Μελέτη της Σεισμικότητας της Κεντρικής και Νότιας Αμερικής με την χρήση του Κρυπτο-Μαρκοβιανού Μοντέλου = Study of the Seismicity of Central and South America using the Hidden Markov Model.
Περίληψη
έως 4.9. Η εκτίμηση σεισμικού κινδύνου πραγματοποιείται για τα επόμενα 30 χρόνια για κάθε ζώνη.
Earthquakes are one of the most hazardous natural phenomena that affect the tectonic structure of the crust but also may cause various changes in the lives of people. Various models have been used to estimate the seismic risk in earthquake-prone areas, including stochastic models. Aiming at the most rapid and effective assessment of seismic hazard, this thesis followed a specific stochastic model, the hidden-Markov Poisson model, using data from an earthquake catalog. The Baum-Welch algorithm, a special case of the Expectation – Maximization (EM) algorithm, was used to estimate the parameters of this model. In the studied regions of Central and South America, due to the active tectonics of these regions, extensive disasters are observed mainly due to very large earthquakes (e.g. 1960, Mw=9.5, Chile) as well as the generation of tsunami waves. In order to study more precisely and then assess the seismic risk of the individual areas, they were divided into ten zones according to seismotectonic and geomorphological criteria. The minimum magnitude of earthquakes chosen for our study depends on the completeness of the data in each zone. In this way, the minimum magnitude calculated for each zone ranges from 4.5 to 4.9. Seismic hazard assessment is carried out for the next 30 years for each zone.
Πλήρες Κείμενο:
PDFΑναφορές
Aki, K., 1968. Seismicity and Seismological Method. Tectonophysics, 6, 41-58.
Altinok, Y. and Kolcak, D., (1999). An application of the semi-Markov model for earthquake occurrences in North Anatolia, Turkey. Journ. of the Balkan Geophysical Society, 2 (4), 90-99.
Anagnos, T. and Kiremidjian, A. S., 1988. A review of earthquake occurrence model for seismic analysis, Prob. Engin. Mechanics, 3, 3-11.
Barazangi, M. and Isacks, B. L., 1976. Spatial distribution of earthquakes and subduction of the Nazka plate beneath South America. Geology, 4, 686-692.
Basharin, Gely P., Langville, Amy N., Naumov, Valeriy A., 2004. The life and work of A.A. Markov. Linear Algebra and its Applications, 386(1), 3-26.
Båth, M., 1953. Seismicity of Fennoscandia and Related Problems. Gerl. Beitr. Z. Geophysik, 63, 173-208.
Baum, L. E. and Petrie, T., 1966. Statistical Inference for Probabilistic Functions of Finite State Markov Chains. The Annals of Mathematical Statistics, 37, 1554-1563.
Bayrak, Y., Yadav, R. B. S., Kalafat, D., Tsapanos, T. M., Cinar, H., Singh, A. P., Bayrak, E., Yilmaz, S., Ocal, F. and Koravos, G., 2013. Seismogenesis and earthquake triggering during the Van (Turkey) 2011 seismic sequence. Tectonophysics, 601, 163-176, 2013.
Bilek, S. L., 2010. Seismicity along the South America subduction zone: Review of large earthquakes, tsunamis and subduction zone complexity. Tectonophysics, 495 (1-2) 2-14.
Bloom, E. D. and Erdmann, R. C., 1980. The observation of a universal shape regularity in earthquakes frequency magnitude distributions. Bull. Seismol. Soc. Am., 70, 349-362.
Burbach, G., Frolich, C., Pennington, W. and Matumoto, T., 1984. Seismicity and tectonics of the subducted Cocos plate. J. Geophys. Res., 89, 7719-7735.
Can, C. E., Ergun, G. and Gokceoglu, C., 2014. Prediction of Earthquake Hazard by Hidden Markov Model (around Bilecik, NW Turkey). Central European Journal of Geosciences., 6(3), 403-414
Carr, M. J. and Stoiber, E. E., 1977. Geologic setting of some destructive earthquakes in Central America. Geol. Soc.American Bulletin, 88, 151-156.
Carter, J. A. and Berg, E., 1981. Relative stress variations as determined by b-values from earthquakes in circum Pacific subduction zone. Tectonophysics, 76, 257-271.
Casaverde, L. A. and Vargas, J. N., 1984. Seismic risk in Peru. Proc. Of the 8th world conference on earthquake engineering, I, 93-100, July 21-28, San Francisco California U.S.A
Cernadas, D., Osella, A. and Sabbione, N., 1998. Self-similarity in the Seismicity of the South-American Subduction Zone. Pure Appl. Geophys. 152, 57-73
Chambers, D. W., Baglivo, J. A., Ebel, J. E. and Kafka, L. K., 2012. Earthquake Forecasting Using Hidden Markov Models. Pure Appl. Geophys. 169, 625–639
Comninakis, P. E. and Papazachos, B. C., 1977. Completeness, accuracy and homogeneity of the data for seismicity studies in the Mediterranean and the surrounding area for the period 1901-1975. Proc. of the Symp. Analysis of Seismicity and on Seismic Risk, Liblice 1977”, 139-149.
Dean, B. W. and Drake, C. L., 1978. Focal mechanism solutions and tectonics of Middle America arc. The Journal of Geology, 86 (1), 111-128.
Delouis, B., Cisternas, A., Dorbath, L., Rivera, L. and Kausel, E., 1996. The Andean subduction zone between 22 and 25oS (northern Chile): precise geometry and state of stress. Tectonophysics, 259, 81-100.
Dempster, A. P., Laird N. M. and Rubin D. B., 1977. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39, 1-38.
Dewey, J. S. and Lamb, S. H., 1992. Active tectonics of the Andes. Tectonophysics, 205, 79-95.
Dewey, J. W. and Suarez, G., 1991. Seismotectonics of Middle America. In: Slemmons, D. B., Engdahl, E. R., Zoback, M. D. and Blackwell D. B. (eds.) Neotectonics of North America, GSA DNAG, 309-321.
Dimaté, C., Drake, L., Yepez, H., Ocola, L., Rendon, H., Grinthal, G. and Giardini., D., 1999. Seismic hazard assessment in Northern Andes (PILOTO project). Ann. Geofis., 42, 1039-1055.
Ebel, J. E., Chambers, D. W., Kafka, A. L. and Baglivo, J. A., 2007. Non-Poissonian Earthquake Clustering and theHidden Markov Model as Bases for EarthquakeForecasting in California. Seismological Research Letters 78 (1)1 57-65.
Engdahl, E. R., van der Hilst, R. and Buland, R., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seismol. Soc. Am. 88, no. 3, 722–743.
Engdahl, E. R. and Villaseñor, A., 2002. Global Seismicity: 1900-1999, in International Handbook of Earthquake and Engineering Seismology, Part A, chapter 41, pp. 665-690, eds Lee WHK, Kanamori H, Jennings PC, Kisslinger C, Academic Press.
Galanis, O. C., Tsapanos, T. M., Papadopoulos, G. A. and Kiratzi, A. A., 2001. An alternative Bayesian statistics for probabilistic earthquake prediction in Mexico, Central and South America. Bulletin of the Geological Society of Greece, 34(4), 1485–1491.
Gardner, J. K. and Knopoff, L., 1974. Is the sequence of earthquakes in Southern California with aftershocks removed , Poissonian? Bull. SEismol. soc. Am., 64 (5), 1363-1367.
Granat, R. and A. Donnellan, 2002. A hidden Markov model-based tool for geophysical data exploration. Pure and Applied Geophysics 159, 2,271–2,283.
Gumbel, B. J., 1958. Statistics of extremes. Columbia Univ. Press, New York and London, pp. 375.
Gutenberg, B. and Richter, C. F., 1944. Frequency of earthquakes in California. Bull. Seismol. Soc. Am., 34, 185-188.
Gutenberg, B. and Richter, C. F., 1954. Seismicity of the Earth and associated phenomena. Princeton Univ. Press, Princeton , N. pp. 310.
Hanuš, V. and Vanek, J., 1978. Morphology of the Andean Wadati-Benioff zone, andesitic volcanism and tectonic features of the Nazca plate. Tectonophysics, 44, 65-77.
Hatori, S., 1974. Regional distribution of b values in the world. Bull. Intern. Inst. Seismol., 12, 39-57.
Jarrant, R. D., 1986.Relations among subduction parameters. Rev. Geoph., 24, 217-284.
Jarrant, R. D., 1986. Relations among subduction parameters. Rev. Geoph., 24, 217-284.
Jones, L. M. and Molnar, P., 1976. Frequency of foreshocks. Nature, 262, 677-679.
Kanamori, H. 1977. The energy release in great earthquakes. J. Geophys. Res., 82 (20), 2981-2987.
Kanamori, H. and Steward, G. S., 1978. Seismological aspects of the Guatemala earthquake of February 4, 1976. J. Geophys. Res., 91 No (B7), 3427-3434.
Karagrigoriou, A., Makrides, A., Tsapanos, T. M. and Vougiouka, G., 2016 Earthquake forecasting based on Multi-State System methodology. Methodology & Computing in Applied Probability, 18 (2), 547-561.
Kijko, A. and Graham, G., 1998. Parametric-historic procedure for probabilistic seismic hazard analysis Part I: Estimation of maximum regional magnitude mREG. Pageoph, 413-442.
Kijko, A. and Graham, G., 1999. Parametric-historic procedure for probabilistic seismic hazard analysis Part II: Assessment of earthquake hazard at specific site. Pageoph, 154, 1-22
Kelleher, J. A., 1972. Rupture zones of south American earthquakes and ome predictions. J. Geophys. Res., 84, 2087-2103.
Lemoine, A., Madariaga, R. and Campos, J., 2002. Slab-pull and slab push earthhquakes in the Mexican, Chilean and peruvian subduction zones, Phys. Erath Planet. Interiors, 132, 157-175.
Li, Y. and Anderson-Spencer, R., 2013. Hidden Markov Modeling of Waiting Times in the 1985 Yellowstone Earthquake Swarm. Pure Appl. Geophys. 170 , 785–795
Lomnitz, C., 1974. Global tectonics and earthquake risk. Elsevier Scientific Publishing Company, Amsterdam, pp. 320.
Makropoulos, C. K. and Burton, P. W., 1985. Seismic hazard in Greece: I. Magnitude recurrence, Tectonophysics, 117, 205-257.
McNall, K. C., 1981, Earthquake Prediction: An International Review. Volume 4. Edts: David W. Simpson and Paul G. Richards, 63-72. Book Series: Maurice Ewing Series, DOI:10.1029/ME004.
Mogi, K., 1967. Earthquake and fractures. Tectonophysics, 5, 35-55.
Moon, T. K., 1996. The Expectation-Maximization Algorithm. IEEE Signal Processing Magazine, 13, 47-60.
Nava, F. A., Herrera, C., Frez, J. and Glowacka, E., 2005. Seismic Hazard Evaluation Using Markov Chains: Application to the Japan Area. Pure Αppl. Geophys. 162, 1347–1366
Panwrias, C., Papadopoulou, A. A. and Tsapanos, T. Μ., 2016. On the earthquake occurrences in Japan and the surrounding area via semi-Markov modeling. Bull. of the Geolog. Soc of Greece, vol. XLVIII, No 167, pp. 1535-1542.
Papadimitriou, E. E., 1993. Long-term Earthquake Prediction along the Western Coast of South and Central America Based on a Time Predictable Model. Pageoph 140, 301-316.
Papazachos, B. C., 1990. Seismicity of the Aegean and the surrounding area. Tectonophysics, 178, 287- 308.
Pacheco, J. F. and Sykes L. R., 1992. Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bull Seism Soc Am 82:1306-1349.
Pertsinidou, C. E., Tsaklidis, G., Papadimitrioy, E. and Limnios, N., 2017. Application of hidden-Markov models for the seismic hazard assessment of the North and South Aegean, Greece. Journal of Applied Statistics, 44: 6, 1064-1085, DOI: 10.1080/02664763.2016.1193724.
Pertsinidou, C. E., Tsaklidis, G. and Papadimitrioy, E., 2017. Study of the seismic activity in central Ionian islands via semi-Markov modeling. Acta Geophysica, DOI 10.1007/s11600-017-0040-y
Prince, R. A. and Scheweller, W. J., 1978. Dates, rates, and angles of faulting in Peru-Chile trench. Nature 271, 743-745.
Quezada, F. J., 1997. Seismic observation in Chile. Bull. Intern. Inst. Seismol. Earthq. Engin., 31, 243-259.
Rabiner, L., 1989. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77, 257-286.
Reasenberg, P., 1985. Second-order moment of central California seismicity. 1969-1982. J. Geophys. Res., 90, no. B7, 5479–5495.
Richter, C. F., 1935. An instrumental earthquake scale. Bull. Seismol. Soc. Am., 25, 1-32.
Rothe, J. P., 1969. The seismicity of the Earth 1953-1965. Paris, UNESCO, pp.311.
Ruiz, S. and Madariaga, R., 2018. History and recent large megathrust earthquake in Chile. Tectonophysics, 733, 37-56.
Scholz, C. H., 1968. The frequency magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am., 58, 339-415
Scordilis, E. M., 2005. Globally valid relations converting Ms, mb and MJMA to Mw. Proc of NATO Advanced Research Workshop on Earthquake Monitoring and Seismic Hazard Mitigation in Balkan Countries, 11-17 September 2005, the Rila Mountains-Resort Village Borovetz, Bulgaria, Abstracts book, 158-161
Scordilis, E. M., 2006. Emprical global relations converting Ms and mb to moment magnitude. J Seismology, 10:225-236, DOI: 10.1007/s10950-006-9012-4
Stacey, V., 1969. Physics of the Earth. John Wileey and Sons, Inc., New York, 4141pp.
Stein, S., Engeln, J. E., De Meto, C., Gordan , R. G., Woods, D. R., Lundgren, P., Argus, D., Quibble, D., Stein, C., Weistein, S. and Wiens, D. A., 1986. The Nazca South America convergence rate and the recurrence of the grate Chilean earthquakes. Geophys. Res. Lett. 13, 713-716.
Tajima, F. and Kanamori, H., 1985. Global survey of aftershocks area expansion patterns. Phys. Earth Planet. Interiors, 40, 77-134.
Talbi, A., Nanjo, K., Satake, K., Zhuang, J. and Hamdache, M., 2013. Comparison of seismicity declustering methods using a probabilistic measure of clustering. J. Seismology, 17:1041–1061, DOI 10.1007/s10950-013-9371-6.
Teng, G. and Baker, J. W., 2019. Seismicity declustering and hazard analysis of the Oklahoma –Kansan region. Bull. Seismol. Soc. Am., 101 (6), 2346-2366. doi: 10.1785/0120190111
Tsampas, A. D., Scordilis, E. M., Papazachos, C. B. and Karakaisis, G. F., 2016. Global magnitude scaling relations for intermediate-depth and deep-focus earthquakes, Bull. Seism. Soc. Am., DOI: 10.1785/0120150201, 106, 2, 418–434.
Tsapanos, T. M., 1990. b-Values of two tectonic parts in the circum-Pacific belt. Pageoph, 134, 229-242.
Tsapanos, T. M. and Burton, P. W., 1991. Seismic hazard evaluation for specific seismic regions of the world. Tectonophysics, 194, 153-169.
Tsapanos, T. M. and Papadopoulou, A. A., 1999. A discrete Markov model for earthquake occurrence in southern Alaska and Aleutian islands. J. Balk. Geophys. Soc., 2, 75-83.
Tsapanos, T. M., 2000. The depth distribution of seismic parameters estimated for the South America area, Earth and Planet. Science Letters, 180, 103-115.
Tsapanos, T. M. and Christova, C. V., 2000. Some preliminary results of the worldwide seismicity estimation: a case study of the seismic hazard evaluation in South America. Ann. di Geofis., 43, 11-22.
Tsapanos, T. M., 2001. The Markov model as a pattern for earthquakes recurrence in South America. Bull. Geol. Soc. Greece, Vol. XXXIV/4, 1611-1617.
Tsapanos, T. M., Lyubushin, A.A. and Pisarenko, V.F., 2001. Application of a Bayesian approach for estimation of seismic hazard parameters in some regions of the circum Pacific belt. Pageoph, 158, 859-875.
Uhrhammer, R. A., 1986. Characteristics of northern and central Calofornia seismicity. Earthq. Notes, 57 (1), 21-37
Utsu, T., 1969. Aftershocks and and earthquake statistics (I). J. Fac. Sci. Jokkaido Univ., Ser. VII, 2, 130-195.
Uyeda, S. and Kanamori, H., 1979. Back-arc opening and the mode of subduction. J. Geophys. Res., 84, 1049-1061.
Yamagishi, Y., Saito, K., Hirakara, K. and Ueda, N., 2021. Spatio-temporal clustering of earthquakes, on distribution of magnitudes. Appl Netw Sci. 6:71, https://doi.org/10.1007/s41109-021-00413-3.
van Stiphout, T., Zhuang, J. and Marsan, D., 2012. Seismicity declustering, in Community Online Resource for Statistical Seismicity Analysis, Vol. 10, 1–25, doi: 10.5078/corssa-52382934 .
Vere-Jones, D., 1966. A Markov model for aftershock occurrence. Pageoph, 64, 31-42.
Votsi, I., Limnios, N., Tsaklidis, G. and Papadimitriou, E., 2012. Estimation of the expected number of earthquake occurrence based on semi-Markov models. Methodology & Computing in Applied Probability, 14, 685-703, DOI 10.1007/s11009-011-9257-4
Votsi, I., Limnios, N., Tsaklidis, G and Papadimitriou, E., 2013. Hidden Markov models revealing the stress field underlying the earthquake generation. Physics A, 392, 2868-2885.
Wang, J. H., 1988. b-Values of shallow earthquakes in Taiwan. Bull. Seismol. Soc. Am., 78, 1243-1254.
Wiemer, S., 2001. A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(3), 373-382. https://doi.org/10.1785/gssrl.72.3.373.
Yadav, R. B. S., Tsapanos, T. M., Burton, P. W., Kumar, R. M. and Sandhu, M., 2022. Seismicity and magnitude recurrence hazard assessment in the Eastern Nepal, Northeast India and Tibet, Himalaya. Physics and Chemistry of the Earth, 127, 103-158.
Yegulalp, T. M. and Kuo, T. T., 1974. Statistical prediction of recurrence of maximum magnitude earthquakes. Bull. Seismol. Soc. Am., 64, 393-414.
Ελληνική Βιβλιογραφία
Βασιλείου, Π.-Χ. Γ., 1999. Στοχαστικές μέθοδοι στις Επιχειρησιακές Έρευνες, Εκδόσεις ΖΗΤΗ, Θεσσαλονίκη.
Γαλάνης, Οδυσσεύς, 2000. Πιθανολογικός προσδιορισμός της Σεισμικότητας των περιοχών του Μεξικού της Κεντρικής και της Νότιας Αμερικής με τη μέθοδο Bayes. Διατριβή ειδίκευσης, Τμήμα Γεωλογίας Α.Π.Θ.., σελ. 97.
Γιονταμελή, Αντουανέττα, Θ., 2011. Κρυφά Ημιμαρκοβιανά Μοντέλα. Μεταπτυχιακή Διπλωματική Εργασία, Τμήμα Μαθηματικών Α.Π.Θ., 119 σελ.
Παπαζάχος, Β. Κ., 1990. Εισαγωγή στη Σεισμολογία, Εκδόσεις ΖΗΤΗ, Θεσσαλονίκη, σελ. 382.
Τσάπανος, Θ. Μ., 1985. Συμβολή στη μελέτη της σεισμικότητας της Γης. Διδακτορική Διατριβή, 1985, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης , σελ.147.
Τσάπανος, Θ. Μ., 1988. Η σεισμικότητα της Ελλάδας σε σύγκριση με την σεισμικότητα άλλων σεισμογενών χωρών της Γης. ‘Πρακτικά του 1ου Συμποσίου για τις Νέες Εξελίξεις στη σεισμολογία και Γεωφυσική του Ελληνικού χώρου’, Θεσσαλονίκη 1-3 Ιουλίου 1988, 186-193.
Διαδικτυακές Πηγές
Baum – Welch algorithm for training a Hidden Markov Model – Part 2 of the HMM series, 2019, Analytics Vidhya, https://medium.com/analytics-vidhya/baum-welch-algorithm-for-training-a-hidden-markov-model-part-2-of-the-hmm-series-d0e393b4fb86 (ανακτήθηκε 25-05-2023)
National Earthquake Information Center, (NEIC), 2011, Earthquake Hazards Program, http://neic.usgs.gov/neis/epic/index.html (ανακτήθηκε 12-04-2023)
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.