 8 August 1303 in Crete: Seismic scenario and tsunami in the Mediterranean area, Journal of Seismology, 1, 55–72.

Guidoboni, E., Ferrari, G., Tarabusi, G., Sgattoni, G., Comastri, A., Mariotti, D., Ciuccarelli, C., Bianchi, MG., & Valensise, G., 2019. CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area, Scientific Data, 6, 80. Doi: 10.1038/s41597-019-0091-9.

Gutenberg, B., & Richter, C., 1944. Frequency of earthquakes in California, Bulletin of Seismological Society of America, 34, 185–188.

Hagiwara, Y., 1974. Probability of earthquake occurrence as obtained from a Weibull distribution analysis of crustal strain, Tectonophysics, 23, 313–318.

Hanks, T. C., & Kanamori, H., 1979. A Moment Magnitude Scale, Journal of Geophysical Research, 84(B5), 2348–2350.

Harris, R.A., 1998. Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard, Journal of Geophysical Research,. Res., 103, 24– 24358.

Harris, R.A. & Simpson, R.W., 1998. Suppression of large earthquakes by stress shadows: a comparison of Coulomb and rate-and-state failure, Journal of Geophysical Research, 103, 24–24451.

Hardebeck, J. L., 2004. Stress triggering and earthquake probability estimated, Journal of Geophysical Research, 109, B04310. Doi:10.1029/2003JB002437

Hatzfeld, D., Kassaras, I., Panagiotopoulos, D., Amorese, D., Makropoulos, K., Karakaisis, G., & Coutant, O., 1995. Microseismicity and strain pattern in northwest Greece, Tectonics, 14, 773-785.

Hatzfeld, D., Karakostas, V., Ziazia, M., Selvaggi, G., Leborgne, S., Berge, C., Guiguet, R., Paul, A., Voidomatis, P., Diagnourtas, D., Kassaras, I., Koutsikos, I., Makropoulos, K.,

Azzara, R., Di Bona, M., Baccheschi, S., Bernard, P., & Papaioannou, C., 1997. The Kozani-Grevena (Greece) earthquake of 13 May 1995 revisited from a detailed seismological study, Bulletin of the Seismological Society of America, 87 (2), 463–473. Doi:10.1785/BSSA08700204

Hatzfeld, D., Ziazia, M., Kementzetzidou, D., Hatzidimitriou, P., Panagiotopoulos, D., Makropoulos, K., Papadimitriou P, & Deschamps, A., 1999. Microseismicity and focal mechanisms at the western termination of the North Anatolian Fault and their implications for continental tectonics, Geophysical Journal International, 137, 891–908.

Doi:10.1046/j.1365-246x.1999.00851.x.

Hatzidimitriou, P. M., Papadimitriou, E. E., Mountrakis, D. M., and Papazachos, B. C, 1985. The seismic parameter b of the frequency–magnitude relation and its association with the geological zones in the area of Greece, Tectonophysics, 120, 141–151.

Herrero-Barbero, P., Álvarez-Gómez, J. A., Williams, C., Villamor, P., Insua-Arévalo, J. M., Alonso-Henar, J., & Martínez-Díaz, J. J., 2021. Physics-based earthquake simulations in slow-moving faults: A case study from the Eastern Betic Shear Zone (SE Iberian Peninsula), Journal of Geophysical Research: Solid Earth, 126, e2020JB021133. Doi.org/10.1029/2020JB021133.

Hollenstein, Ch., Müller, M. D., Geiger, A., & Kahle, H.-G., 2008. Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003, Tectonophysics, 449, 17-40. Doi: 10.1016/j.tecto.2007.12.006.

Howell, A., Palamartchouk, K., Papanikolaou, X., Paradissis, D., Raptakis, C., Copley, A., England, P., & Jackson, J., 2017. The 2008 Methoni earthquake sequence: the relationship between the earthquake cycle on the subduction interface and coastal uplift in SW Greece, Geophysical Journal International, 208, 1592–1610. Doi: 10.1093/gji/ggw462.

Jackson, J., 1994. Active tectonics of the Aegean region, Annual Reviews of Earth and Planetary Sciences, 22, 239–271.

Jackson, J. & McKenzie, D., 1984. Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan, Geophysical Journal of Royal Astronomical Society, 77, 185–264.

Jackson, D. D., Aki, K., Cornell, C. A., Dieterich, J. H., Henyey, T. L., Mahdyiar, M., Schwartz, D., & Ward, S. N., 1995. Seismic hazard in Southern California: Probable earthquakes, 1994 to 2024, Bulletin of Seismological Society of America, 85, 379–439.

Jackson, D.D., & Kagan, Y.Y., 2006. The 2004 Parkfield earthquake, the 1985 prediction, and characteristic earthquakes: Lessons for the future, Bulletin of Seismological Society of America, 96, S397 S409.

Jaume, S. C., & Sykes, L. R., 1999. Evolving towards a critical point: a review of accelerating seismic moment/energy release prior to large and great earthquakes, Pure and Applied Geophysics, 155, 279–306.

Jenkins, D.A.L., 1972. Structural development of western Greece, American Association of Petroleum Geologists Bulletin, 56, 128-149.

Jenny, S., Goes, S., Giardini, D. & Kahle, H.-G., 2004. Earthquake recur- rence parameters from seismic and geodetic strain rates in the eastern Mediterranean, Geophysical Journal International, 157, 1331–1347.

Johnson, N.L., Kotz, S., & Balakrishnan, N., 1994. Continuous Univariate Distributions, Volume 1, 2nd edn, Wiley, 784pp.

Jones, L. M., & Molnar, P., 1979. Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults, Journal of Geophysical Research, 84(B7), 3596–3608.

Jouanne, F., Mugnier, J.L., Koci, R. Bushati, S., Matev, K., Kuka N., Shinko, I., Kociu, S., & Duni, L., 2012. GPS constraints on current tectonics of Albania, Tectonophysics, 554-557, 50-62. Doi: 10.1016/j.tecto.2012.06.008.

Kagan, Y. Y., 2002. Seismic moment distribution revisited: I. Statistical results, Geophysical Journal International, 148, 520–541.

Kagan, Y. Y., & Knopoff, L., 1987. Random stress and earthquake statistics: time dependence, Geophysical Journal of Royal Astronomical Society, 88, 723–731.

Kagan, Y. Y., & Jackson, D. D., 1991. Long-term earthquake clustering, Geophysical Journal International, 104, 117–133.

Kagan, Y. Y., & Jackson, D. D., 1994. Long-term probabilistic forecasting of earthquakes, Journal of Geophysical Research, 99, 13685–13700.

Kagan, Y. Y., Jackson, D. D., & Geller, R. J., 2012. Characteristic earthquake model, 1884–2011, R.I.P., Seismological Research Letters, 83(6), 951–953. Doi:10.1785/0220120107.

Kahle, H.G., Müller, M.V., Geiger, A., Danuser, G., Mueller, S., Veis, G., Billiris, H., Paradissis, D., 1995. The strain field in northwestern Greece and the Ionian Islands: results inferred from GPS measurements, Tectonophysics, 249 (1–2), 41–52.

Kapetanidis, V., Deschamps, A., Papadimitriou, P., Matrullo, E., Karakonstantis, A., Bozionelos, G., Kaviris, G., Serpetsidaki, A., Lyon-Caen, H., Voulgaris, N., Bernard, P., Sokos, E., & Makropoulos, K., 2015. The 2013 earthquake swarm in Helike, Greece: Seismic activity at the root of old normal faults, Geophysical Journal International, 202, 2044–2073.

Karakaisis, G.F., Karakostas, B.G., Papadimitriou, E.E., Papazachos, B.C., 1985. Properties of the 1979 Monte Negro (Southwest Yugoslavia) Seismic Sequence, Pure and Applied Geophysics, 122, 25–35.

Karakostas, V. G., Scordilis, E. M., Papaioannou, C. A., Papazachos, B. C., & Mountrakis, D., 1993. Focal parameters of the October 16, 1988 Killini earthquake (Western Greece), Proceedings of the 2nd Congress of the Hellenic Geophysical Union, Florina, 5-7 May 1993.

Karakostas, V. G., Papadimitriou, E. E., Hatzfeld, D., Makaris, D., Makropoulos, K., Diagourtas, D., Papaioannou, C., Stavrakakis, G., Drakopoulos, J., & Papazachos B. C., 1994. The aftershock sequence and focal properties of the July 14, 1993 (Ms=5.4) Patras earthquake, Bulletin of Geological Society of Greece, 5, 167-174.

Karakostas, V. G., Papadimitriou, E. E., Karakaisis, G. F., Papazachos, C. B., Scordilis, E. M., Vargemezis, G., & Aidona, E., 2003. The 2001 Skyros, northern Aegean, Greece, earthquake sequence: off-fault aftershocks, tectonic implications, and seismicity triggering, Geophysical Research Letters, 30(1), 1012. Doi: 10.1029/2002GL015814.

Karakostas, V., Papadimitriou, E., & Papazachos, C., 2004. Properties of the 2003 Lefkada, Ionian islands, Greece, Earthquake seismic sequence and seismicity triggering, Bulletin of the Seismological Society of America, 94(5), 1976–1981.

Karakostas, V., Papadimitriou, E., Mesimeri, M., Gkarlaouni, Ch., & Paradisopoulou, P., 2015. The 2014 Kefalonia doublet (Mw6.1 and Mw6.0) central Ionian Islands, Greece: seismotectonic implications along the Kefalonia transform fault zone, Acta Geophysica, 63, 1–16. Doi: 10.2478/s11600-014-0227-4.

Karakostas, V., Mirek, K., Mesimeri, M., Papadimitriou, E., & Mirek, J., 2016. The Aftershock Sequence of the 2008 Achaia, Greece, Earthquake: Joint Analysis of Seismicity Relocation and Persistent Scatterers Interferometry, Pure and Applied Geophysics, 174, 151-176. Doi: 10.1007/s00024-016-1368-y.

Karakostas, V., Papadimitriou, E., Patios, P., & Georgiadis, Ch., 2019. Coastal deformation in Lefkada Island associated with strong earthquake occurrence, Bollettino di Geoficisa Teorica ed Applicata, 60, 1-16. Doi:10.4430/bgta0267.

Karakostas, V. G., Kostoglou, A., Chorozoglou, D., & Papadimitriou, E., 2020. Relocation of the 2018 Zakynthos, Greece, aftershock sequence: spatiotemporal analysis deciphering mechanism diversity and aftershock statistics, Acta Geophysica, 68, 1263-1294. Doi: 10.1007/s11600-020-00483-4.

Karakostas, V., Tan, O., Kostoglou, A., Papadimitriou, E., & Bonatis, P., 2021. Seismotectonic implications of the 2020 Samos, Greece, Mw7.0 mainshock based on high-resolution aftershock relocation and source slip model, Acta Geophysica, 69, 979-996. Doi: 10.1007/s11600-021-00580-y

Karakostas, V., Papazachos, C., Papadimitriou, E., Foumelis, M., Kiratzi, A., Pikridas, C., Kostoglou, A., Kkallas, Ch., Chatzis, N., Bitharis, S., Chatzipetros, A., Fotiou, A., Ventouzi, Ch., Karagianni, E., Bonatis, P., Kourouklas, C., Paradisopoulou, P., Scordilis, E., Vamvakaris, D., Grendas, I., Kementzetzidou, D., Panou, A., Karakaisis, G., Karagianni, I.,

Hatzidimitriou, P., and Galanis, O., 2021. The March 2021 Tyrnavos, central Greece, doublet (Mw6.3 and Mw6.0): Aftershocks relocation, faulting details, coseismic slip and deformation, Bulletin of the Geological Society of Greece, 58, 131-178. Doi: 10.12681/bgsg.27237.

Karakostas, V., Ilieva, M., Kostoglou, A., Tondas, D., Papadimitriou, E., Mesimeri, M. & Koca, B., 2022. The 2017 Kos sequence: Aftershocks relocation and coseismic rupture process constrained from joint inversion of seismological and geodetic observations, Tectonophysics, 833, 229-352.

Kastelic, V., & Carafa, M. C. M., 2012. Fault slip rates for the active External Dinarides thrust-and-fold belt, Tectonics, 31, TC3019. Doi:10.1029/2011TC003022.

King, G., Sturdy, D., & Whitney, J., 1993. The landscape geometry and active tectonics of northwest Greece, Geological Society of America Bulletin, 105 (2), 137–161.

Kiratzi, A. A., 2014. Mechanisms of Earthquakes in Aegean In: Beer, M., Kougioumtzoglou, I. A., Patelli, E., Siu-Kui Au, I. (eds) Encyclopedia of earthquake engineering. Springer, Berlin, pp 1–22.

Kiratzi, A.A., 2016. The 16 April 2015 Mw6.1 earthquake sequence near Kasos island at the eastern Hellenic Subduction Zone, Bulletin of the Geological Society of Greece, 50(3), 1163–1173. Doi: 10.12681/bgsg.11822

Kiratzi, A. A., 2018. The 12 June 2017 Mw 6.3 Lesvos Island (Aegean Sea) earthquake: Slip model and directivity estimated with finite-fault inversion, Tectonophysics, 724-725, 1-10. Doi: 10.1016/j.tecto.2018.01.003.

Kiratzi, A.A., & Langston, C., 1989. Estimation of earthquake source parameters of the May 4, 1972 event of the Hellenic arc by the inversion of waveform data, Physics of the Earth

and Planetary Interiors, 57, 225-232.

Kiratzi, A.A., Wagner, G. & Langston, C., 1991. Source parameters of some large earthquakes in Northern Aegean determined by body waveform modelling, Pure and Applied Geophysics, 135, 515–527.

Kiratzi, A., & Langston, C., 1991. Moment tensor inversion of the 1983 January 17 Kefallinia event of Ionian islands (Greece), Geophysical Journal International, 105, 529–538.

Kiratzi, A.A., Wagner, G.S. & Langston, C.A., 1991. Source parameters of some large earthquakes in Northern Aegean determined by body waveform inversion. Pure and Applied Geophysics, 135(4), 515-527.

Kiratzi, A. A., & Louvari, E. 2003. Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: a new database, Journal of Geodynamics, 36, 251-274.

Kiratzi, A. A., Papazachos, C. B., Ozacar, A., Pinar, A., KKallas, C., & Sopaci, E., 2021. Characteristics of the 2020 Samos earthquake (Aegean Sea) using seismic data, Bulletin of Earthquake Engineering. Doi: 10.1007/s10518-021-01239-1.

Kouskouna, V., & Kaviris, G., 2014. Seismic hazard study in Messinia (Sw Peloponnese). Full Paper, 2nd ECEES, Istanbul, Turkey.

Kouskouna, V., Kaperdas, V. & Sakellariou, N, 2020. Comparing calibration coefficients constrained from early to recent macroseismic and instrumental earthquake data in Greece and applied to eighteenth century earthquakes, Journal of Seismology, 24, 293–317. Doi: 10.1007/s10950-019-09874-7.

Kreemer, C., Chamot-Rooke, N. & Le Pichon, X., 2004. Constraints on the evolution and vertical coherency of deformation in northern Aegean from a comparison of geodetic, geologic and seismological data, Earth and Planetary Science Letters, 225(3-4), 329–346.

Kumamoto, T., 1999. Seismic hazard maps of Japan and computational differences in models and parameters, Geographical Review of Japan, Series B, 72(2), 135–161.

Kurcer, A., Ates, O., Chatzipetros, A., & Valkaniotis, S., 2008. The Yenice-Gönen active fault (NW Turkey): Active tectonics and palaeoseismology, Tectonophysics, 453, 263-275.

Lennartz, S., Livina, V.N., Bunde, A., & Havlin, S., (2008). Long-term memory in earthquakes and the distribution of interoccurrence time, Europhysics Letters, 81, 69001. Doi: 10.1209/0295-5075/81/69001.

LePichon, X., & Angelier, J., 1979. The hellenic arc and trench system: A key to the neotectonic evolution of the eastern mediterranean area, Tectonophysics, 60, 1-42. Doi:10.1016/0040-1951(79)90131-8.

LePichon, X., Lyberis, N. & Alvarez, F., 1987. Discussion on the subsidence of the North Aegean Trough: an alternative view, Journal of Geological Society of London, 144(2), 349–351.

Leptokaropoulos, K.M., Papadimitriou, E.E., Orlecka-Sikora, B. & Karakostas, V.G., 2012. Seismicity rate changes in association with the evolution of the stress field in northern Aegean Sea, Greece, Geophysical Journal International, 188, 1322–1338.

Leptokaropoulos, K.M., Papadimitriou, E.E., Orlecka-Sikora, B. & Karakostas, V.G., 2016. An evaluation of Coulomb stress changes from earthquake productivity variations in the Western Gulf of Corinth, Greece, Pure and Applied Geophysics, 173, 49–72

Livina, V.N., Havlin, S., & Bunde, A., 2005. Memory in the occurrence of earthquakes, Physical Review Letters, 95, 208501. Doi: 10.1103/PhysRevLett.95.208501

Ljung, G., & Box, G.E.P., 1978. On a Measure of Lack of Fit in Time Series Models, Biometrika, 66, 67–72.

Louvari, E., Kiratzi, A. A., & Papazachos, B. C., 1999. The Cephalonia transform Fault and its extension to western Lefkada Island (Greece), Tectonophysics, 308, 223–236.

Lyon-Caen, H., Armijo, R., Drakopoulos, J., Baskoutas, J., Delibassis, N., Gaulon, R., Kouskouna, V., Latoussakis, J., Makropoulos, K., Papadimitriou, P., Papanastassiou, D., &

Pedotti, G., 1988. The 1986 Kalamata (South Peloponnesus) Earthquake: Detailed study of a normal fault, evidences for east-west extension in the Hellenic Arc, Journal of Geophysical Research, Solid Earth, 93, 14967-15000.

Makropoulos, K.C., & Kouskouna, V., 1994. The Ionian Islands earthquakes of 1767 and 1769: seismological aspects. Contribution of historical information to a realistic seismicity and hazard assessment of an area. In: P. Albini and A. Moroni (eds.), Materials of the CEC project "Review of Historical Seismicity in Europe", CNR, Milano, vol. 2, 27-36

Mangira, O., Console, R., Papadimitriou, E., Murru, M. & Karakosta, V., 2020. The short-term seismicity of the Central Ionian Islands (Greece) studied by means of a clustering model, Geophys. J. Int., 220, 856–875.

Mann, H.B. & Whitney, D.R., 1947. On a test of whether one of two random variables is stochastically larger than the other, Annals of Mathematical Statistics, 18, 50–60.

Marinou, A., Ganas, A., Papazissi, K., & Paradissis, D., 2015. Strain patterns along the Kaparelli–Asopos rift (central Greece) from campaign GPS data, Annals of Geophysics, 58(2), S0219. Doi: 10.4401/ag-6418.

Marzocchi W., & Lombardi, A. M., 2008. A double branching model for earthquake occurrence, Journal of Geophysical Research, 113, 317.

Matthews, V. M., Ellsworth, W. L., & Reasenberg, P. A., 2002. A Brownian model for recurrent earthquakes, Bulletin of Seismological Society of America, 92, 2233–2250.

Mavroulis, S., & Lekkas E., 2021. Revisiting the Most Destructive Earthquake Sequence in the Recent History of Greece: Environmental Effects Induced by the 9, 11 and 12 August 1953 Ionian Sea Earthquakes, Applied Sciences, 11,8429. Doi: 10.3390/app11188429.

McCann, W. R., Nishenko, S. P., Sykes, L. R., & Krause, J., 1979. Seismic gaps and plate tectonics: seismic potential for major boundaries, Pure and Applied Geophysics, 117, 1082–1147.

McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K. Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealed, A., Toksoz, M.N., & Veis, G., 2000. Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, Journal of Geophysical Research, 105, 5695-5719. Doi: 10.1029/1999JB900351.

McGuire, R.K., & Barnhard, P., 1981. Effects of temporal variations in seismicity in seismic hazard, Bulletin of Seismological Society of America, 71, 321 334.

McKenzie, D. P., 1972. Active tectonics of the Mediterranean region, Geophysical Journal of the Royal Astronomy Society, 30, 109–185.

McKenzie, D., 1978. Active tectonics of the Alpine—Himalayan belt: the Aegean Sea and surrounding regions, Geophysical Journal of Royal Astronomical Society, 55, 217– 254.

McNeil, L.C., Mille, A., Minshull, T.A., Bull, J.M. & Kenyon, N.H., 2004. Extension of the North Anatolian Fault into the North Aegean Trough: evidence for transtension, strain partitioning, and analogues for the Sea of Marmara basin model, Tectonics, 23, TC2016. doi:10.1029/2002TC001490.

Melis, N. S., Okal, E. A., Synolakis, C. E., Kalogeras, I. S., & Kanoglu, U., 2020. The Chios, Greece Earthquake of 23 July 1949: Seismological Reassessment and Tsunami Investigations, Pure and Applied Geophysics, 117, 1295-1313. Doi: 10.1007/s00024-019-02410-1

Mesimeri, M., & Karakostas, V., 2018. Repeating earthquakes in western Corinth Gulf (Greece): Implications for aseismic slip near locked faults, Geophysical Journal International, 215, 659–676. Doi: 10.1093/gji/ggy301.

Mesimeri, M., Kourouklas, C., Papadimitriou, E., Karakostas, V., & Kementzetzidou, D., 2018. Analysis of microseismicity associated with the 2017 seismic swarm near the Aegean coast of NW Turkey, Acta Geophysica, 66, 479-495. Doi: 10.1007/s11600-018-0157-7.

Milne, W. G. & Davenport, A. G., 1969. Earthquake risk in Canada, Bulletin of Seismological Society of America, 59, 49–71.

Mignan, A. 2008. The non-critical precursory accelerating seismicity theory (NC PAST) and limits of the power-law fit methodology, Tectonophysics, 452, 42-50. Doi: 10.1016/j.tecto.2008.02.010.

Molchan, G., 2005. Interevent time distribution in seismicity: A theoretical approach, Pure and Applied Geophysics, 162, 1135–1150. Doi: 10.1007/s00024-004-2664-5.

Morewood, N., C., & Roberts, G., 1999.Lateral propagation of the surface trace of the South Alkyonides normal fault segment, central Greece: its impact on models of fault growth and displacement–length relationships, Journal of Structural Geology, 6, 635-653. Doi: 10.1016/S0191-8141(99)00049.

Mountrakis, D., Kilias, A., Pavlides, S., Zouros, N., Spyropoulos, N, Tranos, M., & Soulakelis, N., 1993. Field study of the southern Thessaly highly active fault zone, in Proc. 2nd Congr. Hellenic Geophys. Union, 2, 603-614.

Mountrakis, D., Tranos, M., Papazachos, C. B., Thomaidou, E., Karagianni, E., & Vamvakaris, D., 2006. Neotectonic and seismological data concerning major active faults, and the

stress regimes of Northern Greece, Geological Society, London, Special Publications, 260, 649-670.

Mountrakis, D., Kilias, A., Pavlaki, A., Fassoulas, C., Thomaidou, E., Papazachos, C., Papaioannou, C., Roumelioti, Z., Benetatos, C., & Vamvakaris, D. 2012. Neotectonic study of Western Crete and implications for seismic hazard assessment. In: (Ed.) Emmanuel Skourtsos, and Gordon S. Lister, The Geology of Greece, Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, volume 42, paper 2, doi:10.3809/jvirtex.2011.00285

Mouslopoulou, V., Nicol, A., Begg, J, Oncken, O., & Moreno, M. 2015. Clusters of megaearthquakes on upper plate faults control the Eastern Mediterranean hazard, Geophysical Research Letters, 42, 10,282–10,289. Doi: 10.1002/ 2015GL066371.

Mulargia, F., 2001. Retrospective selection bias (or the benefit of hindsight), Geophysical Journal Internatinal ,146, 489 496.

Muller, M.D., Geiger, A., Kahle, H.-G., Veis, G., Billiris, H., Paradissis, D & Felekis, S., 2013. Velocity and deformation fields in the North Aegean domain, Greece, and implications for fault kinematics, derived from GPS data 1993–2009, Tectonophysics, 597–598, 34–49.

Murru, M., Akinci, A., Falcone, G., Pucci, S., Console, R., & Parsons, T., 2016. M≥7 earthquake rupture forecast and time-dependent probability for the sea of Marmara region, Turkey, Journal of Geophysical Research Solid Earth, 121. Doi:10.1002/ 2015JB012595.

Naylor, M., Main, I.G.,& Touati, S., 2009. Quantifying uncertainty in mean earthquake interevent times for a finite sample, Journal of Geophysical Research, 114, B01316.

Nishenko, S. P., 1991. Circum-Pacific seismic potential—1989–1999, Pure and Applied Geophysics, 135, 169–259.

Nishenko, S. P., & Bulland, R., 1987. A generic recurrence interval distribution for earthquake forecasting, Bulletin of Seismological Society of America, 77, 1382–1399.

Nomikou, P., Hübscher, C., Papanikolaou, D., Farangitakis G. P., Ruhnau, M., & Lampridou, D., 2018. Expanding extension, subsidence and lateral segmentation within the Santorini – Amorgos basin during Quaternary: Implications for the 1956 Amorgos event, central – south Aegean Sea, Greece, Tectonophysics, 722, 138-1543. Doi: 10.1016/j.tecto.2017.10.016.

Nomikou, P., Krassakis, P., Kazana, S., Papanikolaou, D., & Koukouzas, N., 2021. The Volcanic Relief within the Kos-Nisyros-Tilos Tectonic Graben at the Eastern Edge of the Aegean Volcanic Arc, Greece and Geohazard Implications, Geosciences, 11, 231. Doi: 10.3390/geosciences11060231.

Nomura, S., Ogata, Y., Komaki, F & Toda, S., 2011. Bayesian forecasting of recurrent earthquakes and predictive performance for a small sample size, Journal of Geophysical Research, 116, B04315. Doi:10.1029/2010JB9007917.

Ogata, Y., 1988. Statistical models for earthquake occurrences and residual analysis for point processes, Journal of American Statistical Association, 83:9–27.

Ogata, Y., 1998. Space-time point-process models for earthquake occurrences, Annals of Institute of Statistical Mathematics, 50,379–402.

Ogata, Y., 2002. Slip-size-dependent renewal processes and Bayesian inferences for uncertainties, Journal of Geophysical Research, 107, 2268. Doi:10.1029/2001JB000668.

Omori, F., 1894. On the aftershocks of earthquakes, Journal of the College of Science, Imperial University of Tokyo, 7, 111–200.

Ordaz, M. & Reyes, C., 1999. Earthquake hazard in Mexico City: Observations versus computations, Bulletin of Seismological Society of America, 89, 1379– 1383.

Ozener, H., Dorgu, A., & Acar, M., 2013. Determination of the displacements along the Tuzla fault (Aegean region-Turkey): Preliminary results from GPS and precise leveling techniques, Journal of Geodynamics, 67, 13-20.

Pace, B., Perruzza, L., Lavecchia, G., & Bancio, P., 2006. Layered seismogenic source model and probabilistic seismic-hazard analyses in central Italy, Bulletin of Seismological Society of America, 96, 107–132.

Pace, B., Visini, F., & Peruzza, L., 2016. FiSH: MATLAB Tools to Turn Fault Data into Seismic-Hazard Models, Seismological Research Letters, 87, 374–386.

Pacheco, J.F., & Sykes, L.R., 1992. Seismic Moment Catalog of Large, Shallow Earthquakes, 1900-1989, Bulletin of the Seismological Society of America, 82, 1306-1349. Doi: 10.1785/BSSA0820031306.

Palyvos, N., Pavlopoulos, K., Froussou, E., Kranis, H., Pustovoytov, K., Forman, S. L., & Minos-Minopoulos, D., 2007. Paleoseismological investigation of the oblique‐normal Ekkara ground rupture zone accompanying the M 6.7–7.0 earthquake on 30 April 1954 in Thessaly, Greece: Archaeological and geochronological constraints on ground rupture recurrence, Journal of Geophysical Research, 115, B06301, Doi:10.1029/2009JB006374.

Panagiotopoulos, D., Papadimitriou, E. E., Papaioannou, Ch., Scordilis, E. M., & Papazachos, B. C., 1993. Source properties of the 21 December 1990 Goumenissa earthquake in Northern Greece, Proc. 2nd Congr. Hellenic Geophysical Union, May 5-8, 1993, Florina, Greece.

Pantosti, D., Martini, P.M.D., Papanastassiou, D., Paly- vos, N., Lemeille, F., and Stavrakakis, G., 2001. A reappraisal of the 1894 Atalanti earthquake surface ruptures, central Greece, Bulletin of the Seismological Society of America, 91, 760–780. Doi: 10.1785/0120000051.

Pantosti, D., Martini, P.M.D., Papanastassiou, D., Lemeille, F., Palyvos, N., and Stavrakakis, G., 2004, Paleoseis-mological trenching across the Atalanti fault (central Greece): Evidence for the ancestors of the 1894 earth- quake during the middle ages and roman times, Bulletin of the Seismological Society of America, 94, 531–549. Doi:

1785/0120020207.

Papadimitriou, E. E., 1993. Focal mechanisms along the convex side of the Hellenic Arc, Bollettino di Geoficisa Teorica ed Applicata, 140, 401-426.

Papadimitriou, E. E., & Sykes, L. R., 2001. Evolution of the stress field in the northern Aegean Sea (Greece), Geophysical Journal International, 146, 747-759

Papadimitriou, E. E., & Karakostas, V., 2003. Episodic occurrence of strong (Mw≥6.2) earthquakes in Thessalia area (Central Greece), Earth and Planetary Science Letters, 215, 395-409.

Papadimitriou, E., Sourlas, G., & Karakostas, V., 2005. Seismicity variations in the Southern Aegean, Greece, before and after the large (M7.7) 1956 Amorgos earthquake due to evolving stress, Pure and Applied Geophysics, 162, 783-804. Doi: 10.1007/s00024-004-2641-z.

Papadimitriou, E., Karakostas, V., Tranos, M., Ranguelov, B., & Gospodinov, D., 2007. Static stress changes associated with normal faulting earthquakes in South Balkan area, International Journal of Earth Sciences, 96, 911-924.

Papadimitriou, E., & Karakostas, V., 2008. Rupture model of the great AD 365 Crete earthquake in the southwestern part of the Hellenic Arc, Acta Geophysica, 56, 293-312.

Papadimitriou, E., Karakostas, V., Mesimeri, M., & Vallianatos, F., 2016. The Mw6.7 12 October 2013 western Hellenic Arc main shock and its aftershock sequence: implications for the slab properties, International Journal of Earth Sciences, 105, 2149–2160.

Papadimitriou, E., Karakostas, V., Mesimeri, M., Chouliaras, G., & Kourouklas, Ch., 2017. The Mw6.5 17 November 2015 Lefkada (Greece) earthquake: structural interpretation by means of the aftershock analysis, Pure and Applied Geophysics, 174, 3869–3888.

Papadimitriou, E., Bonatis, P., Bountzis, P., Kostoglou, A., Kourouklas, Ch., & Karakostas, V., 2020. The Intense 2020–2021 Earthquake Swarm in Corinth Gulf: Cluster Analysis and Seismotectonic Implications from High Resolution Microseismicity, Pure and Applied Geophysics, 179, 3131-3155. Doi: 10.1007/s00024-022-03135-4.

Papadimitriou, P., Kassaras, I., Kaviris, G., Tselentis. G.-A., Voulgaris, N., Lekkas, E., Chouliaras, G., Evangelidis, C., Pavlou, K., Kapetanidis, V., Karakonstantis, A., Kazantzidou-Firtinidou, D., Fountoulakis, I., Millas, C., Spingos, I., Aspiotis, T., Moumoulidou, A., Skourtsos, E., Antoniou, V., Andreadakis, E., Mavroulis, S., & Kleanthi M., 2018. The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations, Journal of Geodynamics, 115, 23–42. Doi:10. 1016/j.jog.2018.01.009.

Papaioannou, Ch. A., & Papazachos, B. C., 2000. Time-Independent and Time-Dependent Seismic Hazard in Greece Based on Seismogenic Sources, Bulletin of Seismological Society of America, 90, 22-33.

Papanastassiou, D., Gaki-Papanastasiou, K., Maroukian, H., 2005. Recognition of past earthquakes along the Sparta fault (Peloponnesus, southern Greece) during the Holocene, by combining results of different dating techniques, Journal of Geodynamics, 40, 189–199.

Papanikolaou, D., Alexandri, M., Nomikou, P. & Ballas, D., 2002. Morphotectonic structure of the western part of the North Aegean Basin based on swath bathymetry, Marine Geology, 190, 465–492. Doi:10.1016/S0025-3227(02)00359-6.

Papanikolaοu, I.D., Roberts, G., Deligiannakis G., Sakellariou, A., & Vassilakis E., 2013. The Sparta Fault, Southern Greece: From segmentation and tectonic geomorphology to seismic hazard mapping and time dependent probabilities, Tectonophysics, 597-598, 85-105. Doi: 10.1016/j.tecto.2012.08.031

Papanikolaou, D., Nomikou, P., Papanikolaou, I., Lampridou, D., Rousakis, G., & Alexandri, M., 2019. Active tectonics and seismic hazard in Skyros basin, North Aegean Sea, Greece, Marine Geology, 407, 94-110.

Papazachos, B. C., 1980. Seismicity rates and long term earthquake prediction in the Aegean area, Quaterniones Geodaesiae, 3, 171– 190.

Papazachos, B. C., 1989. A time-predictable model for earthquake generation in Greece, Bulletin of Seismological Society of America, 79, 77–84.

Papazachos, B. C., & Comninakis, P. E., 1971. Geophysical and tectonic features of the Aegean arc, Journal of Geophysical Research, 76, 8517–8533. Doi:10.1029/jb076i035p08517

Papazachos, B.C., Kiratzi, A.A., Hatzidimitriou, P.M., & Rocca, A.C., 1984. Seismic faults in the Aegean Area, Tectonophysics, 106, 71-85.

Papazachos, B. C., Hatzidimitriou, P. M., Karakaisis, G. F., Papazachos, C. B., & Tsokas, G. N., 1993. Rupture zones and active crustal deformation in southern Thessaly, central Greece, Bolletino Geof. Teor. Appl. 139, 363–374.

Papazachos, B. C., Karakaisis, G. F., Papadimitriou, E. E., & Papaioannou, C. A., 1997a. The regional time and magnitude predictable model and its application to the Alpine-Himalayan belt, Tectonophysics, 271, 295–323.

Papazachos, B. C., Papaioannou, Ch. A., Papazachos, C. B., & Savvaidis, A. S., 1997b. A data bank of macroseismic information for the shallow earthquakes on the southern Balkan area, IASPEI 29th General Assembly, 18-28 August 1997, Thessaloniki, Greece.

Papazachos, B. C., Papaioannou, Ch. A., Papazachos, C. B., & Savvaidis, A. S., 1997c. Atlas of isoseismal maps of strong (


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.