Εξώφυλλο

Γένεση των κοιτασμάτων παλυγκορσκίτη – σμεκτίτη στην ευρύτερη περιοχή Γρεβενών Κοζάνης = Genesis of the palygorskite-smectite deposits in the wider area of Grevena-Kozani.

Χριστίνα Ιωάννης Μυτιγλάκη

Περίληψη


Αντικείμενο της διδακτορικής διατριβής είναι η διερεύνηση του μηχανισμού γένεσης των κοιτασμάτων παλυγκορσκίτη-σμεκτίτη στην λεκάνη των Βεντζίων, της περιφέρειας Δυτικής Μακεδονίας, μεταξύ των νομών Γρεβενών–Κοζάνης. Συνολικά, λήφθηκαν 81 δείγματα από την υπαίθρια δειγματοληψία και από δύο πυρηνοληπτικές γεωτρήσεις, από τις θέσεις/ορυχεία Πευκάκι, Πυλωροί και Χαραμή. Η δειγματοληψία έγινε σε επιλεγμένες τομές από τη περιφέρεια της λεκάνης προς το κέντρο της, με στόχο την αποτελεσματικότερη και ακριβέστερη επιλογή δειγμάτων από όλες τις πλευρές προς το κέντρο της λεκάνης. Τα υπαίθρια δείγματα και οι γεωτρήσεις πάρθηκαν από τα υπό-εκμετάλλευση ορυχεία της ΓΕΩΕΛΛΑΣ-Α.Ε. κατόπιν σχετικής άδειας, αλλά και περιμετρικά αυτών, όπου κρίθηκε απαραίτητο. Τα δείγματα υποβλήθηκαν σε λιθολογική και κοκκομετρική ανάλυση. Συγκεκριμένα, στο κλάσμα <2mm εφαρμόσθηκε η μέθοδος της διάθλασης ακτίνων-laser. Από τα αποτελέσματα της κοκκομετρικής ανάλυσης παρατηρείται ότι στα δείγματα επικρατεί το κλάσμα της ιλύος, έπειτα η άμμος και τελευταία η άργιλος. Η ορυκτολογική ανάλυση των ολικών δειγμάτων πραγματοποιήθηκε με χρήση περιθλασιμετρίας ακτίνων-Χ(XRD). H ορυκτολογία των αργιλικών ορυκτών προσδιορίστηκε από προσανατολισμένα, γλυκοποιημένα και πυρωμένα παρασκευάσματα αντίστοιχα με τη χρήση περιθλασιμετρίας ακτίνων-Χ(XRD). Ο ποσοτικός προσδιορισμός των ορυκτολογικών φάσεων πραγματοποιήθηκε με χρήση της μεθόδου των εξωτερικών προτύπων. Παρασκευάστηκαν πέντε εξωτερικά πρότυπα παλυγκορσκίτη-σμεκτίτη-σερπεντίνη-χαλαζία, καθώς και έξι εξωτερικά πρότυπα με τη συμμετοχή παλυγκορσκίτη-σμεκτίτη-ασβεστίτη και παλυγκορσκίτη-σμεκτίτη-δολομίτη σε συγκεκριμένες αναλογίες. Ο προσδιορισμός της χημικής σύστασης των ολικών δειγμάτων πραγματοποιήθηκε σε πιστοποιημένο εργαστήριο του εξωτερικού. Ο προσδιορισμός της χημικής σύστασης του αργιλικού κλάσματος(<2μm) των δειγμάτων, πραγματοποιήθηκε με χρήση φορητής συσκευής(pXRF). Από τα αποτελέσματα των ορυκτολογικών και χημικών αναλύσεων προκύπτει η εμφανής επιρροή των υπερβασικών πετρωμάτων αλλά και των σχηματισμών της Μεσοελληνικής αύλακας στα κλαστικά υλικά των λεκανών απόθεσης. Για το προσδιορισμό της μορφολογίας και της ορυκτοχημείας των αργιλικών δειγμάτων(<2μm), επιλέχθηκαν πλούσια σε παλυγκορσκίτη, πλούσια σε σμεκτίτη και μικτά δείγματα από τις τρείς θέσεις/ορυχεία. Η ανάλυση πραγματοποιήθηκε με τη μέθοδο της ηλεκτρονικής μικροσκοπίας σάρωσης δέσμης ιόντων(FESEM-EDS). Παράλληλα, αντιπροσωπευτικό μικτό δείγμα με μέγεθος κόκκων<2μm, μελετήθηκε με ηλεκτρονική μικροσκοπία διερχόμενης δέσμης ηλεκτρονίων(ΤΕΜ), ώστε να εντοπιστούν οι διαγενετικές ή άλλης μορφής σχέσεις μεταξύ των κρυστάλλων παλυγκορσκίτη-σμεκτίτη. Επίσης, για την αξιολόγηση της διαγένεσης των εξεταζόμενων ιζηματογενών σχηματισμών, προσδιορίστηκαν τα ισότοπα δC13 και δO18, σε επιλεγμένους κόκκους δευτερογενών ανθρακικών ορυκτών (ασβεστίτη, δολομίτη ή/και αραγωνίτη), οι οποίοι απομονώθηκαν από τα εξεταζόμενα δείγματα. Τέλος εφαρμόστηκε σε αντιπροσωπευτικά πλούσια σε σμεκτίτη, παλυγκορσκίτη και μικτά δείγματα φασματοσκοπία υπέρυθρου για τον ακριβή προσδιορισμό του δι-ή τρι-οκταεδρικού τους χαρακτήρα. Τα αποτελέσματα της ορυκτοχημείας φανέρωσαν τη στενή γεωχημική σχέση του σμεκτίτη και του παλυγκορσκίτη. Ο χημικός τύπος του σμεκτίτη βρέθηκε να είναι:[Na(0,000-0,425)Ca(0,000-0,142)K(0,000-0,036)][Ti(0,023-0,770)AlVI(0,251-1,195)Fe2+(0,481-0,770)Mg(0,588-1,508)][Si(3,960-3,981)AlIV(0,019-0,040)]4O20(OH)2 ενώ του παλυγκορσκίτη:[Na(0,297-2,848)K(0,000-0,004)][Ca(0,141-0,844)AlVI(0,250-0,745)Fe2+(0.254-0,676)Mg(1,633-3,022)][Si(7,932-7,989)AlIV(0,011-0,068)]8O20(OH). Οι εικόνες της ηλεκτρονικής μικροσκοπίας σάρωσης και ηλεκτρονικής μικροσκοπίας διέλευσης, δείχνουν την άμεση γενετική προέλευση του παλυγκορσκίτη από τον σμεκτίτη. Από τα αποτελέσματα της φασματοσκοπίας υπερύθρου προκύπτει πως ο παλυγκορσκίτης παρουσιάζει δι-τρι-οκταεδρικό χαρακτήρα ενώ ο σμεκτίτης χαρακτηρίζεται ως δι-οκταεδρικός. Τέλος μέσω των αποτελεσμάτων των ισοτόπων C13καιO18 προκύπτει πως το παλαιοπεριβάλλον της περιοχής μελέτης χαρακτηρίζεται από εναλλαγές θερμών και υγρών εποχών με ξηρές-ημίξερες περιόδους. Συνολικά, τα αποτελέσματα της μελέτης υποδεικνύουν ένα μεταβατικό περιβάλλον απόθεσης και συγκεκριμένα ενός απομακρυσμένου αλλουβιακού ριπιδίου–αλκαλικής λίμνης (περιθώρια της λίμνης).

The subject of the doctoral thesis is the investigation of the genesis mechanism of palygorskite-smectite deposits in the Ventzia basin, located in the Western Macedonia region, between the prefectures of Grevena and Kozani. In total, 81 samples were collected, including samples from fieldwork and two core drillings from the Pefkaki, Piloroi, and Harami mine/sites. Sampling was conducted in a manner that allowed for the most effective and precise selection of samples from all sides toward the center of the basin. Field samples and drillings were obtained from GEOELLAS-S.A. mines, with the necessary permits, and also from their peripheral areas, as deemed necessary.The samples underwent lithological and granulometric analysis. Specifically, the laser diffraction method was applied to the<2mm fraction. The results of the granulometric analysis indicate that the samples are primarily composed of silt, followed by sand, and clay as the least dominant component.Mineralogical analysis of the total samples was conducted using X-ray diffraction(XRD). The mineralogy of the clay minerals was determined through oriented, glycolated, and heated samples using XRD. The quantitative determination of mineral phases was performed using the method of the external standards. Five external standards were prepared with the participation of palygorskite-smectite-serpentinite-quartz, as well as six external standards with the participation of palygorskite-smectite-calcite and palygorskite-smectite-dolomite in specific ratios. The chemical composition of the bulk samples was determined in a certified laboratory abroad. The determination of the chemical composition of the clay fraction(<2μm) of the samples was performed using a portable X-ray fluorescence device(pXRF). The results of mineralogical and chemical analyses reveal a clear influence of ultramafic rocks and formations of the Mesohellenic Trough on the clastic materials of the deposition basins.To detect the morphology and mineralogy of the clay samples(<2μm), samples rich in palygorskite, rich in smectite, and mixed samples from the three locations/mines were selected. The analysis was conducted using field emission scanning electron microscopy(FESEM-EDS). A representative mixed sample with grain size<2μm, was studied using transmission electron microscopy(TEM) in order to identify genetic or other relationships between palygorskite-smectite crystals. To evaluate the diagenesis of the examined sedimentary formations, the δC13and δO18 isotopes were determined in selected grains of secondary carbonate minerals (calcite,dolomite,and/or aragonite) that were isolated from the examined samples.Fourier-Transform-Infrared-Spectroscopy (FTIR) was applied to representative samples rich in smectite, palygorskite, and mixed samples for the precise determination of their di-or trioctahedral character. The results of the mineralogical analysis indicate a close geochemical relationship between smectite and palygorskite. The chemical formula of smectite was found to be:[Na(0,000-0,425)Ca(0,000-0,142)K(0,000-0,036)][Ti(0,023-0,770)AlVI(0,251-1,195)Fe2+(0,481-0,770)Mg(0,588-1,508)][Si(3,960-3,981)AlIV(0,019-0,040)]4O20(OH)2, while that of palygorskite is:[Na(0,297-2,848)K(0,000-0,004)][Ca(0,141-0,844)AlVI(0,250-0,745)Fe2+(0,254-0,676)Mg(1,633-3,022)][Si(7,932-7,989)AlIV(0,011-0,068)]8O20(OH). Scanning and transmission electron microscopy images demonstrate the direct genetic origin of smectite from palygorskite. The FTIR results reveal that palygorskite exhibits both di-tri-octahedral character, while smectite is characterized as di-octahedral. Finally, the results of the C13and O18 isotopes indicate that the paleoenvironment conditions of the study area is characterized by alternating warm and wet periods with dry to semi-arid periods.Finally, the depositional environment is characterized as a distall lower fan–lacustrine margin(of an alkaline lake).

Πλήρες Κείμενο:

PDF

Αναφορές


Akbulut, A. and Kadir, S., 2003. The geology and origin of sepiolite, palygorskite and saponite in Neogene Lacustrine sediments of the Serinhisar-Acipayam Basin, Denizli, SW TURKEY, Clays and Clay minerals, 51, No 3, 2279-292.

Allen B.L, Hajek B.F., 1989. Mineral occurrence in soil environment. In: Dixon JB, Weed SB, editors. Minerals in Soil Environments. Soil Science Society of America Book Series 1. Madison, WI, USA, Soil Science Society of America, 199-278.

Alonso-Zarza A.M., 1999. Initial stages of laminar calcrete formation by roots: examples from the Neogene of central Spain, Sedimentary Geology, 126, 177-191.

Alonso-Zarza A.M., 2003. Paleoenvironmental significance of Palustrine carbonates and calcretes in the geological record, Earth-Science Reviews, 60, Issues 3-4, 261-298.

Alonso-Zarza A.M. & Arenas C., 2004. Cenozoic calcretes from the Teruel Graben, Spain: microstructure, stable isotope geochemistry and environmental significance, Sedimentary Geology, 167, 91-108.

Alt, J. C., & Honnorez, J., 1984. Alteration of the upper oceanic crust, DSDP site 417: mineralogy and chemistry, Contributions to Mineralogy and petrology, 87, 149-169.

Alt, J. C., Teagle, D. A., Brewer, T., Shanks III, W. C., & Halliday, A., 1998. Alteration and mineralization of an oceanic forearc and the ophiolite‐ocean crust analogy, Journal of Geophysical Research: Solid Earth, 103(B6), 12365-12380.

Anderson, D. W., Saggar, S., Bettany, J. R., & Stewart, J. W. B., 1981. Particle size fractions and their use in studies of soil organic matter: I. The nature and distribution of forms of carbon, nitrogen, and sulfur, Soil Science Society of America Journal, 45(4), 767-772.

Angino, E. & Long, D., 1969. Geochemistry of Bismuth. Dowden, Hutchinson & Ross, Inc., Stroudsburg, Pennsylvania, 689.

Artioli, G., Galli, E., Burattini, E., Cappuccio, G., Simeoni, S., 1994. Palygorskite from Bolca, Italy: a characterization by high-resolution synchrotron radiation powder diffraction and computer modeling, Neues Jahrb. Mineral. Monatsh. 5, 217-229.

ASTM D2216: Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.

Atkins, D.H.F. & Smales, A.A., 1960. The determination of tantalum and tungsten in rocks and meteorites by neutron activation analysis, Analytica Chimica Acta, 22, 462-478.

Aubouin, J., Blanchet, R., Cadet, J.P., Celet, P., Charvet, J., Chorowitz J., Cousin, M. & Rampnoux, J.P., 1970. Essai sur la geologie des Dinarides, Bulletin of Geological Society of France, 12, 1060-1095.

Augsburger, M.S., Strasser, E., Perino, E., Mercader, R.C., and Pedregosa, J.C., 1998. FTIR and Mössbauer investigation of a substituted Palygorskite: Silicate with a channel structure, Journal of Physics and Chemistry of Solids, 59, 175-180.

Ayres, M., & Harris, N., 1997. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites, Chemical Geology, 139(1-4), 249-269.

Badraoui, M., Bloom, P. R., & Bouabid, R. (1992). Palygorskite Smectite association in a Xerochrept of the high Chaouia region of Morocco, Soil Science Society of America Journal, 56, 1640-1646.

Bajnoczi B., Horvath Z., Demeny A. & Mindszenty A., 2006. Stable isotope geochemistry of calcrete nodules and septarian concretions in a Quaternary red clay Paleovertisol from Hungary, Isotopes in Environmental Health Studies, 42, 335-350.

Baldermann, A., Mavromatis, V., Frick, P.M., Dietzel, M., 2018. Effect of aqueous Si/Mg ratio and pH on the nucleation and growth of sepiolite at 25 °C, Geochimica et Cosmochimica Acta, 227, 211–226.

Baron, F., Petit, S., Tertre, E., & Decarreau, A., 2016. Influence of aqueous Si and Fe speciation on tetrahedral Fe (III) substitutions in nontronites: A clay synthesis approach, Clays and Clay Minerals, 64(3), 230-244.

Bailey, S.W., 1980. Structures of layer silicates. In: Brindley, G.W., Brown, G. (Eds.), Crystal Structures of Clay Minerals and Their X-ray Identification, Mineralogical Society, London, England, 1-124.

Banfield, J.F, Jones, B.F., Veblen, D.R., 1991. An AEM–TEM study of weathering and diagenesis, Abert Lake, Oregon: I. Weathering reactions in the volcanics. Geochimica Cosmochimica. Acta, 55, 2781-2793.

Barth, M. G., Mason, P. R., Davies, G. R., & Drury, M. R., 2008. The Othris Ophiolite, Greece: A snapshot of subduction initiation at a mid-ocean ridge, Lithos, 100(1-4), 234-254.

Barth, M. G., & Gluhak, T. M., 2009. Geochemistry and tectonic setting of mafic rocks from the Othris Ophiolite, Greece, Contributions to Mineralogy and Petrology, 157, 23-40.

Beccaluva, L., Ohnenstetter, D., Ohnensteter, M. & Paupy, A., 1984. Two magmatic series with island arc affinities within the Vourinos ophiolite, Contributions to Mineralogy and Petrology, 85, 253–271.

Birsoy, R., 2002: Formation of sepiolite-Palygorskite and related minerals from solution, Clays Clay Minerals, 50, 736-745.

Bishop J., Madejová J., Komadel P. & Fröschl H., 2002. The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral Smectites, Clay Minerals, 37, 607-616.

Blanc, P., Legendre, O., Gaucher, E.C., 2007. Estimate of clay minerals amounts from XRD pattern modeling: The Arquant model. Physics and Chemistry of the Earth, 32 (1), 135-144.

Boggs, S., 2006. Principles of Sedimentology and Stratigraphy (4th ed.). Pearson Prentice Hall, Upper Saddle River, NJ.

Boni, M., Gilg, H.A., Aversa, G., Balassone, G., 2003. The “Calamine” of SW Sardinia (Italy): geology, mineralogy and stable isotope geochemistry of a supergene Zn-min- eralization, Economic Geology. 98, 731–748.

Brookins, D. G., 1988. Eh-pH Diagrams for Geochemistry; Springer-Verlag: Berlin.

Boynton, W. V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In Developments in geochemistry, Elsevier, 2, 63-114

Bradley, W.F., 1940. The structural scheme of attapulgite, American Mineralogist 25, 405-411.

Brauner, K., Pressinger, A., 1956. Struktur und Entstehung des Sepioliths. Tschermak’s Mineralogische und Petrographische Mitteilungen, 6, 120–140.

Brigatti, M. F., 1983. Relationships between composition and structure in Fe-rich Smectites, Clay Minerals, 18(2), 177-186.

Bristow, T.F., Kennedy,M.J., Derkowski, A., Droser, M.L., Jiang, G., Creaser, R.A., 2009. Mineralogical constraints on the Paleoenvironments of the Ediacaran Doushantuo Formation, Proceedings of the National Academy of Sciences of the United States of America, 106, 13190-13195.

Broecker W.S., 1982. Ocean chemistry during glacial times. Geochimica et CoSmeochimica Acta, 46, 1689-1705.

Brunn, J. 1956. Contribution à I'étude Géologique du Pinde Septentrional et d'une partie de la Macédoine Occidental, Ann. Géol. Pays Hellén., 7, 1-358.

Buseck, P.R., Cowley, J.M., Eyring, L., 1988. High-resolution Transmission Electron Microscopy: and Associated Techniques. Oxford University Press.

Caillère, S., 1936. Thermal studies. Bull. Soc. France Miner.,59, 353-374.

Caillère, S., 1951. Sepiolite. In: Brindley, G.W. (Ed.), X-Ray Identification and Structures of Clay Minerals, Mineralogical Society, London, 224-233.

Calvo, J.P., Blanc-Valleron, M.M., Rodríguez-Aranda, J.P., Rouchy, J.M., Sanz, M.E. 1999: Authigenic clay minerals in continental evaporitic environments, Spec. Publ. Int. Ass. Sediment., 27, 129–151.

Calvo, J. P., Pozo, M., & Galán, E., 2015. Geology of magnesian clays in sedimentary and non-sedimentary environments, Magnesian Clays: Characterization, Origin and Applications, Pozo, M., Galán, E., Eds, 123-174.

Callen, R.A., 1977: Late Cainozoic environments of part of northeastern South Australia, Journal of Geological Society of Australia, 100, 151-169.

Callen, R.A.., 1978. The Palygorskite event, 10th Int. Congress of Sedimentology Jerusalem, 1, 1665-1668.

Cámara, F., Garvie, L.A.J., Devouard, B., Groy, T.L., Buseck, P.R., 2002. The structure of Mn-rich tuperssuatsiaite: a Plgygorskite-related mineral. Am. Mineral. 87, 1458–1463., S., Lekkas, E., Papanikolaou, D., Skarpelis, N., Venturelli, G. & Gallo, J. 1985. The ophiolite of the Koziakas range, Western Thessaly (Greece). N. Jb. Miner. Abh., 152, 1, 45–64.

Capedri, S., Venturelli, G., Bocchi, G., Dostal, J., Garuti, G., & Rossi, A., 1980. The geochemistry and petrogenesis of an ophiolitic sequence from Pindos, Greece, Contributions to Mineralogy and Petrology, 74, 189-200.

Capedri, S., Venturelli, G., Bebien, J., & Toscani, L., 1981. Low-and high-Ti ophiolites in Northern Pindos: petrological and geological constraints, Bulletin Volcanologique, 44 (3), 439-449.

Capedri, S., Venturelli, G., & Toscani, L., 1982. Petrology of an ophiolitic cumulate sequence from Pindos, Greece, Geological Journal, 17(3), 223-242.

Caspari, T., Bäumler, R., Norbu, C., Tshering, K., & Baillie, I. 2006. Geochemical investigation of soils developed in different lithologies in Bhutan, Eastern Himalayas. Geoderma, 136(1-2), 436-458.

Celet, P. 1980. Les ophiolites des Héllénides centrales dans leur contexte géotectonique. In Ophiolites, Proceedings of the International Ophiolite Symposium, 1-8 April 1979, Nicosia, Cyprus. Geological Survey Department.

Cerling, T.E., 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate, Earth and Planetary Science Letters, 71, 229-240.

Cerling, T.E., 1991. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic Paleosols, American Journal of Science, 291, 377-400.

Cerling, T.E. & Hay, H.L., 1986. An isotopic study of Paleosol carbonates from Olduvai Gorge, Quaternary Research, 25, 63-78.

Cerling, T. E., Quade, J., Wang, Y. & Bowman, J. R., 1989. Carbon isotopes in soils and Paleosols as ecologic and Paleoecologic indicators, Nature, 341, 138–139

Cerling, T.E. & Quade, J., 1993. Stable carbon and oxygen isotopes in soil carbonates. In: Swart, P.K., Lohmann, K.C., McKenzie, J. & Savin S. (eds), Climate Change in Continental Isotopic Records, Geophysical Monographs, 78, 217-231.

Chahi, A., Duplay, J. and Lucas, J., 1993. Analyses of Palygorskite and associated clays from the Jbel Rhassoul (Morocco): Chemical characteristics and origin of formation, Clays and Clay Minerals, 41, 401-411.

Chahi, A., Fritz, B., Duplay, J., Weber, F., Lucas, J., 1997. Textural transition and genetic relationship between precursor stevensite and sepiolite in lacustrine sediments (Jbel Rhssoul, Morocco), Clays and Clay Minerals, 45, 378-389.

Chahi, A., Petit, S., and Decarreau A., 2002 Infrared evidence of dioctahedral-trioctahedral site occupancy in Palygorskite, Clays and Clay Minerals, 50, 306-313.

Chamley, H., 1989. Clay Sedimentology; Springer: Berlin/Heidelberg, Germany.

Chao, T.T. & Anderson, B.J., 1974. The scavenging of silver by manganese and iron oxides in stream sediments from two drainage areas in Colorado, Chemical Geology, 15, 159-167.

Chen Zhanheng, 2011. Global rare earth resources and scenarios of future rare earth industry, Journal of rare earths, 29(1), 1-6.

Chen, T., Xu, H., Lu, A., Xu, X., Peng, S. and Yue, S. 2004. Direct evidence of transformation from Smectite to Palygorskite: TEM investigation. Science in China Ser. D, Earth Sciences, 47, 11, 985-994.

Chiari, G., Giustetto, R., Ricchiardi, G., 2003. Crystal structure refinements of Palygorskite and Maya Blue from molecular modeling and powder synchrotron diffraction, European Journal of Mineralogy, 15, 21-33.

Chisholm, J.E., 1992. Powder diffraction patterns and structural models for Palygorskite, Canadian Mineralogist. 30, 61-73.

Christ, C.L., Hathaway, J.C., Hostetler, P.B., Shepard, A.O., 1969. Palygorskite: new X-ray data. American Mineralogist 54, 198-205.

Christidis G.E., Katsiki P., Pratikakis A. & Kacandes G., 2010. Rheological properties of Palygorskite-Smectite suspensions from the Ventzia basin, W. Macedonia, Greece, Bulletin of the Geological Society of Greece, 43, 2552–2569

Chryssikos, G.D., Gionis, V., Kacandes, G.H., Stathopoulou, E.T., Suárez, M., García- Romero, E., et al., 2009. Octahedral cation distribution in Palygorskite, American Mineralogist, 94, 200-203.

Chukanov Ν., 2014. Infrared spectra of mineral species, Springer Geochemistry/Mineralogy

Chung, F.H., 1974a. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix flushing method for quantitative multicomponent analysis, Journal of Applied Crystallography, 7 (6), 519-525.

Chung, F.H., 1974b. Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of Xray diffraction analysis of mixtures, Journal of Applied Crystallography, 7 (6), 526-531.

Ciccioli, P.L., Ballent, S., Tedesco, A.M., Barreda, V., Limarino, C.O., 2005. Hallazgo de depósitos cretácicos en la Precordillera de La Rioja (Formación Ciénaga del Río Huaco), Revista de la Asociación Geológica Argentina, 60, 122-131.

Ciccioli, P.L., Limarino, C.O., Marenssi, S.A., Tedesco, A.M., Tripaldi, A., 2011. Tectosedimentary evolution of the La Troya–Vinchina depocenters (northern Bermejo basin, Tertiary), La Rioja Province, Argentina. In: Salfity, J.A., Marquillas, R.A. (Eds.), Cenozoic Geology of the Central Andes of Argentina. SCS Publisher, Salta, 91-110.

Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales, Chemical Geology, 104, 1-37.

Cook, H.E., Johnson, P.D., Matti, J.C. & Zemmels, I., 1975. Methods of sample preparation and X-ray diffraction data analysis. D.S.D.P., Initial Rep., 28, 999-1007.

Couture, R.A., 1977. Composition and origin of Palygorskite-rich and montmorillonite-rich zeolite-containing sediments from the Pacific Ocean, Chemical Geology, 19, 113–130.

Curtis, C.D., 1964. Applications of the crystal-field theory to the inclusion of trace transition elements in minerals during magmatic differentiation, Geochimica et Cosmochimica Acta, 28, 389-403.

Danelian, T., & Robertson, A. H., 2001. Neotethyan evolution of eastern Greece (Pagondas Mélange, Evia Island) inferred from radiolarian biostratigraphy and the geochemistry of associated extrusive rocks, Geological Magazine, 138(3), 345-363.

Daoudi, L., 2004. Palygorskite in the uppermost cretaceous–eocene rocks from Marrakech high Atlas, Morocco, Journal of African Earth Sciences, 39(3-5), 353-358.

de Bono, A., Vavassis, I., Stampfli, G. M., Martini, R., Vachard, D., & Zaninetti, L., 1998. New stratigraphic data on the Pelagonian pre-Jurassic units of Evia Island (Greece), Annales géologiques des pays helléniques, sér, 1(38), 11-24.

de Lapparent, J., 1935. Sur un constituent essential des terres a foulon. C. R, Acad. Sci. Paris, 201, 481-482.

Decarreau, A., Sautereau, J. P., & Steinberg, M., 1975. Genèse des minéraux argileux du Bartonien moyen du Bassin de Paris, Bulletin de Minéralogie, 98(2), 142-151.

Decarreau, A., Bonnin, D., Badaut-Trauth, D., Couty, R., & Kaiser, P., 1987. Synthesis and crystallogenesis of ferric Smectite by evolution of Si-Fe coprecipitates in oxidizing conditions, Clay Minerals, 22(2), 207-223.

Deer, W. A., Howie, R. A. and ZusSmean, J., 1962. Rock Forrning Minerals: vol. l-5. Longmans, Green & Co., London

Deines, P., 1980. The isotopic composition of reduced organic carbon. In: P. Fritz and J. Ch. Fontes (Editors), Handbook of Environmental Isotope Geochemistry, 1, The Terrestrial Environment, A. Elsevier, Amsterdam, 329-406

Deocampo, D. M., 2005. Evaporative evolution of surface waters and the role of aqueous CO2 in magnesium silicate precipitation: Lake Eyasi and Ngorongoro Crater, northern Tanzania, South African Journal of Geology, 108(4), 493-504.

Deocampo, D.M.; Jones, B.F., 2014. Geochemistry of Saline Lakes. In Surface and Groundwater, Weathering and Soils, Treatise on Geochemistry, Drever, J.I., Ed.; Elsevier, Amsterdam, The Netherlands, 7 (7), 437-469.

Deocampo, D. M., Cuadros, J., Wing-Dudek, T., Olives, J., & Amouric, M., 2009. Saline lake diagenesis as revealed by coupled mineralogy and geochemistry of multiple ultrafine clay phases: Pliocene Olduvai Gorge, Tanzania, American Journal of Science, 309(9), 834-868.

Deocampo, D. M., & Ashley, G. M., 1999. Siliceous islands in a carbonate sea; Modern and Pleistocene spring-fed wetlands in Ngorongoro Crater and Oldupai Gorge, Tanzania, Journal of Sedimentary Research, 69(5), 974-979.

Desprairies, A., 1979. Etude sédimentologique de formations à caractère flysch et molasse, Macédoine, Epire (Grèce). Mem. Soc. Géol. France, 136, 1-80.

Dijkstra, A. H., Drury, M. R., & Vissers, R. L., 2001. Structural petrology of plagioclase peridotites in the West Othris Mountains (Greece): melt impregnation in mantle lithosphere, Journal of Petrology, 42(1), 5-24.

Dotsika, E., & Michael, D. E., 2018. Using stable isotope technique in order to assess the dietary habits of a Roman population in Greece. Journal of Archaeological Science: Reports, 22, 470-481.

Drits, V.A. and Aleksandrova, V.A., 1966. The crystallochemical nature of Plgygorskites. Zap. Vses. Mineralog. Obschestva, 95, 551–560.

Drits, V.A., Sokolova, G.V., 1971. Structure of Palygorskite. Sov. Phys., Crystallogr., 16, 183–185.

Eberl, D.D., 2003. User’s guide to RockJock- A program for determining quantitative mineralogy from powder X-ray diffraction data, Geological Survey, open file report, 03-78, 48.

Eberl, D.D., Jones, B.F., Khoury, H.N., 1982. Mixed layer Kerolite-Stevensite from the Amargosa Desert, Nevada, Clays and Clay Minerals, 30, 321–326.

Economou, M. I., & Naldrett, A. J., 1984. Sulfides associated with podiform bodies of chromite at Tsangli, Eretria, Greece, Mineralium Deposita, 19, 289-297.

Egerton, R.F., 2011. Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, second ed. Springer.

Ehrmann, W., Setti, M., Marinoni, L., 2005. Clay minerals in Cenozoic sediments off CapeRoberts (McMurdo Sound, Antarctica) reveal Paleoclimatic history, Paleogeography Paleoclimatology Paleoecology, 229 (3), 187-211.

El Prince, A.M., Mashhady, A.S., Aba-Husayn, M.M., 1979. The occurrence of pedogenic Palygorskite (attapulgite) in Saudi Arabia, Soil Science, 128, 211-218.

Elzea, J.M. and Murray, H.H., 1994. Bentonite in D.D Carr (ed), Industrial Minerals and Rocks, 6th Ed. SME, 233-248.

Eren, E., Kadir, S., Hatipoglu, Z., Gül, M., 2008. Quaternary calcrete development in the Mersin area, southern Turkey, Turkish Journal of Earth Science, 17, 763-784.

Eren M., 2011 Stable isotope geochemistry of Quaternary calcretes in the Mersin area, southern Turkey a comparison and implications for their origin, Chemie der Erde, 71, 31-37.

Eslinger, E., Pevear, D., 1988. Clay Minerals for Petroleum Geologists and Engineers, Short Course 22, Society for Economic Paleontologists and Mineralogists: Tulsa, OK, USA.

Esteoule-Choux, J., 1984. Palygorskite in Tertiary deposits of the Armorican Massif. In: Palygorskite-Sepiolite Occurrences in Sedimentology, Elsevier, Amsterdam, 37, 75-84.

Fahey, J.J., Ross, M., Axelrod, J.M., 1960. Loughlinite, a new hydrous sodium magnesium silicate. American Mineralogist, 45, 270-281.

Farmer V. C., 1974. Infrared spectra of minerals. In: Farmer VC, editor. Monograph 4. London, UK, Mineralogical Society, 331-363.

Farmer, V.C., Russell, J.D., 1964. The infra-red spectra of layer silicates, Spectrochimica Acta, 20, 1149-1173.

Ferraris, G., Belluso, E., Khomyakov, A. P., & Soboleva, S. V., 1998. Kalifersite, a new alkaline silicate from Kola Peninsula (Russia) based on a Palygorskite-sepiolite polysomatic series, European Journal of Mineralogy, 10 (5), 865-874.

Fergusson, J.E., 1990. The heavy elements: Chemistry, environmental impact and health effects. Pergamon Press, Oxford, U.K., 614 pp.Ferraris, G., Khomyakov, A.P., Belluso, E., Soboleva, S.V., 1998. Kalifersite, a new alkaline silicate from Kola Peninsula (Russia) based on the Palygorskite-sepiolite polysomatic series, European Journal of Mineralogy, 10, 865-874.

Fesharaki, O., Garcia-Romero, E., Cuevas-Gonzalez, J., Lopez-Martinez, N., 2007. Clay mineral genesis and chemical evolution in the Miocene sediments of Somosaguas, Madrid Basin, Spain, Clay Minerals, 42 (2), 187-201

Filippidis, A., 1997. Chemical variation of chromite in the central sector of xerolivado chrome mine of Vourinos, Western Macedonia, Greece, Neues Jahrbuch für Mineralogie-Monatshefte, 354-370.

Fleet, A. J., 1984. Aqueous and sedimentary geochemistry of the rare earth elements, In Developments in geochemistry, Elsevier, 2, 343-373.

Fleischer, M., Murata, K.J., Fletcher, J.D. & Narten, P.F., 1952. Geochemical association of niobium (columbium) and titanium and its geological and economic significance, US Geological Survey Circular, 225, Washington D.C., 13

Folk, R.L., 1974. The natural history of crystalline calcium carbonate: effect of magnesium content and salinity, Journal of Sedimentary Research, 44, 40-53.

Folk, R. L., Andrews, P. B., & Lewis, D. W., 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand, New Zealand journal of geology and geophysics, 13(4), 937-968.

Frost R.L. & Kristof J., 1997. Intercalation of halloysite : a Raman spectroscopy study, Clays and Clay Minerals, 45, 551-563

Frost R.L., Tran T.H., Kristof J., 1997. FT-Raman spectroscopy of the lattice region of kaolinite and its intercalates, Vibrational Spectroscopy, 13, 175-186

Frost, R.L., Cash, G.A. and Kloprogge, J.T., 1998. ‘Rocky Mountain leather’, sepiolite and attapulgite an infrared emission spectroscopic study, Vibrational Spectroscopy, 16, 173-184.

Frost R.L., Kristof J., Paroz G.n., Kloprogge J.T., 1998a. Role of water in the hydrazine, Journal of Colloid and Interface Science, 208, 216-225

Frost R.L., Kristof J., Paroz G.N. Tran T.H., Kloprogge J.T., 1998b. The role of water in the intercalation of kaolinite with potassium acetate, Journal of Colloid and Interface Science, 204, 227-236

Frost R.L., Kloprogge J.T., Kristof J., Horvath E., 1999a. Deintercalation of hydrazine-intercalated low-defect kaolinite, Clays and Clay Minerals, 47, 732- 741

Frost R.L., Kristof J., Horvath E., Kloprogge J.T., 1999b. Modification of the kaolinite hydroxyl surfaces through the application of pressure and temperature. part III, Journal of Colloid and Interface Science, 214, 380-388

Frost R.L., Kristof J., Paroz G.N., Kloprogge J.T., 1999c. Intercalation of kaolinite with acetamide, Physical Chemistry Minerals, 26, 257-263

Frost R.L., Kristof J., Horvath E., Kloprogge J.T., 2000a. Vibrational spectroscopy of formamide-intercalated kaolinites, Spectrochimica Acta, A156, 1191-1204

Frost R.L., Kristof J., Mako E., Kloprogge J.T., 2000b. Modification of the hydroxyl surface of potassium acetate intercalated halloysite between 25 and 300°C, American Mineralogist, 85, 1735-1743

Frost RL, Locos OB, Ruan J, Kloprogge JT, 2001. Near infrared and mid-infrared spectroscopic study of sepiolites and Palygorskites, Vibrational Spectroscopy, 27, 1-3.

Frost R.L., Kristof J., Horvath E., Kloprogge J.T., 2001a. The modification of xydroxyl surfaces of formamide-intercalated kaolinites synthesized by controlled rate thermal analysis, Journal of Colloid and Interface Science, 239, 126-133

Frost R.L., Kristof J., Horvath E., Kloprogge J.T., 2001b. Separation of adsorbed formamide and intercalated formamide using controlled rate thermal analysis methodology. Langmuir 17, 3216-3222

Frost R.L., Kristof J., Horvath E., Martens W.N., Kloprogge J.T., 2002. Complexity of intercalation of hydrazine into kaolinite – a-controlled rate thermal analysis and DRIFT spectroscopy study, Journal of Colloid and Interface Science, 251, 350-359

Frost R.L., Horvath E., Mako E. & Kristof J., Cseh T., 2003. The effect of mechanochemical activation upon intercalation of a high-defect kaolinite with formamide, Journal of Colloid and Interface Science, 265, 386-395

Furquim, S.A.C., Graham, R.C., Barbiero, L., 2008. Mineralogy and genesis of Smectites in an alkaline-saline environment of pantanal wetland, Brazil, Clay Minerals, 56, 579-595.

Galán, E., Brell, J. M., La Iglesia, A., & Robertson, R. H. S., 1975. The Caceres Palygorskite deposit, Spain. In Proceedings of the International Clay Conference, Mexico. Applied Publishing, Wilmette, Illinois, 81-94.

Galán, E., and A. Castillo., 1984. Sepiolite-Palygorskite in Spanish Tertiary Basins: Genetical patterns in continental environments, In Palygorskite-Sepiolite: Occurrences, Genesis and Uses, A. Singer and E. Galán, eds. Dev. in Sediment., 37, Amsterdam, Elsevier, 87-124.

Galán, E., Ferrero, A., 1982. Palygorskite-sepiolite clays of Lebrija, Southern Spain, Clays and Clay Minerals, 30, 191-199.

Galán, E., Carretero, M.I., 1999. A new approach to compositional limits for sepiolite and Palygorskite, Clays and Clay Minerals, 47, 399-409.

Galán, E., Pozo, M., 2011. Palygorskite and sepiolite deposits in continental environments. Description, genetic patterns and sedimentary settings. In Developments in Palygorskite-Sepiolite Research, Developments in Clay Science 3 Elsevier: Amsterdam, The Netherlands, 125-174.

Gao, S., Luo, T.-C., Zhang, B.-R., Zhang, H.-F., Han, Y.-W., Zhao, Z.-D. and Hu, Y.-K., 1998. Chemical composition of the continental crust as revealed by studies in East China, Geochimica et Cosmochimica Acta, 62, 1959-1975.

Garcia-Romero, E., Suarez, M., Santaren, J., Alvarez, A., 2007. Crystal chemical characterization of the Palygorskite and sepiolite from the Allou Kagne deposit, Senegal, Clays and Clay Minerals, 55, 606-617.

Garcia-Romero E. & Suarez M., 2010 On the chemical composition of sepiolite and Palygorskite, Clays and Clay Minerals, 58, 1-20.

Garcia-Romero, E. and Suarez, M., 2018. A structure-based argument for non-classical crystal growth in natural clay minerals, Mineralogical Magazine, 82(1), 171-180.

Gartzos, E., Migiros, G., & Parcharidis, I., 1990. Chromites from ultramafic rocks of northern Evia (Greece) and their geotectonic significance, Schweizerische mineralogische und petrographische Mitteilungen, 70(2), 301-307.

Gates W.P., 2005. Infrared spectroscopy and the chemistry of dioctahedral Smectites. Pp. 126–128 in: The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides (J.T. Kloprogge, editor). The Clay Minerals Society, Chantilly, VA, USA.

Gates W.P., 2008. Cation mass–valence sum (CM-VS) approach to assigning OH-bending bands in dioctahedral Smectites, Clays and Clay Minerals, 56, 10-22.

Gaudin A., Petit S., Rose J., Martin F., Decarreau A., Noack Y. and Borschneck D., 2004. The accurate crystal chemistry of ferric Smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches, Clay Minerals, 39, 453-467

Gilg, H.A., Boni, M., Hochleitner, R., Struck, U., 2008. Stable isotope geochemistry of carbonate minerals in supergene oxidation zones of Zn–Pb deposits. Ore Geology Reviews. 33, 117-133.

Gillis, K. M., & Robinson, P. T., 1990. Patterns and processes of alteration in the lavas and dykes of the Troodos Ophiolite, Cyprus, Journal of Geophysical Research: Solid Earth, 95(B13), 21523-21548.

Gionis V., Kacandes G.H., Kastritis I.D. & Chryssikos G.D., 2006. On the structure of Palygorskite by mid and near-infrared spectroscopy, American Mineralogist, 91, 1125-1133.

Gionis V., Kacandes G.H., Kastritis I.D. & Chryssikos G.D., 2007. Combined near-infrared and XRD investigation of the octahedral sheet composition of Palygorskite, Clays and Clay Minerals, 55, 543–553.

Gislason S.R., Arnorsson S., Armannsson H., 1996. Chemical weathering of basalt in southwest Iceland: effects of runoff, age of rocks and vegetative/glacial cover, American Journal of Science, 296, 837-907.

Giustetto, R., Chiari, G., 2004. Crystal structure refinement of Plgygorskite from neutron powder diffraction, European Journal of Mineralogy, 16, 521-532.

Grim R.E., 1968. Clay Mineralogy, McGraw-Hill, New York.

Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., et al., 2007. Scanning Electron Microscopy and X-ray Microanalysis, third ed. Springer

Gondi, F., Panto, G., Feher, J., Bogye, G. & Alfthan, G., 1992. Selenium in Hungary - the Rock-Soil-Human System, Biological Trace Element Research, 35(3), 299-306.

Gong S.Y., Mii H.S., Wei K.Y., Horng C.S., You C.F., Huang F.W., Chi W.R., Yui T.Z., Torng P.K., Huang S.T., Wang S.W., Wu J.C. & Yang K.M. 2005. Dry climate near the Western Pacific Warm Pool: Pleistocene caliches of the Nansha Islands, South China Sea, Paleogeography, Paleoclimatology, Paleoecology, 226, 205-213.

Goodhew, P.J., Humphreys, J., Beanland, R., 2001. Electron Microscopy and Analysis, third ed. CRC Press

Goodman, B. A., Russell, J. D., Fraser, A. R., & Woodhams, F. W. D., 1976. A Mössbauer and IR spectroscopic study of the structure of nontronite, Clays and Clay Minerals, 24, 53-59.

Goudie, A.S. 1983. Calcrete. in: Chemical Sediments and Geomorphology (A.S. Goudie and K. Pye, editors), Academic Press, London, New York, 93-131

Green, D. H., Morgan, J. W., & Heier, K. S., 1968. Thorium, uranium and potassium abundances in peridotite inclusions and their host basalts, Earth and Planetary Science Letters, 4(2), 155-166.

Gromet, L. P., Haskin, L. A., Korotev, R. L., & Dymek, R. F., 1984. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et cosmochimica acta, 48(12), 2469-2482.

Guggenheim, S., 2015. Introduction to Mg-rich clay minerals: Structure and composition. In Magnesian Clays: Characterization, Origin and Applications; Pozo, M., Galán, E., Eds.; Digilabs: Bari, Italy, 1-62.

Guggenheim, S., Eggleton, R.A., 1988. Crystal chemistry, classification, and identification of modulated layer silicates. In: Bailey, S.W. (Ed.), Hydrous Phyllosilicates (Exclusive of the Micas). Reviews in Mineralogy, 20, Mineralogical Society of America, Washington, DC, 675-725.

Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., et al., 2006. Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature- Committee for 2006. Clays and Clay Minerals, 54, 761-772 and Clay Minerals, 41, 863–878.

Güven, N., Caillere, J.P.E., Fripiat, J.J., 1992. The coordination of aluminum ions in the Palygorskite structure. Clays and Clay Minerals, 40 (4), 457-461.

Haden, L.W. Jr. and Schwint, A.I., 1967. Attapulgite its properties and applications, Industrial and Engineering Chemistry, 59(9), 8-69.

Hatzipanagiotou, K. & Pe-Piper, G., 1995. Ophiolitic and sub-ophiolitic metamorphic rocks of the Vatera area, southern Lesbos (Greece): geochemistry and geochronology. Ofioliti, 20, 17-29.

Hayes, P.D., Grossman, E.L., 1991. Oxygen isotopes in meteoric calcite cements as indicators of continental Paleoclimate. Geology, 19, 441-444

Heinrichs, H., 1974. Die Untersuchung von Gesteinen und Gewassern auf Cd, Sb, Hg, Pb, Bi mit der flammenlosen Atomabsorption. Unpublished Ph.D. thesis, University of Gottingen, 38.

Heinrichs, H., Schulz-Dobrick, B. & Wedepohl, K.H., 1980. Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn, and Rb. Geochimica et Cosmochimica Acta, 44, 1519-1533.

Heivilin G.F. and Murray H.H., 1994. Hormites: Palygorskite (attapulgite) and sepiolite. In: Car D. (senior ed.), Industrial Minerals and Rocks, Michigan, Braun-Brumfield, Inc., Ann Arbor pp. 249-254Heller-Kalai, L., Rozenson, I., 1981. Mössbauer studies of Palygorskite and some aspects of Palygorskite mineralogy. Clays Clay Minerals, 29, 226–232.

Hillier, S., & Pharande, A. L., 2008. Contemporary pedogenic formation of Palygorskite in irrigation-induced, saline-sodic, shrink-swell soils of Maharashtra, India. Clays and Clay Minerals, 56(5), 531-548.

Hem, J.D., 1992. Study and interpretation of the chemical characteristics of natural water. United States Geological Survey Water Supply, Paper 2254, Third Edition, 263.

Holyk, W., & Ahrens, L. H., 1953. Potassium in ultramafic rocks, Geochimica et Cosmochimica Acta, 4(5), 241-250.

Horvath E., Kristof J., Frost, R., Redey, A., Vagvolgyi, V and Cseh, T. 2003. Hydrazine-hydrate intercalated halloysite under controlled-rate thermal analysis conditions, Journal of Thermal Analysis and Calorimetry, 71 ,707-714.

Howard, J.H., 1977. Geochemistry of selenium: formation of ferroselite and selenium behaviour in the vicinity of oxidising sulfide and uranium deposits. Geochimica et Cosmochimica Acta, 41, 1665-1678.

Hutton, J.T. & Dixon, J.C., 1981. The chemistry and mineralogy of some South Australian calcretes and associated soft carbonates and their dolomitization. Journal of the Geological Society of Australia, 28, 71-80.

Ingles, M., and Anadon, P., 1991. Relationship of clay minerals to depositional environment n the non-marine Eocene Pontils Group, SE Ebro basin (Spain), Journal of Sedimentary Petrology, 61, 926-939.

Isphording, W.C., 1984. The clays of Yucatan, Mexico: A contrast in genesis. In: Palygorskite-Sepiolite Occurrences, Genesis and Uses (A. Singer and E. Gálan, editors), Developments in Sedimentology, Elsevier, Amsterdam, 37, 59-73.

Jackson M.L., 1974. Soil chemical analysis. Advanced course, 2nd ed. Madison, Wisconsin, 690.

James N.P. & Choquette P.W., 1984. Diagenesis 9. Limestones The meteoric diagenetic environment, Geoscience Canada, 11, 161-194.

Jimenez de Cisneros C., Molina J.M., Nieto L.M., Ruiz- Ortiz P.A. & Vera J.A., 1993. Calcretes from a Paleosinkhole in Jurassic Paleokarst (Subbetic, southern Spain), Sedimentary Geology, 87, 13-24.

Jamoussi, F., Ben Aboud, A., López-Galindo, A., 2003. Palygorskite genesis through silicate transformation in Tunisian continental Eocene deposits. Clay Minerals, 38, 187-200

Jones, B. F., & Mumpton, F. A., 1986. Clay mineral diagenesis in lacustrine sediments. United States Geological Survey Bulletin, 1578, 291-300.

Jones, B.F and Galán E., 1988. Sepiolite and Palygorskite. In: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, Mineralogical Society of America, Washington, 19, 631-674.

Jones, G. & Robertson, A.H.F., 1991. Tectono-stratigraphy and evolution of the Mesozoic Pindos ophiolite and related units, northwestern Greece, Journal of the Geological Society, 148, 267–288.

Kabata-Pendias, A., 1995. Agricultural problems related to excessive trace metal contents of soils, In Heavy metals: problems and solutions, Berlin, Heidelberg: Springer Berlin Heidelberg, 3-18

Kabata-Pendias, A., 2001. Trace elements in soils and plants. CRC Press, Inc., Boca Raton, Florida, 413.

Kabata-Pendias, A., & Mukherjee, A. B., 2007. Trace elements from soil to human. Springer Science & Business Media.

Kadir, S., Eren, M., Kuelah, T., Oenalgil, N., Cesur, M., & Guerel, A., 2014. Genesis of Late Miocene-Pliocene lacustrine Palygorskite and calcretes from Kırşehir, central Anatolia, Turkey, Clay Minerals, 49, 473-494.

Kalkowsky, E., 1880. Über die Erforschung der archaeischen Formationen, Neues Jahrb. Min. Geol. Palaeont. Monatsh, 1, 1-29.

Kaplan, MY, Eren, M, Kadir, S, Kapur, S., 2013. Mineralogical, geochemical and isotopic characteristics of Quaternary calcretes in the Adana region, southern Turkey: Implications on their origin, Catena, 101, 164-177.

Karakaya, N., Karakaya, MÇ., Temel, A., 2011. Mineralogical and geochemical characteristics and genesis of the sepiolite deposits at Polatlı Basin (Ankara, Turkey), Clays and Clay Minerals, 59, 286-314.

Karup-Møller, S., and Petersen, O.V., 1984. Tuperssuatsiaite, a new mineral species from the Ilímaussaq intrusion in South Greenland, Neues Jahrbuch für Mineralogie Monatshefte, 11, 501-512.

Kastner, M., 1981. Authigenic silicates in deep-sea sediments: formation and diagenesis. In: C. Emiliani (Editor), The Sea, Vol.7. The Oceanic Lithosphere. Wiley, New York, N.Y., 915-980.

Kaufhold S., Chryssikos G.D., Kacandes G., Gionis V., Ufer K and Dohrmann R., 2019. Geochemical and mineralogical characterization of Smectites from the Ventzia basin, Western Macedonia, Greece, Clay Minerals, 54, 95-107.

Khademi H. & Mermut A.R., 1998 Source of Palygorskite in gypsiferous aridisols and associated sediments in central Iran, Clay Minerals, 33, 561-578.

Khadkikar, A.S., Chamyal, L.S., Ramesh, R., 2000. The character and genesis of calcrete in Late Quaternary alluvial deposits, Gujarat, western India, and its bearing on the interpretation of ancient climates. Paleogeography Paleoclimatology Paleoecology, 162, 239-261.

Kahle, M., Kleber, M., Jahn, R., 2002. Review of XRD-based quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors, Geoderma 109 (3), 191-205.

Keller, W. D., Reynolds, R. C., & Inoue, A., 1986. Morphology of clay minerals in the Smectite-to-illite conversion series by scanning electron microscopy, Clays and Clay Minerals, 34, 187-197.

Khomyakov, A.P., 1995. Mineralogy of Hyperagpaitic Alkaline Rocks. Clarendon, Oxford.

Khoury, H.M., Eberl, D.D., Jones, B.F., 1982. Origin of magnesium clays from the Amargosa Desert, Nevada, Clays and Clay Minerals, 30, 327–336.

Klug, H.P., and Alexander, L.E., 1974. X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd Edition, John Wiley and Sons, New York, 992.

Koch, R., & Neumeister, H., 2005. Zur Klassifikation von Lößsedimenten nach genetischen Kriterien, Zeitschrift für Geomorphologie, 183-203.

Konstantopoulou, G. & Economou-Eliopoulos, M., 1990. Geochemistry of the Vourinow chromite, Greece, Proceedings, Ophiolites and oceanic lithosphere, Troodos ’87, Cyprus, 605-613

Köster, H. M., Ehrlicher, U., Gilg, H. A., Jordan, R., Murad, E., & Onnich, K., 1999. Mineralogical and chemical characteristics of five nontronites and Fe-rich Smectites, Clay Minerals, 34(4), 579-599.

Kostopoulos, D., 1988. Geochemistry and tectonic setting of the Pindos Ophiolite, northwestern Greece. PhD thesis, 498.

Kostopoulos, D.S., Koufos, G.D., 2000. Palaeoecological remarks on Plio-Pleistocene mammalian faunas. Comparative analysis of several Greek and European assemblages. In: Mediterranean Neogene cyclostratigraphy in marine-continental deposits. Geological Society of Greece, special publications, 9, 139-150.

Koutsovitis, P., 2017. High-pressure subduction-related serpentinites and metarodingites from East Thessaly (Greece): Implications for their metamorphic, geochemical and geodynamic evolution in the Hellenic–Dinaric ophiolite context. Lithos, 276, 122-145

Koutsovitis, P., Magganas, A., Pomonis, P., & Ntaflos, T., 2013. Subduction-related rodingites from East Othris, Greece: Mineral reactions and physicochemical conditions of formation. Lithos, 172, 139-157.

Koutsovitis, P., Magganas, A., Ntaflos, T., & Koukouzas, N., 2018. Rodingitization and carbonation, associated with serpentinization of Triassic ultramafic cumulates and lavas in Othris, Greece. Lithos, 320, 35-48.

Krekeler, M. P., Hammerly, E., Rakovan, J., & Guggenheim, S. 2005. Microscopy studies of the Palygorskite-to-Smectite transformation, Clays and Clay Minerals, 53(1), 92-99.

Kristóf, J., Frost, R., Kloprogge, J., Horváth, E., & Gábor, M., 1999. Thermal behavior of kaolinite intercalated with formamide, dimethyl sulphoxide and hydrazine, Journal of Thermal Analysis and Calorimetry, 56(2), 885-891.

Kuo, J., 2014. Processing Plant Tissues for Ultrastructural Study. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular

Biology, vol 1117. Humana Press, Totowa, 39-55.

Lasaga, A.C. Kinetic., 1998. Theory in the Earth Sciences; Holland, H.D., Ed., Princeton University Press, Princeton, NJ, USA.

Le Bail, A., 2005. Whole powder pattern decomposition methods and applications: A retrospection, Powder diffraction, 20(4), 316-326.

Leeder, M., 2011. Sedimentology and sedimentary basins from turbulence to tectonics (2nd ed.). Chichester, West Sussex, UK: Wiley-Blackwell.

Leguey, S., Martin-Rubi, J.A., Casas, J., Marta, J., Cuevas, J., Alvarez, A. and Medina, J.A., 1995. Diagenetic evolution and mineral fabric in sepiolitic materials from the Vicalvaro deposit (Madrid Basin). Pp. 383 – 392 in: Clays Controlling the Environment (G.J. Churchman, R.W. Fitzpatrick and R.A. Eggleton, editors). Proceedings of the 10th International Clay Conference, Adelaide, Australia, 1993. CSIRO Publishing, Melbourne, Australia.

Levinson, A.A., 1974. Introduction to Exploration Geochemistry. Applied Publishing Ltd., Wilmette, Illinois, USA, 614.

Levinson, A.A., 1980. Introduction to Exploration Geochemistry. Applied Publishing Ltd., Wilmette, Illinois, USA, 924.

Lottermoser, B.G., Ashley, P.M. & Lawie, D.C., 1999. Environmental geochemistry of the Gulf Creek copper mine area, north-eastern New South Wales, Australia. Environmental Geology, 39, 61-74.

Lueth, V.W., 1999a. Bismuth: Element and geochemistry. In: C.P. Marshall & R.W. Fairbridge (Editors), Encyclopedia of Geochemistry. Kluwer Academic Publishers, Dordrecht, Germany, 43-44.

Lyon, G. L., Brooks, R. R., & Peterson, P. J., 1970. Some trace elements in plants from serpentine soils. New Zealand journal of science, 13, 133-139.

Macdonald, R., Upton, B.G.T. & Thomas, J.E., 1973. Potassium and fluorite-rich hydrous phase co-existing with peralkaline granite in South Greenland. Earth and Planetary Science Letters, 18, 217-222.

Mackenzie, R.C., Wilson, M.J., Mashhdy, A.S., 1984: Origin of Palygorskite in some soils of the Arabian Peninsula. in: “Palygorskite–Sepiolite: Occurrences, Genesis and Uses”. Developments in Sedimentology, A. Singer, E. Galán, eds., Elsevier, New York, 177-186.

McLennan, S. M., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and ~dirnenta~ processes. Rev. Mineral., 11, 169-200

McLennan, S.M., 1999c. Yttrium. In: C.P. Marshall & R.W. Fairbridge (Editors), Encyclopedia of Geochemistry. Kluwer Academic Publishers, Dordrecht, Germany, 673.

Madejová J., Komadel P. & Cicel B., 1994. Infrared study of octahedral site populations in Smectites. Clay Minerals, 29, 319–326.

Madejová J. & Komadel P., 2001. Baseline studies of the Clay Minerals Society source clays: infrared methods. Clays and Clay Minerals, 49, 410–432.

Madejová, J., Komadel, P., 2005. Information available from infrared spectra of the fine fraction of bentonites. In Klopproge, J.T. (Ed.), The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides, CMS Workshop Lectures, Vol. 13, The Clay Mineral Society, Aurora, CO, pp. 6598. Marshall, C.P. & Fairbridge, R.W. (Editors), 1999. Encyclopedia of geochemistry. Kluwer, Netherlands, 712

Martin Vivaldi, J. L., & Cano Ruız, J., 1953. Contribución al estudio de la sepiolita (I) Caracterización y propiedades de sepiolitas espanolas. Anales de edafologıa y Fisiologia Vegetal, XII-XI, 829-855.

Martin-Vivaldi, J.L., Cano Ruiz, J., 1956. Contribution to the study of sepiolite: II. Some considerations regarding the mineralogical formula. In: Proceedings of four National Conference on Clays and Clay Minerals, vol. 156, National Academy of Sciences. National Research Council, 173-176.

Martín Vivaldi, J.L., Fenoll, P., 1970. Palygorskites and sepiolites (hormites). In: Mackenzie, R.C. (Ed.), Differential Thermal Analysis, vol. I. Academic Press, London, Meunier, A. Clays; Springer: Berlin/Heidelberg, Germany, 553-573

Mason, B. & Moore, C.B., 1982. “Principle of Geochemistry”, 4th Edition,Wiley, New York, 46-177

McDonough, W. F., & Sun, S. S., 1995. The composition of the Earth. Chemical geology, 120(3-4), 223-253.

Mclean, S.A., Allen, B.L. and Craig, J.R., 1972. The occurrences of sepiolite and attapulgite on the South High Plains. Clays and Clay Minerals, 20, 143-149.

Meunier, A., 2005. Clays. Springer-Verlag Berlin Heidelberg, Germany, 472.

Mielke, J.E., 1979. Composition of the Earth’s crust and distribution of the elements. In: F.R. Siegel (Editor), Review of research on modern problems in geochemistry. International Association for Geochemistry and Cosmochemistry. Earth Science Series, 16, UNESCO Report SC/GEO/544/3, Paris, 13-37

Millot, G., 1954. La Ghassolite, pôle magnésien de la série des montmorillonites, Comptes Rendus de l'Académie des Sciences de Paris, 238, 257-259.

Millot, G. 1970. Geology of Clays, Springer, Berlin/Heidelberg, Germany.

Millot G. 1977. Geology of Clays, Springer, New York, N.Y. 426.

Moores, E.M., 1969. Petrology and structure of Vourinos ophiolitic complex of northern Greece, Geological Society of America, Special paper, 118.

Moore, D.C. and Reynolds, R.C., 1997. X-ray Diffraction and identification and Analysis of clay Minerals. Second edition. Oxford University Press, 378.

Morse J.W., Mackenzie F.T., 1990. Geochemistry of Sedimentary Carbonates. Developments in Sedimentology, 48, 707.

Müller, G., Irion, G., and Forstner, U., 1972. Formation and diagenesis of inorganic Ca–Mg carbonates in the lacustrine environment, Naturwissenschaften, 59, 158-164.

Murray, H.H., 2007. Applied Clay Mineralogy, Elsevier, Amsterdam

Murray, H.H., 1994. Clays. In: Industrial Minerals and Rocks, 6th Edition, Society for Mining Metallurgy and Exploration Inc, Littleton Colorado, 229-232.

Murray, H.H. and Zhou, H., 2006. Palygorskite and Sepiolite (Hormites). In: Industrial Minerals and Rocks, 7th Edition, Society for Mining Metallurgy and Exploration Inc, Littleton Colorado, 401-406.

Nagy, B., Bradley, W.F., 1955. The structural scheme of sepiolite. American Mineralogist, 40, 885-892.

Neaman, A., & Singer, A., 2011. The effects of Palygorskite on chemical and physico-chemical properties of soils, Developments in clay science, 3, 325-349.

Nesbitt, H.W., Markovics, G., Price, R.C., 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering, Geochimica et Cosmochimica Acta, 44, 1659-1666.

Nesbitt, H. W., MacRae, N. D., & Kronberg, B. I., 1990. Amazon deep-sea fan muds: light REE enriched products of extreme chemical weathering, Earth and Planetary Science Letters, 100(1-3), 118-123.

Neuendorf, K.K.K., Mehl, J.P., Jackson, J.A., 2005. Glossary of Geology, American Geological Institute: Alexandria, VA, USA

Newman, A.C.D., Brown, G., 1987. The chemical constitution of clays. In: Newman, A.C.D. (Ed.), Chemistry of Clays and Clay Minerals. Monograph, 6, Mineralogical Society, London, England, 1-128.

Nicolopoulou, A., Papoulis, D., Komarneni, S., Tsolis-Katagas, P., Panagiotaras, D., Kacandes, G.H., Zhang, P., Yin, S., Sato, T., 2009. Solve thermal preparation of TiO2/saponite nanocomposites and photocatalytic activity. Applied Clay Science, 46, 363-368.

Nielsen, A.E., 1964. Kinetics of Precipitation; Pergamon Press: New York, NY, USA.

Odom, I.E., 1984. Smectite clay minerals: Properties and uses, Philosophical Transactions of the Royal Society, A311, 391-400.

Önal, M., 2006. Determination of chemical formula of a Smectite. Chemistry and Chemical Engineering Communications Faculty of Sciences, University of Ankara, Series B, 52(02).

Özkan, A.I., Ross, G.J., 1979. Ferruginous beidellites in Turkish soils, Soil Science Society of America Journal, 43 (6), 1242-1248.

Owliaie, H. R., Abtahi, A., & Heck, R. J. 2006. Pedogenesis and clay mineralogical investigation of soils formed on gypsiferous and calcareous materials, on a transect, southwestern Iran. Geoderma, 134(1-2), 62-81.

Plgme, H., 1999a. Elements: Chalcophile. In: C.P. Marshall & R.W. Fairbridge (Editors), Encyclopedia of geochemistry. Kluwer Academic Publishers, Dordrecht, Germany, 204.

Plgme, H., 1999b. Elements: Siderophile. In: C.P. Marshall & R.W. Fairbridge (Editors), Encyclopedia of geochemistry. Kluwer Academic Publishers, Dordrecht, Germany, 204.

Papanikolaou, D., 1986. Geology of Greece. Eptalofos Publications, 240

Papanikolaou, D., 1993. Geotectonic evolution of the Aegean. Bulletin of Geological Society of Greece, 28, 33–48.

Papanikolaou, D. & Royden, L., 2007. Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene– Quaternary normal faults-or what happened at Corinth?, Tectonics, 26.

Papanikolaou, D., 2009. Timing of tectonic emplacement of the ophiolites and terrane Plgeogeography in the Hellenides, Lithos, 108, 262-280.

Paquet, H., 1970. Evolution géochimique des minéraux argileux dans les altérations et les sols des climats méditerranéens tropicaux a saisons contrastées, 30, 1, Persée-Portail des revues scientifiques en SHS.

Paquet H., Duplay J., Valleron-Blanc, M.M. & Millot, G., 1987. Octahedral composition of individual particles in Smectite-Palygorskite and Smectite-sepiolite assemblages, Proceedings of the International Clay Conference, Denver, 73-77.

Paasikallio A., 1999. Effects of biotite, zeolite, heavy clay, bentonite and apatite on the uptake of radiocesium by grass from peat soil, Plant Soil, 206, 213-222.

Pe-Piper, G., & Piper, D. J., 1991. Early Mesozoic oceanic subduction-related volcanic rocks, Pindos Basin, Greece, Tectonophysics, 192(3-4), 273-292.

Perrault, G., Harvey, Y., Pertsowsky, R., 1975. La yofortierite, un nouveau silicate hydrate de manganese de St-Hilaire, P.Q., Canadian Mineralogist,13, 68-74.

Petit S., Caillaud J., Righi D., Madejová J., Elsass F. & Köster H.M., 2002. Characterization and crystal chemistry of an Fe-rich montmorillonite from Öldberg, Germany, Clay Minerals, 37, 283-297.

Petit S., Decarreau A., Gates W., Andrieux P. & Grauby O., 2015. Hydrothermal synthesis of dioctahedral Smectites: the Al–Fe3+ chemical series. Part II: crystal-chemistry, Applied Clay Science, 104, 96-105.

Pluth, J.J., Smeith, J.V., Pushcharovsky, D.Y., Semenov, E.I., Bram, A., Riekel, C., et al., 1997. Third-generation synchrotron x-ray diffraction of a 6-mm crystal of raite, Na3Mn3Ti0.25-Si8O20(OH)2.10H2O, opens up new chemistry and physics of low-temperature minerals, Proceedings of the National Academy of Sciences, 12263-12267.

Prichard, H. M., Economou-Eliopoulos, M., & Fisher, P. C., 2008. Contrasting platinum-group mineral assemblages from two different podiform chromitite localities in the Pindos ophiolite complex, Greece, The Canadian Mineralogist, 46(2), 329-341.

Pollard, P.J., 1989. Geochemistry of granites associated with tantalum and niobium mineralisation In: P. Mollër, P. Cerný & F. Saupé (Editors), Lanthanides, Tantalum and Niobium, Springer-Verlag, Berlin-Heidelberg, 145-168.

Post J.L. & Noble P.N., 1993. The near-infrared combination band frequencies of dioctahedral Smectites, micas and illites, Clays and Clay Minerals, 41, 639-644.

Post, J.E., Heaney, P.J., 2008. Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of Palygorskite, American Mineralogist, 93, 667-675.

Pozo, M., Medina, A., Leguey, S., 1985. Mineralogénesis de Palygorskita en la zona central de la Cuenca de Madrid. Boletín de la Sociedad Española de Mineralogía, (8), 271–283.

Pozo, M., Galán, E., 2015. Magnesian clay deposits: Mineralogy and origin. In Magnesian Clays: Characterization, Origin and Applications, Pozo, M., Galán, E., Eds., Digilabs, Bari, Italy, 175-227.

Pozo, M and Calvo, J.P., 2018. An Overview of Authigenic Magnesian Clays, Minerals, 8, 520

Pozo, M. and Casas, J.C., 1999. Origin of kerolite and associated Mg clays in Plgustrine-lacustrine environments. The Esquivias deposit (Neogene Madrid Basin, Spain), Clay Minerals, (34), 395–418.

Purvis K. & Wright V.P., 1991. Calcretes related to phreatophytic vegetation from the Middle Triassic Otter Sandstone of South West England. Sedimentology, 38, 539-551.

Pawley, J., Schatten, H., 2014. Biological Low-voltage Scanning Electron Microscopy. Springer.

Quade, J., Cerling, T.E. & Bowman, J.R., 1989. Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States, Geological Society of America Bulletin, 101, 464-475.

Rassios, A., 1991. Internal structure and pseudostratigraphy of the Dramala peridotite massif, Pindos Mountains, Greece, Congress of the geological society of Greece, 25 (1), 293-305.

Rassios, A., Beccaluva, L., Mavridis, A. & Moores, E.M. 1983., The Vourinos ophiolitic complex: a field excursion guidebook. -Ofioliti, 8, 275-292

Rassios, A. and Konstantopoulou D., 1992. Emplacement tectonics and the position of chrome ores in the Mega Isoma Peridotites, S.W. Othris, Greece. Bulletin of Geological Society of Greece, 28, 463-474.

Rassios, A. & Smeith, A.G., 2000. Constraints on the formation and emplacement age of western Greek ophiolites (Vourinos, Pindos, and Othris) inferred from deformation structures in peridotites, Special Papers-Geological Society of America, 473–484.

Rassios, A. E., & Dilek, Y., 2009. Rotational deformation in the Jurassic Mesohellenic ophiolites, Greece, and its tectonic significance. Lithos, 108(1-4), 207-223.

Reimann, C., Siewers, U., Tarvainen, T., Bityukova, L., Eriksson, J., Gilucis, A., Gregorauskiene, V., Lukashev, V.K., Matinian, N.N. & Pasieczna, A., 2003. Agricultural soils in Northern Europe: A Geochemical Atlas. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 279.

Reimer, L., 1998. Scanning Electron Microscopy, second ed. Springer, Heidelberg.

Reimer, L., Kohl, H., 2008. Transmission Electron Microscopy: Physics of Image Formation, fifth ed. Springer.

Rietveld, H.M., 1967. Line profiles of neutron powder-diffraction peaks for structure refinement, Acta. Crystallographica, 22 (1), 151–152.

Rietveld, H., 1969. A profile refinement method for nuclear and magnetic structures, Journal of applied Crystallography, 2 (2), 65–71.

Robertson, R.H.S., 1986, Fullers earth: A history of calcium Montmorillonite, Volturna Press, Hythe, Kent, UK, 421

Robertson, A. H. F., 1990. Late Cretaceous oceanic crust and Early Tertiary foreland basin development, Euboea, eastern Greece. Terra Nova, 2(4), 333-339.

Robertson, A. H. F., 1991. Origin and emplacement of an inferred late Jurassic subduction-accretion complex, Euboea, eastern Greece. Geological Magazine, 128(1), 27-41.

Robertson, A., 2004. Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions. Earth Science Reviews, 66, 331-387.

Robertson, A.H.F. & Dixon, J.E., 1984. Introduction: aspects of the geological evolution of the Eastern Mediterranean. In: Dixon, J.E., Robertson, A.H.F. (Eds.), The Geological Evolution of the Eastern Mediterranean, Oxford, 551-561.

Robertson, A.H.F., Clift, P.D., Degnan, P.J. & Jones, G., 1991. Paleogeographic and Paleotectonic evolution of the Eastern Mediterranean Neotethys, Paleogeography, Palaeoclimatology, Paleoecology, 87, 289-343.

Robertson, A. H., & Mountrakis, D., 2006. Tectonic development of the Eastern Mediterranean region: an introduction. Geological Society, London, Special Publications, 260(1), 1-9.

Rodas, M., Luque, F. J., Mas, R., & Garzon, M. G., 1994. Calcretes, Plgycretes and silcretes in the Paleogene detrital sediments of the Duero and Tajo Basins, central Spain, Clay Minerals, 29, 273-285.

Rollinson, H., 1993. Using geochemical data. Evaluation, presentation, interpretation, 1, 23-89.

Rose, A.W., Hawkes, H.E. & Webb, J.S., 1979. Geochemistry in mineral exploration. Academic Press, London, 657.

Rudnick, R. L., & Gao, S., 2003. The Crust, 3.01–The Composition of the Continental Crust, Treatise on geochemistry, 3, 1-64.

Russell J.D., Farmer V.C. & Velde B., 1970. Replacement of OH by OD in layer silicates and identification of the vibrations of these groups in infrared spectra, Mineralogical Magazine, 37, 292, 869

Russell J.D. & Fraser A.R., 1994. Infrared methods. in Clay Mineralogy, Spectroscopic and Chemical Determinative Methods (M.J. Wilson, editor). Chapman & Hall, London, UK, 11-67

Saccani, E. & Photiades, A., 2004. Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting, Lithos, 73,229-253

Shackleton, N. J., 1985. Oceanic carbon isotope constraints on oxygen and carbon dioxide in the Cenozoic atmosphere, The carbon cycle and atmospheric CO2: natural variations Archean to present, 32, 412-417.

Salomons W. and Mok W.G., 1976. Isotopic of carbonate dissolution and reprecipitation in soils, Soil Science, 122, 15-24

Salomons W., Goudie A. and Mook W.G., 1978. Isotopic composition of calcretes deposits from Europe, Africa and India, Earth Surface Processes, 3, 43-57.

Sánchez, C., Galán, E., 1995. An approach to the genesis of Palygorskite is a Neogene-Quaternary continental basin using principal factor analysis, Clay Minerals, 30, 225-238.

Sautereau, M. & Decarreau, A., 1973. Genèse des minéraux argileux. Géochimie des éléments majeurs, du chrome et du vanadium dans le Bartonien moyen du Bassin de Paris. Thèse 3ème cycle, Univ. Paris-sud, Orsay, 79.

Savoyat, E. & Lalechos, N., 1969. Geological Map of Greece, scale 1:50 000, Trikala Sheet. Institute of Geology and Mineral Exploration, Athens.

Savoyat, E. & Lalechos, N., 1972. Geological Map of Greece, scale 1:50 000, Kalambaka Sheet. Institute of Geology and Mineral Exploration, Athens

Savoyat, E. & Monopolis, D., 1972. Geological Map of Greece, scale 1:50 000, Grevena Sheet. Institute of Geology & Mineral Exploration, Athens.

Savoyat, E., Monopolis, D. & Bizon, G., 1971a. Geological Map of Greece, scale 1:50 000, Nestorion Sheet. Institute of Geology and Mineral Exploration, Athens.

Savoyat, E., Vierdier, A., Monopolis, D. & Bizon, G., 1971b. Geological Map of Greece, scale 1:50 000, Argos Orestikon Sheet. Institute of Geology and Mineral Exploration, Athens.

Scheffer, C., Vanderhaeghe, O., Lanari, P., Tarantola, A., Ponthus, L., Photiades, A., France, L., 2016. Syn- to post-orogenic exhumation of metamorphic nappes: structure and thermobarometry of the western Attic-Cycladic metamorphic complex (Lavrion, Greece). Journal of Geodynamics, 99, 174–193.

Scheffer, C., Tarantola, A., Vanderhaeghe, O., Photiades, A., 2017. CO2⁠ flow during oro- genic gravitational collapse: syntectonic decarbonation and fluid mixing at the duc- tile-brittle transition (Lavrion, Greece). Chemical Geology, 450, 248–263.

Schlee, J. S., 1973. Atlantic continental shelf and slope of the United States: sediment texture of the northeastern part (No. 529-L). US Geological Survey.

Schroll, E., 1999b. Germanium: Element and geochemistry. In: C.P. Marshall & R.W. Fairbridge (Editors), Encyclopedia of Geochemistry. Kluwer Academic Publishers, Dordrecht, Germany, 307-308.

Shaaban M.N., 2004. Diagenesis of the lower Eocene Thebes Formation, Gebel Rewagen area, Eastern Desert, Egypt, Sedimentary Geology, 165, 53-65.

Shadfan, H. & Dixon, J.B., 1984. Occurrence of Palygorskite in the soils and rocks of the Jordan Valley. in: “Palygorskite-Sepiolite: Occurrences, Genesis and Uses”. Developments in Sedimentology, A. Singer, E. Galán, eds., Elsevier, New York, 187–198.

Shiller, A.M. & Frilot, D.M., 1996. The geochemistry of gallium relative to aluminum in Californian streams, Geochimica et Cosmochimica Acta, 60(8), 1323-1328.

Siddiqui, M.K.H., 1984. Occurrences of Palygorskite in the Decan Trap Formation in India. In: A., Singer and E., Galán (Eds.). Palygorskite – Sepiolite Occurrences, Genesis and Uses. Iraq Geological Survey, Elsevier, 37, 243-250.

Simantov, J., Economou, C., & Bertrand, J., 1987. Metamorphic rocks associated with the central Euboea ophiolite (southern Grece). Some new occurrences. Ophiolites and oceanic crustal analogues, Proceedings of the International Sympsium ‘Troodos, 285-294.

Simmons, E.C., 1999b. Strontium: Element and geochemistry. In: C.P. Marshall & R.W. Fairbridge (Editors), Encyclopedia of Geochemistry. Kluwer Academic Publishers, Dordrecht, Germany, 598-599.

Singer, A., 1979. Palygorskite in sediments: Detrital, diagenetic or neoformed—A critical review, Geologische Rundschau, 68, 996-1008.

Singer, A., 1984. Pedogenic Palygorskite in the arid environment. In Palygorskite-Sepiolite. Occurrences, Genesis and Uses, Developments in Sedimentology, Singer, A., Galán, E., Eds., Elsevier, 37, 169-177.

Singer, A., 2002. Palygorskite and sepiolite. In: Dixon, J.B., Schultze, D.G. (Eds.), Soil Mineralogy with Environmental Applications, Soil Science Society of America Publication, 7, 556-580.

Singer, A., Norrish, K., 1974. Pedogenic Palygorskite occurrences in Australia, American Mineralogist: Journal of Earth and Planetary Materials, 59, 508-517.

Sitnin, A.A., 1966. Tantalum and niobium concentration in granitoid micas of the U.S.S.R, Geochemistry International, 3, 843.

Smeith, A.G., Hynes, A.J., Menzies, M., Nisbet, E.G., Price, I., Welland, M.J. & Ferriere, J., 1975. Stratigraphy of the Othris Mountains, eastern central Greece: a deformed mesozoic continental margin sequence, Eclogae Geol Helv., 68, 463-482.

Smeith, A. G., & Spray, J. G., 1984. A half-ridge transform model for the Hellenic-Dinaric ophiolites, Geological Society, London, Special Publications, 17(1), 629-644.

Smeith, D.K., Johnson, G.G. Jr., Scheible, A., Wires, A.M., Johnson, J.L., Ullmann, G., 1987. Quantitative X-ray powder diffraction method using the full diffraction pattern, Powder Diffraction, 2 (2), 73–77.

Snyder, G.A., 1999. Vanadium. In: C.P. Marshall & R.W. Fairbridge (Editors), Encyclopedia of Geochemistry. Kluwer Academic Publishers, Dordrecht, Germany, 656.

Spence, J.C.H., 2013. High-resolution Electron Microscopy, fourth ed. Oxford University Press

Spray, J.G. & Roddick, J.C., 1980. Petrology and 40Ar/39Ar Geochronology of some Hellenic sub-Ophiolite metamorphic Rocks, Contributions to Mineralogy and Petrology, 72, 43–55.

Springer, G., 1976. Falcondoite, nickel analogue of sepiolite, The Canadian Mineralogist, 14, 407–409.

Ssaftschenkow, T.V., 1862. Palygorskite Verhandlungen der Russisch Kaiserlichen Gesellschaft fur Mineralogie, Sankt Petersburg, 102–104.

Stathopoulou E.T., Suárez, M., García-Romero, E., Sánchez, del Río M., Kacandes, G.H., Gionis, V. & Chryssikos, G.D., 2011. Trioctahedral entities in Palygorskite: near-infrared evidence for sepiolite-Palygorskite polysomatism, European Journal of Mineralogy, 23, 567–576.

Stoessell, R. K., 1988. 25 °C and 1 atm dissolution experiments of sepiolite and kerolite, Geochimica et Cosmochimica Acta, 52(2), 365-374.

Stokes, D., 2008. Principles and Practice of Variable Pressure: Environmental Scanning Electron Microscopy, Wiley-Blackwell

Stosch, H.G., 1999. Elements: Lithophile. In: C.P. Marshall & R.W. Fairbridge (Editors), Encyclopedia of geochemistry. Kluwer Academic Publishers, Dordrecht, Germany, 214.

Strong G.E., Giles, J.R.A. & Wright, V.P., 1992. A Holocene calcrete from North Yorkshire, England: implications for interpreting Paleoclimates using calcretes, Sedimentology, 39, 333-347

Stumm, W., 1992. Chemistry of the Solid-Water Interface, Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, John Wiley and Son Inc.: Hoboken, NJ, USA.

Suárez, M., Robert, M., Elsass, F., Martín Pozas, J.M., 1994. Evidence of precursor in the neoformation of Palygorskite-new data by analytical electron microscopy, Clay Minerals, 29, 255-264

Suárez M, García-Romero, E., 2006. FTIR spectroscopy study of Palygorskite: Influence of the composition of the octahedral sheet, Applied Clay Science, 31, 154–163.

Suárez, M., García-Romero, E., Sánchez del Río, M., Martinetto, P., Dooryhée, E., 2007. The effect of trioctahedral cations on the dimensions of the Palygorskite cell, Clay Minerals, 42, 287–297.

Suárez, M., & García-Romero, E., 2013. Sepiolite–Palygorskite: a continuous polysomatic series, Clays and Clay Minerals, 61(5), 461-472.

Suárez, M., García-Rivas, J., Sánchez-Migallón, J. M., & García- Romero, E., 2018. Spanish Palygorskites: geological setting, mineralogical, textural and crystal-chemical characterization, European Journal of Mineralogy, 30, 733–746.

Sudo, T., 1979. Studies of clay minerals in sediments, a review. In: M.M., Mortland and V.C., Farmer (Eds.). International Clay Conference, 1978, Developments in Sedimentology, Elsevier, 27, 241-250.

Tanner, L.H., 2010. Continental carbonates as indicators of Paleoclimate. In: Alonso- Zarza, A.M., Tanner, L.H. (Eds.), Carbonates in Continental Settings: Facies, Environment, and Processes, Developments in Sedimentology, 62, 179–214.

Tani, Y., Miyata, N., Ohashi, M., Iwahori, K., Soma, M., & Seyma, H., 2003. Interaction of Co (II), Zn (II) and As (III/V) with manganese oxides formed by Mn-oxidizing fugus, In Proceedings of the 16th International Symposium on Environmental Biogeochemistry, Oriase, Northern Japan, 1-6.

Tarte, P., Pottier, M.J., and Procès, A.M., 1973. Vibrational studies of silicates and germinates.V. IR and Raman spectra of pyrosilicates and pyrogermanates with a linear bridge, Spectrochimica Acta Part A: Molecular Spectroscopy, 29A, 1017-1027.

Taylor, S. R., & McLennan, S. M., 1985. The continental crust: its composition and evolution. United States.

Tazaki, K., Fyfe, W.S., Heath, G.R., 1986. Palygorskite formed on montmorillonite in North Pacific deep-sea sediments, Clay Science, 6, 197–216.

Tazaki, K., Fyfe, W.S., Tsuji, M., Katayama, K., 1987. TEM observations of the Smectite-to Palygorskite transition in deep Pacific sediments, Applied Clay Science, 2, 233-240.

Torres-Ruiz, J., Lopez-Galindo, A., Gonzalez-Lopez, J.M. and Delgado, A., 1994. Geochemistry of Spanish sepiolite – Palygorskite deposits: Genetic considerations based on trace elements and isotopes. Chemical Geology, l12, 221-245.

Tosca, N., 2015. Geochemical pathways to Mg-silicate formation. In Magnesian Clays: Characterization, Origin and Applications, Pozo, M., Galán, E., Eds., Digilabs: Bari, Italy, 283-329.

Tosca, N.J. and Masterson, A., 2014. Chemical controls on incipient Mg-silicate crystallization at 25 C: Implications for early and late diagenesis. Clay Minerals. 49, 165-194.

Trauth, N. Argiles, 1977. Évaporitiques dans les Sédimentation Carbonatée et Épicontinental Tertiaire. Bassin de Paris, Mormoiron et Salinelles (France), Jbel Ghassoul (Maroc), Sciences Geologiques Mémoire, Strasbourg, France, 49, 195.

Tlili A., Felhi M. & Montacer M., 2010. Origin and depositional environment of Palygorskite and sepiolite from the Ypresian phosphatic series, southwestern Tunisia, Clays and Clay Minerals, 58, 573584.

Tucker, M. E., 2001. Sedimentary Petrology–An Introduction to the Origin of Sedimentary Rocks, Blackwell, Scientific publication, London.

Turekian, K. K., & Wedepohl, K. H., 1961. Distribution of the elements in some major units of the earth's crust, Geological society of America bulletin, 72(2), 175-192.

Tzamos, E., Filippidis A., Michailidis, K., Koroneos, A., Rassios, A., Grieco, G., Pedrotti, M. and Stamoulis, K., 2016. Mineral chemistry and formation of awaruite and heazlewoodite in the Xerolivado chrome mine, Vourinos, Greece. Bulletin of the Geological Society of Greece, L, 2047-2056.

Ure, A.M. & Berrow, M.L., 1982. The elemental constituents of soils. In: H.J.M. Bowen (Editor), Environmental chemistry. Royal Society of Chemistry Special Report Series, London, 2, 94-204.

Vamvaka, A., Kilias, A. & Mountrakis, D., 2004. Geometry and structural evolution of the Mesohellenic Trough. A new approach In: Chatzipetros, A. & Pavlides, S. (eds) 5th International Symposium on Eastern Mediterranean Geology, Thessaloniki, Greece, 1, 209-212.

Vamvaka, A., Kilias, A., Mountrakis, D. & Papaoikonomou, J., 2006. Geometry and structural evolution of the Mesohellenic Trough (Greece): a new approach, Geological Society, London, Special Publications, 260(1), 521-538

Van Olphen, H. and Fripiat, J.J., 1979. Data Handbook for Clay Materials and Other Non-Metallic Minerals, Pergamon Press, Oxford, UK.

Velde, B., 1977. Clays and clay minerals in natural and synthetic systems, Elsevier.

Velde, B., 1985. Clay Minerals, A Physico-Chemical Explanation of their Occurrences. Developments in Sedimentology, Elsevier, Amsterdam,40, 225-256.

Vanden Heuvel, R.C., 1966. The occurrence of sepiolite and attapulgite in the calcareous zone of a soil near Las-Cruces, New Mexico. Clays and Clay Minerals, 13, 193-207.

Watts, N.L., 1976. Paleopedogenic Palygorskite from the basal Permo- Triassic of northwest Scotland, American Mineralogist: Journal of Earth and Planetary Materials, 61, 299-302.

Watts, N. L., 1980. Quaternary pedogenic calcretes from the Kalahari (southern Africa): mineralogy, genesis and diagenesis, Sedimentology, 27(6), 661-686.

Weaver, C.E., 1958. The effects and geologic significance of potassium "fixation" by expandable minerals derived from muscovite, biotite, chlorite, and volcanic material. American Mineralogist: Journal of Earth and Planetary Materials, 43, 839-861.

Weaver, C.E., 1984. Origin and geologic implications of the Palygorskite of S.E. United States. In: Singer, A., Galán, E. (Eds.), Palygorskite-Sepiolite. Occurrences, Genesis, and Use, Developments in Sedimentology, 37. Elsevier, Amsterdam, 39-58.

Weaver, C.E., Beck, K.C., 1977. Miocene of the S.E. United States: A model for chemical sedimentation in a peri–marine environment, Sedimentary Geology, 17, 1-234.

Webster, D.M. & Jones, B.F., 1994. Paleoenvironmental implications of lacustrine clay minerals from the Double Lakes Formation, Southern High Plains, Texas. in: “Sedimentology and Geochemistry of Modern and Ancient Saline Lakes”, Renault, R.W., Last, W.M., eds., SEPM Special Publication, Tulsa, 50, 159-168.

Wedepohl, K.H., 1972. Handbook of Geochemistry, vol. II-3. Springer Verlag, Berlin, Heidelberg.

Wedepohl, K.H., 1978. Handbook of geochemistry. Springer-Verlag, Berlin-Heidelberg.

Weir, A.H., 1965. Potassium retention in montmorillonites. Clay Minerals, 6, 63-78.

Wilkinson, Β.Η., Owen, Ρ.Μ., Carroll Α.R., 1985. Submarine hydrothermal weathering, global eustasy, and carbonate polymorphism in phanerozoic marine oolites, Journal of Sedimentary Research, 55, 171-183.

Williams, D.B., Carter, C.B., 2009. Transmission Electron Microscopy. Springer

Wright V.P. & Tucker M.E., 1991. Calcretes, Blackwell Scientific Publications, Oxford, England.

Xie, Q., Chen, T., Zhou, H., Xu, X., Xu, H., Ji, J., 2013. Mechanism of Palygorskite formation in the Red Clay Formation on the Chinese Loess Plateau, northwest China, Geoderma, 192, 39-49.

Xu, G., Feng, Q., Deconinck, J.F., Shen, J., Zhao, T., Young, A.L., 2017. High-resolution clay mineral and major elemental characterization of a Permian–Triassic terrestrial succession in southwestern China: diagenetic and Paleo climatic/Paleoenvironmental significance, Palaeogeography, Palaeoclimatology, Palaeoecology, 481, 77-93.

Yaalon, D.M., Wieder, M., 1976. Pedogenetic Palygorskite in some arid brown (caliothid) soils of Israel, Clay Minerals, 11, 73-79.

Yalçin, H. and Bozkaya, Ö., 1995. Sepiolite-Palygorskite from Hekimhan region (Turkey), Clays and Clay Minerals, 43, 705-717.

Yalçin, H., & Bozkaya, Ö., 2011. Sepiolite–palygorskite occurrences in Turkey. In Developments in clay science, Elsevier, 3, 175-200.

Yamnova, N.A., Egorov-Tismenko, Y.K., & Khomyakov, A. P., 1996. Crystal structure of a new natural (Na, Mn, Ti)-phyllosilicate, Crystallography Reports, 41(2), 239-244.

Yeniyol M., 2012. Geology and mineralogy of a sepiolite-Palygorskite occurrence from SW Eskisehir (Turkey), Clay Minerals, 47, 93-104

Zaaboub N., Abdeljapouad S. and Lopez Galindo A., 2005. Origin of fibrous clays in Tunusian Paleogene continental deposits, Journal of African Earth Sciences, 43, 491-504.

Zhang, J., Huang, F., Lin, Z., 2010. Progress of nanocrystalline growth kinetics based on oriented attachment, Nanoscale, 2(1), 18-34.

Zhao, C., Wang, C., Hong, H., Algeo, J., T., Yin, K., Ji, K., Song, B., Abels, A., H., Christidis, G., E., 2021. Origin of dioctahedral Smectites in Lower Eocene Lulehe Formation Paleosols (Qaidam Basin, China), Applied Clay Science, 203.

Zviagina, B.B., McCarty, D.K., Srodon, J. and Drits, V.A., 2004. Interpretation of infrared spectra of dioctahedral Smectites in the region of OH-stretching vibrations, Clays and Clay Minerals, 52, 399-410.

ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ

Καψιώτης Α.Ν., 2008. Κοιτασματογένεση πλατινοειδών ορυκτών και χρωμιτών συνδεόμενων με την πετρογενετική εξέλιξη των οφιολιθικών συμπλεγμάτων Βούρινου και Πίνδου. Διδακτορική Διατριβή, Παν. Πατρών.

Κουτσοβίτης, Π. Δ., 2009. Πετρολογική και ορυκτολογική μελέτη οφειολιθικών πετρωμάτων στην περιοχή της Ανατολικής Όθρυος (Doctoral dissertation, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Σχολή Θετικών Επιστημών. Τμήμα Γεωλογίας και Γεωπεριβάλλοντος. Τομέας Ορυκτολογίας και Πετρολογίας).

Κωνσταντοπούλου, Γ.Π., 1990. Κατανομή των στοιχείων της ομάδας του λευκόχρυσου (PGE) και του χρυσού σε χρωματικά μεταλλεύματα και πετρώματα του οφειολιθικού συμπλέγματος του Βούρινου. Διδακτορική διατριβή. Παν. Αθηνών.

ΙΓΜΕ, 1974. Γεωλογικός Χάρτης της Ελλάδος, Φύλλο Κνίδη, Κλίμακα 1:50.000, Αθήνα.

ΙΓΜΕ, 2015. Γεωλογικός Χάρτης της Ελλάδος, Φύλλο Λιβαδερό, Κλίμακα 1:50.000, Αθήνα.

Μαράτος, Γ., 1972. "Γεωλογία της Ελλάδος." Έκδοση ΓΕ. ΜΕΛ. ΕΡ., Αθήνα.

Μουντράκης, Δ.Μ., 1991. Γεωλογία της Ελλάδας, University Studio Press, Θεσσαλονίκη.

Μιγκίρος, Γ. Π., 1990. Η λιθοστρωματογραφική-τεκτονική δομή της Οθρυός (Κεντρική Ελλάδα)= The lithostratigraphic-tectonic structure of Othris (Central Greece), Δελτίον της Ελληνικής Γεωλογικής Εταιρίας, 26, 107-120.

Παυλίδου, Ε., 2020. Σημειώσεις: Στοιχεία Ηλεκτρονικής Μικροσκοπίας, Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών, ΑΠΘ.

Τζάμος, Ε. Ι., 2016. Ορυκτολογία, πετρολογία και κοιτασματολογία οφιολίθων Ξερολίβαδου, Βούρινου της Δυτικής Μακεδονίας. Προ/Μεταπτυχιακές Διατριβές στη Βιβλιοθήκη Θεόφραστος του Τμήματος Γεωλογίας του ΑΠΘ.

Τσώλη -Καταγά, Π., 1987. Τα αργιλικά ορυκτά. Ανάλυση και προσδιορισμός με τις ακτίνες Χ. Πανεπιστήμιο Πατρών Μετάφραση από το Γαλλικό πρωτότυπο: «Les mineraux argileus» T. Holtzapffel. Societe Geologique du Nord. Publication No12.

ΒΙΒΛΙΟΓΡΑΦΙΑ ΙΣΤΟΣΕΛΙΔΩΝ

https://pubs.usgs.gov/of/2001/of01-041/htmldocs/images/mon-stru.jpg)

https://www.monash.edu/engineering/departments/chemical/research/research-facilities/malvern-mastersizer-2000-particle-size-analyser

https://www.bruker.com/en/products-and-solutions/elemental-analyzers/handheld-xrf-spectrometers/stands-brackets-and-mounts.html

https://www.jeol.com/products/scientific/sem/JSME-7610F.php

https://newlifescientific.com/products/agilent-cary-670-ftir-spectrometer

https://www.buffalo.edu/shared-facilities-equip/facilities-equipment/tem-facility/hrtem-microscope.html


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.