Η επίδραση της κλιματικής αλλαγής στα επίπεδα PM 2.5 σε παγκόσμια κλίμακα = Climate change impact on future levels of PM 2.5 in global scale.

Μαρία – Ζακλίν Αλέξανδρος Σακκά

Περίληψη


Η παρούσα εργασία εξετάζει την επίδραση της κλιματικής αλλαγής πάνω στα αιωρούμενα σωματίδια με διάμετρο μικρότερη από 2.5, γνωστά και ως PM2.5, σε παγκόσμια κλίμακα. Τα δεδομένα που χρησιμοποιήθηκαν προέρχονται από το Παγκόσμιο Ερευνητικό Πρόγραμμα του Κλίματος (-World Climate Research Programme), αφορούν την Έκτη φάση του Προγράμματος Σύγκρισης Συζευγμένων Μοντέλων, - (Coupled Model Intercomparison Project Phase 6 - CMIP6) και αναφέρονται στη χρονική περίοδο από το 2015 μέχρι το 2100. Τα τρία κλιματικά μοντέλα που μελετώνται είναι το GFDL-ESM4, το GISS-E2-1-G  και το MRI-ESM2-0. Για τη ξαγωγή των αποτελεσμάτων χρησιμοποιήθηκαν δύο πειράματα (ssp370SST και ssp370pdSST). Το πείραμα ssp370SST ακολουθεί το σενάριο ssp370 με χρονικά μεταβαλλόμενες θαλάσσιες επιφανειακές θερμοκρασίες (SSTs) που λήφθηκαν από προσομοιώσεις του πειράματος ssp370 με συζευγμένο παγκόσμιο κλιματικό μοντέλο ατμόσφαιρας-ωκεανού. Το πείραμα ssp370pdSST έχει παρόμοια πειραματική ρύθμιση με το ssp370SST με τη διαφορά ότι η θερμοκρασία της επιφάνειας της θάλασσας (SST) και ο θαλάσσιος πάγος λαμβάνονται από μια πρόσφατη κλιματολογία (περίοδος 2005–2014) που προήλθε από προσομοιώσεις του κάθε μοντέλου κατά την ιστορική περίοδο και παραμένουν σταθερές σε ολόκληρη την περίοδο των μελλοντικών προσομοιώσεων (2015–2100). Και στα δυο πειράματα ssp370SST και ssp370pdSSTακολουθούν το σενάριο SSP3_7.0 όπως περιγράφεται στο Turnock et al. (2020) και Griffiths et al. (2021). Πρακτικά, οι προσομοιώσεις ssp370pdSST απεικονίζουν την επίδραση μόνο των μελλοντικών εκπομπών διατηρώντας την κλιματική κατάσταση σύμφωνα με την κλιματολογία του πρόσφατου παρελθόντος (2005-2014), ενώ οι προσομοιώσεις ssp370SST τη συνδυασμένη επίδραση των αλλαγών του κλίματος και των εκπομπών. Ως εκ τούτου, με την διαφορά των πειραμάτων ssp370pdSST και το ssp370SST μπορεί να συναχθεί μόνο η επίδραση της μελλοντικής κλιματικής αλλαγής στα σωματίδια PM2.5. Αυτό εκδηλώνεται με αλλαγές στη χημεία, τις μεταφορές, τις φυσικές εκπομπές και την εναπόθεση, με τις δύο τελευταίες διαδικασίες να αντιπροσωπεύονται στα μοντέλα με διαφορετικά επίπεδο διαδραστικότητας. Στη συνέχεια της εργασίας, υπολογίζεται η διαφορά των δύο πειραμάτων και κατασκευάζονται οι παγκόσμιοι χάρτες για δύο χρονικές περιόδους, 2021-2050 και 2070-2099 σε ετήσιο και εποχιακό επίπεδο σε σχέση με τρεις παραμέτρους, τα αιωρούμενα σωματίδια, PM 2.5, την βροχόπτωση και τη θερμοκρασία επιφανείας. Μετά από την κατασκευή των χαρτών, πραγματοποιείται η ανάλυση του κάθε χάρτη για το κάθε κλιματικό μοντέλο και για την κάθε χρονική περίοδο σε ετήσια και εποχιακή κλίμακα. Από τα αποτελέσματα διαπιστώνεται ότι τα τρία κλιματικά μοντέλα βρίσκονται σε χαμηλή συμφωνία μεταξύ τους για το πόσο επηρεάζει η κλιματική αλλαγή τα PM 2.5 και ότι η επίδραση της κλιματικής αλλαγής, θετική ή αρνητική, είναι μικρή στα αιωρούμενα σωματίδια, PM 2.5 και έχει κυρίως τοπικό χαρακτήρα.

This thesis examines the impact of climate change on particulate matter  with a diameter smaller than 2.5, also known as PM2.5, on a global scale. The data that was used come from the World Climate Research Programme, under the Sixth phase of the Coupled Models Intercomparison Project (CMIP6), and refer to the time period from 2015 to 2100. The three climate models that are studied are GFDL-ESM4, GISS-E2-1-G, and MRI-ESM2-0. For the analysis, two types of experiments were used (ssp370SST and ssp370pdSST). The ssp370SST experiment follows the ssp370 scenario with time-varying sea surface temperatures (SSTs) obtained from simulations of the ssp370 experiment with a coupled global atmosphere-ocean climate model. The ssp370pdSST experiment has a similar experimental setup to ssp370SST except that sea surface temperature (SST) and sea ice are obtained from a recent climatology (period 2005-2014) derived from simulations of each model during the historical period and remain constant throughout the period of future simulations (2015-2100). Both the ssp370SST and ssp370pdSST experiments follow the SSP3_7.0 scenario as described in Turnock et al. (2020) and Griffiths et al. (2021). In practice, the ssp370pdSST simulations depict the effect of future emissions only by maintaining the climate state according to the climatology of the recent past (2005-2014), while the ssp370SST simulations depict the combined effect of climate change and emissions. Hence, by subtracting ssp370pdSST from ssp370SST experiments the effect from climate change can be deduced for PM2.5. This is manifested through changes in chemistry, transport, natural emissions, and deposition with the latter two depending on the level of interactiveness at which these processes are represented in the models. Afterwards, the difference of the two experiments is calculated and world maps are constructed for two time periods, 2021-2050 and 2070-2099 at the annual and seasonal level, in relation to three parameters: particulate matter, PM2.5, precipitation and surface temperature. After the construction of the maps, analysis of each map is conducted for each climate model and for each time period on an annual and seasonal scale. The results show that the three climate models are in low agreement on how much climate change impacts PM2.5, and that the impact of climate change, positive or negative, is small in particulate matter, PM2.5, and is mostly local in nature.

Πλήρες Κείμενο:

PDF

Αναφορές


Allen, R.J., W. Landuyt, and S.T. Rumbold, 2016: An increase in aerosol burden and radiative effects in a warmer world. Nature Climate Change, 6(3), 269–274, doi:10.1038/nclimate2827. 57

Allen, R.J., T. Hassan, C.A. Randles, and H. Su, 2019: Enhanced land–sea warming contrast elevates aerosol pollution in a warmer world. Nature Climate Change, doi:10.1038/s41558-019-0401-4.

Arrhenius, S. (1896). On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine and Journal of Science, 5(41), 237-276. doi: 10.1080/14786449608620846

Bradley, R. S. (2003). Paleoclimatology: Reconstructing Climates of the Quaternary. Elsevier, Amsterdam, Netherlands.

Cholakian, A., A. Colette, I. Coll, G. Ciarelli, and M. Beekmann, 2019: Future climatic drivers and their effect on PM10 components in Europe and the Mediterranean Sea. Atmospheric Chemistry and Physics, 19(7), 4459–4484, doi:10.5194/acp-19-4459-2019.

"Climate Change and Biodiversity." Convention on Biological Diversity. 2021. https://www.cbd.int/climate/

"Climate Change and Oceans." Intergovernmental Panel on Climate Change, 2019, www.ipcc.ch/srocc/.

"Climate Change 2021: The Physical Science Basis." Intergovernmental Panel on Climate Change (IPCC). 2021. https://www.ipcc.ch/report/ar6/wg1/

"Climate Change and Health." World Health Organization. 2021. https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health

"Climate Change: Evidence and Causes." Royal Society and National Academy of Sciences, The Royal Society, 2022, royalsociety.org/-/media/policy/projects/climate-evidence-causes/climate-change-evidence-causes-full-report.pdf.

"Climate Change and Global Warming." National Geographic, National Geographic Society, 2022, www.nationalgeographic.com/environment/global-warming/global-warming-overview/

Collins, W. J., Lamarque, J.-F., Schulz, M., Boucher, O., Eyring, V., Hegglin, M. I., Maycock, A., Myhre, G., Prather, M., Shindell, D., and Smith, S. J.: AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6, Geosci. Model Dev., 10, 585–607, https://doi.org/10.5194/gmd-10-585-2017, 2017

Cubasch, U., D. Wuebbles, D. Chen, M.C. Facchini, D. Frame, N. Mahowald, and J.-G. Winther, 2013: Introduction. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Deushi, M. and Shibata, K.: Development of a Meteorological Research Institute Chemistry-Climate Model version 2 for the Study of Tropospheric and Stratospheric Chemistry, Pap. Meteorol. Geophys., 62, 1–46, https://doi.org/10.2467/mripapers.62.1, 2011.

Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held,I. M., John, J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C., Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S. M., Guo, H., Hallberg, R. W., Har-rison, M., He, J., Hurlin, W., McHugh, C., Menzel, R., Milly, P. C. D., Ni-konov, S., Paynter, D. J., Ploshay, J., Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L. T., Underwood, S., Vah-lenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, Y., and Zhao, M. , 2020: The GFDL Earth System Model version 4.1 (GFDL-ESM4.1): Overall coupled model description and simulation characteristics, Journal of Advances in Modeling Earth Systems, 12, e2019MS002015, https://doi.org/10.1029/2019ms002015.

European Environment Agency (EEA). (2020). Air quality in Europe - 2020 report. Retrieved from https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report

Environmental Protection Agency (EPA). (2022). Particulate matter (PM) pollution. Retrieved from https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#where

Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews, O., Cionni, I., Davin, E. L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-D., Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., Kunert, D., Levine, R., Loew, A., Mäkelä, J., Martin, G., Mason, E., Phillips, A. S., Read, S., Rio, C., Roehrig, R., Senftleben, D., Sterl, A., van Ulft, L. H., Walton, J., Wang, S., and Williams, K. D.: ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP, Geosci. Model Dev., 9, 1747–1802, https://doi.org/10.5194/gmd-9-1747-2016, 2016.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Deushi, M. and Shibata, K.: Development of a Meteorological Research Institute Chemistry-Climate Model version 2 for the Study of Tropospheric and Stratospheric Chemistry, Pap. Meteorol. Geophys., 62, 1–46, https://doi.org/10.2467/mripapers.62.1, 2011.

Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Granier, C., Neftel, A., Isaksen, I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J. P., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T. N., Ro-Poulsen, H., Cellier, P., Cape, J. N., Horváth, L., Loreto, F., Niinemets, Ü., Palmer, P. I., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U., Brüggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C., Facchini, M. C., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman, J. W.: Atmospheric composition change: Ecosystems–Atmosphere interactions, Atmos. Environ., 43, 5193–5267, https://doi.org/10.1016/j.atmosenv.2009.07.068, 2009.

Finlayson-Pitts, B. J., & Pitts Jr, J. N., 1999. Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Elsevier.

Gao, M. et al., 2018: Air quality and climate change, Topic 3 of the Model Inter-Comparison Study for Asia Phase III (MICS-Asia III) - Part 1: Overview and model evaluation. Atmospheric Chemistry and Physics, 18(7), 4859–4884, doi:10.5194/acp-18-4859-2018.

Gattuso, J. P., Magnan, A., Bopp, L., Cheung, W. W. L., Duarte, C. M., Hinkel, J., ... & Turley, C. (2018). Ocean solutions to address climate change and its effects on marine ecosystems. Frontiers in Marine Science, 5, 337. https://doi.org/10.3389/fmars.2018.00337

"Global Warming of 1.5°C." Intergovernmental Panel on Climate Change (IPCC). 2018. https://www.ipcc.ch/sr15/

Gonzalez-Abraham, R. et al., 2015: The effects of global change upon United States air quality. Atmospheric Chemistry and Physics, 15(21), 12645–12665, doi:10.5194/acp-15-12645-2015.

Griffiths P Tet al2021 Tropospheric ozone in CMIP6 simulationsAtmos. Chem. Phys.214187–218

Guleria, T., Tiwari, S., & Kumar, A. (2021). Remote sensing of particulate matter: a review. Journal of Cleaner Production, 306, 127300. doi: 10.1016/j.jclepro.2021.127300

Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., ... & Zhai, P. (2013). Observations: atmosphere and surface. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 159-254). Cambridge University Press.

He, H., X.Z. Liang, and D.J. Wuebbles, 2018: Effects of emissions change, climate change and long-range transport on regional modeling of future U.S. particulate matter pollution and speciation. Atmospheric Environment, 179,166–176, doi:10.1016/j.atmosenv.2018.02.020.

Hegerl, G. C., Hoegh-Guldberg, O., Casassa, G., Hoerling, M. P., Kovats, R. S., Parmesan, C., ... & Stott, P. A. (2018). Impacts of 1.5°C global warming on natural and human systems. In Global Warming of 1.5°C. An IPCC Special Report(pp.175311).IPCC.https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Chapter3_Low_Res.pdf

Horowitz L W et al 2018a NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 AerChemMIP ssp370SST. Version YYYYMMDD[1] (Earth System Grid Federation)(https://doi.org/10.22033/ESGF/CMIP6.8695)

Horowitz L W et al 2018b NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 AerChemMIP ssp370pdSST. Version YYYYMMDD[1] (Earth System Grid Federation) (https://doi.org/10.22033/ESGF/CMIP6.11338)

Horowitz L Wet al2020 The GFDL global atmospheric chemistryclimate model AM4.1: model description and simulationcharacteristicsJ. Adv. Model. Earth Syst.12e2019MS002032

Hou, P., S. Wu, J.L. McCarty, and Y. Gao, 2018: Sensitivity of atmospheric aerosol scavenging to precipitation intensity and frequency in the context of global climate change. Atmospheric Chemistry and Physics, 18(11), 8173–8182, doi:10.5194/acp-18-8173-2018.

Im, U. et al., 2012: Summertime aerosol chemical composition in the Eastern Mediterranean and its sensitivity to temperature. Atmospheric Environment, 50, 164–173, doi:10.1016/j.atmosenv.2011.12.044.

IPCC (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. https://www.ipcc.ch/sr15/0

Jiang, H. et al., 2013: Projected effect of 2000–2050 changes in climate and emissions on aerosol levels in China and associated transboundary transport. Atmospheric Chemistry and Physics, 13(16), 7937–7960, doi:10.5194/acp-13-7937-2013.

Kawai, H., Yukimoto, S., Koshiro, T., Oshima, N., Tanaka, T., Yoshimura, H., and Nagasawa, R.: Significant improvement of cloud representation in the global climate model MRI-ESM2, Geosci. Model Dev., 12, 2875–2897, https://doi.org/10.5194/gmd-12-2875-2019, 2019.

Kelley M. et al., 2020 GISS-E2.1: configurations and climatologyJ.Adv. Model. Earth Syst.12e2019MS002025

Kirtman, B., Power, S. B., Adedoyin, A. J., Boer, G. J., Bojariu, R., Camilloni, I., ... & Wang, H. J. (2013). Near-term climate change: projections and predictability. Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5., 953-1028.

Luterbacher, J., Xoplaki, E., Dietrich, D., Rickli, R., Jacobeit, J., Beck, C., ... & Wanner, H. (2004). European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303(5663), 1499-1503. doi: 10.1126/science.1093877

McMichael, A. J., Campbell-Lendrum, D. H., Corvalán, C. F., Ebi, K. L., Githeko, A., Scheraga, J. D., & Woodward, A. (2003). Climate change and human health: risks and responses. World Health Organization.

Megaritis, A.G., C. Fountoukis, P.E. Charalampidis, C. Pilinis, and S.N. Pandis, 2013: Response of fine particulate matter concentrations to changes of emissions and temperature in Europe. Atmospheric Chemistry and Physics,13(6), 3423–3443, doi:10.5194/acp-13-3423-2013.

Miller R. L. et al., 2021 CMIP6 historical simulations (1850–2014)withGISS-E2.1J. Adv. Model. Earth Syst.13e2019MS002034

NASA Goddard Institute for Space Studies (NASA/GISS) 2020a NASA-GISS GISS-E2.1G model output prepared for CMIP6 AerChemMIP ssp370SST. Version YYYYMMDD[1] (Earth System Grid Federation) (https://doi.org/10.22033/ESGF/CMIP6.7435)

NASA Goddard Institute for Space Studies (NASA/GISS) 2020b NASA-GISS GISS-E2.1G model output prepared for CMIP6 AerChemMIP ssp370pdSST. Version YYYYMMDD[1] (Earth System Grid Federation) (https://doi.org/10.22033/ ESGF/CMIP6.11387)

Oshima N, Yukimoto S, Deushi M, Koshiro T, Kawai H, Tanaka T Y and Yoshida K 2020 Global and Arctic effective radiative forcing of anthropogenic gases and aerosols in MRI-ESM2.0 Prog. Earth Planet. Sci. 7 38

Porter, W.C., C.L. Heald, D. Cooley, and B. Russell, 2015: Investigating the observed sensitivities of air-quality extremes to meteorological drivers via quantile regression. Atmospheric Chemistry and Physics, 15(18), 10349–10366, doi:10.5194/acp-15-10349-2015.

Szopa, S., V. Naik, B. Adhikary, P. Artaxo, T. Berntsen, W.D. Collins, S. Fuzzi, L. Gallardo, A. Kiendler-Scharr, Z. Klimont, H. Liao, N. Unger, and P. Zanis, 2021: Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 817–922, doi:10.1017/9781009157896.008.

"The Paris Agreement." United Nations Framework Convention on Climate Change, United Nations, 2022, unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement.

Turnock, S. T., Allen, R. J., Andrews, M., Bauer, S. E., Deushi, M., Emmons, L., ... & Zhang, J. (2020). Historical and future changes in air pollutants from CMIP6 models. Atmospheric Chemistry and Physics, 20(23), 14547-14579.

Valentová, A., & Bostik, V. (2021). Climate change and human health. In Military Medical Science Letters (Vojenske Zdravotnicke Listy) (Vol. 90, Issue 2). https://doi.org/10.31482/mmsl.2021.010

World Health Organization and World Meteorological Organization. (2007). Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries. Geneva: WHO Press. DOI: 10.1016/j.atmosenv.2009.07.046

World Health Organization. (2020). Ambient air pollution: Health impacts. https://www.who.int/news-room/fact-sheets/detail/ambient-air-pollution

Xu, Y. and J.F. Lamarque, 2018: Isolating the Meteorological Impact of 21st Century GHG Warming on the Removal and Atmospheric Loading of Anthropogenic Fine Particulate Matter Pollution at Global Scale. Earth’s Future, 6(3), 428–440, doi:10.1002/2017ef000684.

Zanis, P., Akritidis, D., Turnock, S., Naik, V., Szopa, S., Georgoulias, A. K., ... & van Noije, T. (2022). Climate change penalty and benefit on surface ozone: a global perspective based on CMIP6 earth system models. Environmental Research Letters, 17(2), 024014.

Yukimoto S et al 2019a The meteorological research institute Earth system model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component J. Meteorol. Soc. Japan 97 931–65

Yukimoto S et al 2019b MRI MRI-ESM2.0 model output prepared for CMIP6 AerChemMIP ssp370SST. Version YYYYMMDD[1] (Earth System Grid Federation) (https:// doi.org/10.22033/ESGF/CMIP6.6918)

Yukimoto S et al 2020 MRI MRI-ESM2.0 model output prepared for CMIP6 AerChemMIP ssp370pdSST. Version YYYYMMDD[1] (Earth System Grid Federation) (https:// doi.org/10.22033/ESGF/CMIP6.11409

Μαρκάκης, Κωνσταντίνος (2010, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)), Συμβολή στη μελέτη της σωματιδιακής ρύπανσης στην Ελλάδα

Ζάνης Πρόδρομος, 2014, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Σημειώσεις για τη χημεία και τη ρύπανση της ατμόσφαιρας


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.