Εξώφυλλο

Μελέτη της εποχικότητας των ακραίων φαινομένων θερμοκρασίας και βροχόπτωσης στην Μεσόγειο = Study of the seasonality of extreme temperature and precipitation events over Mediterranean.

Μαρίνα Αλέξανδρος Αντωνιάδου

Περίληψη


Η περιοχή της Μεσογείου έχει χαρακτηριστεί ως “hot-spot” κλιματικής αλλαγής δηλαδή περιοχή στην οποία οι επιπτώσεις αναμένεται να είναι ιδιαίτερα έντονες, με μακρύτερα και θερμότερα καλοκαίρια, αύξηση της συχνότητας και της έντασης των κυμάτων καύσωνα, αλλαγές στα μοτίβα βροχόπτωσης και μείωση των ποσοτήτων βροχής. Στόχος της παρούσας εργασίας είναι η ανάλυση της εποχικότητας των ακραίων βροχοπτώσεων και θερμοκρασιών στην Μεσόγειο στην μελλοντική περίοδο 2081-2100, καθώς και η σύγκριση των αποτελεσμάτων με την περίοδο αναφοράς, με χρήση της μεθόδου της κυκλικής στατιστικής. Ειδικότερα, τα δεδομένα που χρησιμοποιήθηκαν, προέκυψαν από την τελευταία φάση του Coupled Model Intercomparison Project (CMIP6), και συγκεκριμένα από το μοντέλο γενικής κυκλοφορίας CNRM-CM6-1-HR για το σενάριο SSP5-8.5. Ο δείκτης που χρησιμοποιήθηκε για την ακραία βροχόπτωση είναι το 99ο ποσοστημόριο της ημερήσιας βροχόπτωσης και τα αποτελέσματα έδειξαν ότι στο μέλλον αναμένεται αύξηση των ακραίων βροχοπτώσεων κατά τη διάρκεια της ψυχρής περιόδου. Στην συνέχεια, για την μελέτη της μέγιστης μέσης θερμοκρασίας χρησιμοποιήθηκε ο δείκτης του 95ου ποσοστημορίου της μέσης ημερήσιας θερμοκρασίας και αναμένεται τα επεισόδια μέγιστης μέσης θερμοκρασίας να σημειώνονται αργότερα μέσα στην θερμή περίοδο, με το θερμοκρασιακό όριο του ποσοστημορίου να είναι σημαντικά αυξημένο σε σχέση με την περίοδο αναφοράς. Τέλος, σε ότι αφορά την ελάχιστη μέση θερμοκρασία, η ανάλυση έγινε χρησιμοποιώντας έναν δείκτη ο οποίος ορίστηκε από την απόλυτα ελάχιστη τιμή της μέσης ημερήσιας θερμοκρασίας, η οποία και σε αυτή την περίπτωση κυμαίνεται σε υψηλότερα επίπεδα για την περίοδο 2081-2100. Τα αποτελέσματα να διαφέρουν χωρικά, ωστόσο οι μεταβολές κατά την μελλοντική περίοδο φαίνεται να αφορούν ενδομηνιαίως τους μήνες Ιανουάριο και Φεβρουάριο.

The Mediterranean region has been identified as a "hot-spot" of climate change where the impacts are expected to be particularly severe, with longer and hotter summers, an increase in the frequency and intensity of heat waves, changes in precipitation patterns and a decrease οf the precipitation heights. The aim of this paper is to analyse the seasonality of extreme precipitation and temperatures over the Mediterranean in the future period 2081-2100, and to compare the results with the reference period, using the method of circular statistics. In particular, the data used were retrieved from the last phase of the Coupled Model Intercomparison Project (CMIP6), specifically from the CNRM-CM6-1-HR global circulation model for the SSP5-8.5 scenario. The indicator used for extreme precipitation is the 99th percentile of daily precipitation, and the results indicated that an increase in extreme precipitation is expected in the future during the cold season. The 95th percentile of the daily mean temperature was used to study extreme maximum temperature and it is expected that extreme maximum temperature episodes will occur later in the warm season, with the temperature threshold of the percentile being significantly increased compared to the reference period. Finally, with respect to the extreme minimum temperature, the analysis was performed using an extreme indicator defined by the absolute minimum value of the mean daily temperature, which in this case also ranges at higher levels for the period 2081-2100. The results vary spatially, but the changes in the future period seem to occur intra-monthly in January and February.

Πλήρες Κείμενο:

PDF

Αναφορές


Alpert, P., Krichak, S. O., Shafir, H., Haim, D., & Osetinsky, I. (2008). Climatic trends to extremes employing regional modeling and statistical interpretation over the E. Mediterranean. Global and Planetary Change, 63(2-3), 163-170. https://doi.org/10.1016/j.gloplacha.2008.03.003

Ambrizzi, T., Reboita, M. S., da Rocha, R. P., & Llopart, M. (2019). The state of the art and fundamental aspects of regional climate modeling in South America. Annals of the new york academy of sciences, 1436(1), 98-120. https://doi.org/10.1111/nyas.13932

Anderson, B. G., & Bell, M. L. (2009). Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology (Cambridge, Mass.), 20(2), 205. DOI: 10.1097/EDE.0b013e318190ee08

Aradottir AL, Robertson A, Moore E (1997). “Circular Statistical Analysis of Birch Colonization and the Directional Growth Response of Birch and Black Cottonwood in South Iceland.” Agricultural and Forest Meteorology,84(1-2), 179–186. https://doi.org/10.1016/S0168-1923(96)02385-4

Bayliss, A. C., & Jones, R. C. (1993). Peaks-over-threshold flood database: Summary statistics and seasonality (IH Rep. 121). Wallingford, UK: Institute of Hydrology. https://nora.nerc.ac.uk/id/eprint/6075/1/IH_121.pdf

Beniston, M., & Stephenson, D. B. (2004). Extreme climatic events and their evolution under changing climatic conditions. Global and planetary change, 44(1-4), 1-9. https://doi.org/10.1016/j.gloplacha.2004.06.001

Berens, P. (2009). CircStat: a MATLAB toolbox for circular statistics. Journal of statistical software, 31, 1-21. DOI:10.18637/jss.v031.i10

Beyene, M. T., Jain, S., & Gupta, R. C. (2018). Linear-circular statistical modeling of lake ice-out dates. Water Resources Research, 54, 7841–7858. https://doi.org/10.1029/2017WR021731

Bowers, J. A., Morton, I. D., & Mould, G. I. (2000). Directional statistics of the wind and waves. Applied ocean research, 22(1), 13-30. https://doi.org/10.1016/S0141-1187(99)00025-5

Chen, D., Dai, A., & Hall, A. (2021). The convective‐to‐total precipitation ratio and the “drizzling” bias in climate models. Journal of Geophysical Research: Atmospheres, 126(16), e2020JD034198. https://doi.org/10.1029/2020JD034198

Copernicus Climate Change Service, Climate Data Store, (2021): CMIP6 climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 29-09-2022), 10.24381/cds.c866074c

Costa, A. C., & Soares, A. (2009). Trends in extreme precipitation indices derived from a daily rainfall database for the South of Portugal. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(13), 1956-1975. https://doi.org/10.1002/joc.1834

Cui, D., Liang, S., & Wang, D. (2021). Observed and projected changes in global climate zones based on Köppen climate classification. Wiley Interdisciplinary Reviews: Climate Change, 12(3), e701. https://doi.org/10.1002/wcc.701

Dow, K., & Downing, T. E. (2016). The atlas of climate change: mapping the world's greatest challenge. University of California Press.

Drobinski, P., Alonzo, B., Bastin, S., Silva, N. D., & Muller, C. (2016). Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape? Journal of Geophysical Research: Atmospheres, 121(7), 3100-3119. https://doi.org/10.1002/2015JD023497

Dünkeloh, A., & Jacobeit, J. (2003). Circulation dynamics of Mediterranean precipitation variability 1948–98. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(15), 1843-1866.

Easterling, D. R., Evans, J. L., Groisman, P. Y., Karl, T. R., Kunkel, K. E., & Ambenje, P. (2000). Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society, 81(3), 417-426. https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2

Field, C. B., Barros, V. R., Mastrandrea, M. D., Mach, K. J., Abdrabo, M. K., Adger, N., ... & Yohe, G. W. (2014). Summary for policymakers. In Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1-32). Cambridge University Press. DOI: 10013/epic.45157

Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. Science (New York, N.Y.), 309(5734), 570–574. https://doi.org/10.1126/science.1111772

Fraisse, C. W., Breuer, N. E., Zierden, D., & Ingram, K. T. (2009). From climate variability to climate change: Challenges and opportunities to Extension. Journal of Extension, 47(2), 2FEA9.

G.H. Dayton (2008). Encyclopedia of Ecology. https://www.sciencedirect.com/topics/earth-and-planetary-sciences/seasonality

Hall, J., & Blöschl, G. (2018). Spatial patterns and characteristics of flood seasonality in Europe. Hydrology and Earth System Sciences, 22(7), 3883-3901. https://doi.org/10.5194/hess-22-3883-2018

Hall, J., & Blöschl, G. (2018). Spatial patterns and characteristics of flood seasonality in Europe. Hydrology and Earth System Sciences, 22(7), 3883-3901. https://doi.org/10.5194/hess-22-3883-2018

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., ... & Thépaut, J. N. (2018). ERA5 hourly data on single levels from 1979 to present. Copernicus climate change service (c3s) climate data store (cds), 10(10.24381).

Hertig, E. and Jacobeit, J. (2008), Assessments of Mediterranean precipitation changes for the 21st century using statistical downscaling techniques. Int. J. Climatol., 28: 1025-1045. https://doi.org/10.1002/joc.1597

Hu, Z. Z., Yang, S., & Wu, R. (2003). Long‐term climate variations in China and global warming signals. Journal of Geophysical Research: Atmospheres, 108(D19). doi:10.1029/2003JD003651

IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp ISBN 2-9169-122-4

IPCC, 2018: Annex I: Glossary [Matthews, J.B.R. (ed.)]. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 541-562, doi:10.1017/9781009157940.008.

Karaibrahimoglu, A., Ayhan, S., Karaagac, M., & Artac, M. (2021). Circular analyses of dates on patients with gastric carcinoma. Journal of Applied Statistics, 48(13-15), 2931-2943. doi: 10.1080/02664763.2021.1977259

Kostopoulou, E. and Jones, P (2005). Assessment of climate extremes in the Eastern Mediterranean. Meteorol. Atmos. Phys. 89, 69–85. https://doi.org/10.1007/s00703-005-0122-2

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. DOI: 10.1127/0941-2948/2006/0130

Kotsias, G., Lolis, C. J., Hatzianastassiou, N., Lionello, P., & Bartzokas, A. (2021). An objective definition of seasons for the Mediterranean region. International Journal of Climatology, 41, E1889-E1905. https://doi.org/10.1002/joc.6819

Kovats, R. S., & Hajat, S. (2008). Heat stress and public health: a critical review. Annu. Rev. Public Health, 29, 41-55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843

Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M., Strefler, J., ... & Edenhofer, O. (2017). Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global environmental change, 42, 297-315. https://doi.org/10.1016/j.gloenvcha.2016.05.015

Li, X., Hu, Z. Z., Jiang, X., Li, Y., Gao, Z., Yang, S., ... & Jha, B. (2016). Trend and seasonality of land precipitation in observations and CMIP5 model simulations. International Journal of Climatology, 36(11), 3781-3793. https://doi.org/10.1002/joc.4592

Lionello, P. (Ed.). (2012). The climate of the Mediterranean region: From the past to the future. Elsevier. https://books.google.gr/books?hl=el&lr=&id=paKNr0-wdToC&oi=fnd&pg=PP1&dq=The+Climate+of+the+Mediterranean+Region:+From+the+Past+to+the+Futu&ots=niHCHXBh4D&sig=PG-N-ILYs8_QFnsivd_hwDUDscY&redir_esc=y#v=onepage&q=The%20Climate%20of%20the%20Mediterranean%20Region%3A%20From%20the%20Past%20to%20the%20Futu&f=false

Lionello, P. and Scarascia, L. (2018). The relation between climate change in the Mediterranean region and global warming. Reg Environ Change 18, 1481–1493. https://doi.org/10.1007/s10113-018-1290-1

Lolis, C.J., Metaxas, D.A. and Bartzokas, A. (2008), On the intra-annual variability of atmospheric circulation in the Mediterranean region. Int. J. Climatol., 28: 1339-1355. https://doi.org/10.1002/joc.1634

Mardia, K. V. (1975). Statistics of directional data. Journal of the Royal Statistical Society: Series B (Methodological), 37(3), 349-371. https://doi.org/10.1111/j.2517-6161.1975.tb01550.x

Marelle, L., Myhre, G., Hodnebrog, Ø., Sillmann, J., & Samset, B. H. (2018). The changing seasonality of extreme daily precipitation. Geophysical Research Letters, 45(20), 11-352. https://doi.org/10.1029/2018GL079567

Masui, T., Matsumoto, K., Hijioka, Y., Kinoshita, T., Nozawa, T., Ishiwatari, S., ... & Kainuma, M. (2011). An emission pathway for stabilization at 6 Wm− 2 radiative forcing. Climatic change, 109, 59-76. https://doi.org/10.1007/s10584-011-0150-5

McCarthy, A. L., Heppell, S., Royer, F., Freitas, C., & Dellinger, T. (2010). Identification of likely foraging habitat of pelagic loggerhead sea turtles (Caretta caretta) in the North Atlantic through analysis of telemetry track sinuosity. Progress in Oceanography, 86(1-2), 224-231. https://doi.org/10.1016/j.pocean.2010.04.009

Metaxas, D. A. (1978). Evidence on the importance of diabatic heating as a divergence factor in the Mediterranean. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A, 27(1), 69-80. https://doi.org/10.1007/BF02246462

Moberg, A., Jones, P. D., Lister, D., Walther, A., Brunet, M., Jacobeit, J., Alexander, L. V., Della-Marta, P. M., Luterbacher, J., Yiou, P., Chen, D., Klein-Tank, A. M. G., Saladie, O., Sigro, J., Aguilar, E., Alexandersson, H., Almarza, C., Auer, I., Barriendos, M., ... Xoplaki, E. (2006). Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901-2000. Journal of Geophysical Research D: Atmospheres, 111(22). https://doi.org/10.1029/2006JD007103

Nguyen, C. H., Owen, J. S., Franke, J., Neves, L. C., & Hargreaves, D. M. (2021). Typhoon track simulations in the North West Pacific: Informing a new wind map for Vietnam. Journal of Wind Engineering and Industrial Aerodynamics, 208, 104441. https://doi.org/10.1016/j.jweia.2020.104441

O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., ... & Solecki, W. (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global environmental change, 42, 169-180. https://doi.org/10.1016/j.gloenvcha.2015.01.004

O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., ... & Van Vuuren, D. P. (2014). A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic change, 122, 387-400. https://doi.org/10.1007/s10584-013-0905-2

O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., ... & Sanderson, B. M. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461-3482. https://doi.org/10.5194/gmd-9-3461-2016

Pascale, S., Lucarini, V., Feng, X., Porporato, A., & Hasson, S. U. (2015). Analysis of rainfall seasonality from observations and climate models. Climate Dynamics, 44, 3281-3301. doi: 10.1007/s00382-014-2278-2

Peterson, E. (2022). The Coming Global Food Crisis. https://digitalcommons.unl.edu/agecon_cornhusker/1155/

Petrucci, O., Caloiero, T., Pasqua, A. A., Perrotta, P., Russo, L., & Tansi, C. (2017). Civil protection and Damaging Hydrogeological Events: comparative analysis of the 2000 and 2015 events in Calabria (southern Italy). Advances in Geosciences, 44, 101-113. https://doi.org/10.5194/adgeo-44-101-2017

Rajczak, J., Pall, P., & Schär, C. (2013). Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. Journal of Geophysical Research: Atmospheres, 118(9), 3610-3626.

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., ... & Rafaj, P. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic change, 109, 33-57. https://doi.org/10.1007/s10584-011-0149-y

Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’neill, B. C., Fujimori, S., ... & Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global environmental change, 42, 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

Sallis, P. J. (Ed.). (2018). Extreme Weather. BoD–Books on Demand. https://books.google.gr/books?id=uS6RDwAAQBAJ&lpg=PR9&ots=QHK8QJTKa2&dq=examples%20extreme%20weather%20events&lr&hl=el&pg=PR2#v=onepage&q&f=false

Sloan, T. E. R. R. Y. (2016). Introductory climate science; global warming explained. New Age International (P) Ltd., Publishers (e-book).

Soukissian, T., Karathanasi, F., Axaopoulos, P., Voukouvalas, E., & Kotroni, V. (2018). Offshore wind climate analysis and variability in the Mediterranean Sea. International Journal of Climatology, 38(1), 384-402. https://doi.org/10.1002/joc.5182

Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., ... & Edmonds, J. A. (2011). RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Climatic change, 109, 77-94. https://doi.org/10.1007/s10584-011-0151-4

Trenberth, K.E., P.D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D. Parker, F. Rahimzadeh, J.A. Renwick, M. Rusticucci, B. Soden and P. Zhai, 2007: Observations: Surface and Atmospheric Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter3-1.pdf

Trigo, I. F., Bigg, G. R., & Davies, T. D. (2002). Climatology of cyclogenesis mechanisms in the Mediterranean. Monthly Weather Review, 130(3), 549-569. https://doi.org/10.1175/1520-0493(2002)130<0549:COCMIT>2.0.CO;2

Trigo, R. M., Osborn, T. J., & Corte-Real, J. M. (2002). The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Climate Research, 20(1), 9–17. http://www.jstor.org/stable/24866789

Trigo, R., Xoplaki, E., Zorita, E., Luterbacher, J., Krichak, S. O., Alpert, P., ... & Mariotti, A. (2006). Relations between variability in the Mediterranean region and mid-latitude variability. In Developments in Earth and Environmental Sciences (Vol. 4, pp. 179-226). Elsevier. https://doi.org/10.1016/S1571-9197(06)80006-6

UNESCO World Water Assessment Programme (2020). Water and Climate Change 978-92-3-100371-4 https://unesdoc.unesco.org/ark:/48223/pf0000372985.locale=en

van Doorn E, Dhruva B, Sreenivasan Kr, Cassella V (2000). “Statistics of Wind Direction and its Increments.” Physics of Fluids,12(6), 1529–1534 https://doi.org/10.1063/1.870401

Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., ... & Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic change, 109, 5-31. https://doi.org/10.1007/s10584-011-0148-z

Velikou, K., Lazoglou, G., Tolika, K., & Anagnostopoulou, C. (2022). Reliability of the ERA5 in Replicating Mean and Extreme Temperatures across Europe. Water, 14(4), 543. MDPI AG. Retrieved from http://dx.doi.org/10.3390/w14040543

Voldoire, Aurore (2019). CNRM-CERFACS CNRM-CM6-1-Hr model output prepared for CMIP6 HighResMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1387

Walsh, R. P. D., & Lawler, D. M. (1981). Rainfall seasonality: description, spatial patterns and change through time. Weather, 36(7), 201-208.

Zhang, Q., Xu, C. Y., Zhang, Z., Ren, G., & Chen, Y. D. (2008). Climate change or variability? The case of Yellow river as indicated by extreme maximum and minimum air temperature during 1960–2004. Theoretical and Applied Climatology, 93, 35-43. https://doi.org/10.1007/s00704-007-0328-y

Zittis, G., Hadjinicolaou, P., Fnais, M., & Lelieveld, J. (2016). Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Regional environmental change, 16, 1863-1876. https://doi.org/10.1007/s10113-014-0753-2

Zittis, G., Hadjinicolaou, P., Klangidou, M., Proestos, Y., & Lelieveld, J. (2019). A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Regional Environmental Change, 19(8), 2621-2635. https://doi.org/10.1007/s10113-019-01565-w

Zittis, G., Almazroui, M., Alpert, P., Ciais, P., Cramer, W., Dahdal, Y., ... & Lelieveld, J. (2022). Climate change and weather extremes in the Eastern Mediterranean and Middle East. Reviews of geophysics, 60(3), e2021RG000762. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021RG000762

Λότοτζης, Μ. N. (2012). Στατιστική ανάλυση κυκλικών δεδομένων. Μια γενική επισκόπηση και μια εφαρμογή σε μετεωρολογικά δεδομένα.

Στέργιος Νικόδημος, Σύγχρονος Γεωγραφικός Άτλας Ηπείρων, εκδ. Νικόδημος, Αθήνα, σελ. 20-21.

Φλόκας Α. (1986) Μαθήματα Μετεωρολογίας και Κλιματολογίας. Eκδόσεις ΖΗΤΗ- Θεσσαλονίκη.

Φλόκας Α. (1992), Μαθήματα Μετεωρολογίας και Κλιματολογίας. Εκδόσεις ΖΗΤΗ, Θεσσαλονίκη, σελ. 334.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.