Εξώφυλλο

Life history of the pleistocene imsular rumin ants of Java (Axis Lydekkeri and Duboisia Santeng) = Κύκλος ζωής των πλειστοκαινικών νησιώτικων μηρυκαστικών της Ιάβας (Axis Lydekkeri and Duboisia Santeng) Axis Lydekkeri and Duboisia Santeng) .

Evangelos Manos Tsatsalis

Περίληψη


In the present thesis, I studied fossil material of two endemic ruminant species, the deer Axis lydekkeri (Cervini, Cervidae) and the antelope Duboisia santeng (Boselaphini, Bovidae) belonging to the world-famous Dubois collection. The fossils include dozens of mandibles and isolated molars from both species, assembled mostly from Trinil as well as other sites all over Java. They date back to the Middle Pleistocene and are part of the Stegodon-Homo erectus fauna. The life history of endemic mammal species has long been of interest as a means of studying the effect of insularity on mammals. The present study was a unique opportunity to gather new data from a historic collection and contribute to the ongoing discussion about the life history strategies of endemic species. The data were obtained by measuring the crown height of the molars of each mandible and then adjusting the measurements for the isolated molars since the whole tooth is visible this time. The raw measurements were then translated into age estimations using the Quadratic Crown Height Method. Mortality profiles and mortality curves based on these estimations were then produced in order to address the life-history strategies of these two species. The results correspond well with what is known about life history traits of other endemic ungulates and indicate a shift towards a slow life, with maximum survivability around 70-80% of potential ecological longevity. The mortality profiles for both species are attritional, U-shaped, and with high mortality for juveniles. Based on the profile, in which mortality is almost constant throughout the age groups, it seems that Duboisia was targeted more by predators and/or hominid hunters. This could be attributed to its lifestyle (gregarious, moving in herds) or even more likely, the type of environment (more open habitat compared with the deer). Finally, potential cases of osteophagia are presented here and discussed.

Στην παρούσα εργασία μελέτησα απολιθωμένο υλικό από δύο ενδημικά είδη μηρυκαστικών της Ιάβας, το ελάφι Axis lydekkeri (Cervini, Cervidae) και την αντιλόπη Duboisia santeng (Boselaphini, Bovidae). Η συλλογή περιλάμβανε δεκάδες κάτω γνάθους, αλλά και μεμονωμένα δόντια και από τα δύο είδη, ενώ τα περισσότερα δείγματα προέρχονταν από τις περιοχές Trinil και Sangiran της κεντρικής και ανατολικής Ιάβας. Τα δείγματα χρονολογούνται στο Μέσο Πλειστόκαινο και είναι κομμάτι της πανιδικής φάσης Stegodon-Homo erectus. Οι κύκλοι ζωής των νησιωτικών ζώων πάντα αποτελούν σημείο ενδιαφέροντος καθώς δίνουν την ευκαιρία για μελέτη του φαινόμενου του ενδημισμού και το πως αυτός επηρεάζει τις στρατηγικές επιβίωσης των ζώων και η συγκεκριμένη έρευνα προσφέρει περεταίρω στοιχεία προς αυτή τη κατεύθυνση. Τα ατομικά ηλικιακά δεδομένα συγκεντρώθηκαν μέσω της μεθόδου υπολογισμού QCHM η οποία χρησιμοποιεί το ύψος της οδοντοστοιχίας και τον βαθμό τριβής αυτού για να έρθει σε έμμεσα συμπεράσματα για την ηλικία του εκάστοτε ζώου. Στη συνέχεια τα δεδομένα αυτά μετατράπηκαν σε προφίλ θανάτου και καμπύλες θανάτου, τα οποία σε γενικές γραμμές συμφωνούν με την υπόλοιπη βιβλιογραφία στο ότι τα ενδημικά είδη τείνουν προς προσαρμογές που ευνοούν τα ζώα μεγαλύτερης ηλικίας, με μέγιστες πιθανότητες επιβίωσης περίπου στο 60 – 80% του μέγιστου προσδόκιμου ζωής. Τα προφίλ και των δύο ειδών είναι σε σχήμα U με τα μεγαλύτερα ποσοστά θανάτου να ανήκουν στα ανήλικα και νεαρά άτομα. Στο προφίλ του βοοειδούς παρατηρείται ένα σταθερό ποσοστό θανάτου, που μπορεί να δηλώνει ότι σε αντίθεση με το ελάφι, επηρεαζόταν περισσότερο από αρπακτικά ή ίσως και ανθρώπινη δραστηριότητα (κυνήγι). Αυτή η διαφορά μπορεί να οφείλεται είτε στα διαφορετικά μεγέθη ομάδων που τα δύο είδη διαμόρφωναν είτε στα ενδιαιτήματα που προτιμούσαν να διαβιούν. Τέλος εξετάζονται πιθανές περιπτώσεις οστεοφαγίας.

Πλήρες Κείμενο:

PDF

Αναφορές


Alonzo, S.H., Kindsvater, H.K., 2008. Life-History Patterns, in: Encyclopedia of Ecology. Elsevier, pp. 2175–2180. https://doi.org/10.1016/B978-008045405-4.00856-9

Asher, R., Helgen, K., 2010. Nomenclature and placental mammal phylogeny. BMC Evolutionary Biology 10, 102. https://doi.org/10.1186/1471-2148-10-102

Barrette, C., 1985. Antler eating and antler growth in wild Axis deer. Mammalia 49, 491-500. https://doi.org/10.1515/mamm.1985.49.4.491

Baumann, P., 1982. Depositional Cycles on Magmatic and Back Arcs: an Example from Western Indonesia. Revue de l'Institut Français du Pétrole 37, 3–17. https://doi.org/10.2516/ogst:1982001

Berkhout, A., Huffman, F., 2021. Translations from the reports on the Selenka and Blackenhorn (1911): Die Pithecanthropous Schichten auf Java: Geologische und Paläeontologische Ergebnisse der Trinil-Expedition (1907 und 1908). 228 pages. https://doi.org/10.13140/RG.2.2.21954.91843

Bibi, F., 2007. Origin, paleoecology, and paleobiogeography of early Bovini. Palaeogeography, Palaeoclimatology, Palaeoecology 248, 60–72. https://doi.org/10.1016/j.palaeo.2006.11.009

Bibi, F., Bukhsianidze, M., Gentry, A.W., Geraads, D., Kostopoulos, D.S., Vrba, E.S., 2009. The Fossil Record and Evolution of Bovidae: State of the Field. Palaeontologia Electronica 12.

Cáceres, I., Esteban-Nadal, M., Bennàsar, M., Marín Monfort, M.D., Pesquero, M.D., Fernández-Jalvo, Y., 2013. Osteophagia and dental wear in herbivores: actualistic data and archaeological evidence. Journal of Archaeological Science 40, 3105–3116. https://doi.org/10.1016/j.jas.2013.04.006

Caughley, G., 1966. Mortality Patterns in Mammals. Ecology 47, 906–918. https://doi.org/10.2307/1935638

Dayan, T., Simberloff, D., 1998. Size patterns among competitors: ecological character displacement and character release in mammals, with special reference to island populations. Mammal Review 28, 99–124. https://doi.org/10.1046/j.1365-2907.1998.00029.x

de Vos, D., 1999. The fossil faunas from the Citarum Area, West Java, Indonesia.

de Vos, J., 2003. The Dubois collection: a new look at an old collection. Scripta Geologica, Special Issue 4, 267-285.

de Vos, J., 1984. Reconsideration of Pleistocene cave faunas from South China and their relation to the faunas from Java. Cour. Forsch. Inst. Senckenberg 69, 259–266.

de Vos, J., 1983. The Pongo faunas from Java and Sumatra and their significance for biostratigraphical and paleo-ecological interpretations. Proceedings of the Koninklijke Nederlandse Akadademie van Wetenschappen 86, 417–425.

de Vos, J., Sondaar, P., 1994. Dating hominid sites in Indonesia. Science 266, 1726–1727.

de Vos, J., van den Hoek Ostende, L., Van den Bergh, G., 2007. Patterns in Insular Evolution of Mammals: A Key to Island Palaeogeography, in: Topics in Geobiology. pp. 315–345. https://doi.org/10.1007/978-1-4020-6374-9_10

Fernández, M.H., Vrba, E.S., 2005. A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biological Reviews 80, 269–302. https://doi.org/10.1017/S1464793104006670

Geist, V., 1998. Deer of the World: Their Evolution, Behaviour, and Ecology. Stackpole Books.

Gaastra, J.S., 2016. The Quadratic Crown Height Method and bovidae: Ageing sheep (Ovis aries), goats (Capra hircus) and cattle (Bos taurus). Journal of Archaeological Science: Reports 10, 172–190. https://doi.org/10.1016/j.jasrep.2016.09.022

Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N.G., 1998. Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends in Ecology & Evolution 13, 58–63. https://doi.org/10.1016/S0169-5347(97)01237-8

Gatesy, J., Hayashi, C., Cronin, M., Arctander, P., 1996. Evidence from Milk Casein Genes that Cetaceans are Close Relatives of Hippopotamid Artiodactyls. Molecular biology and evolution 13, 954–63. https://doi.org/10.1093/oxfordjournals.molbev.a025663

Geist, V., 1998. Deer of the World, 1st edition. ed. Stackpole Books, Mechanicsburg, Pa.

Gentry, A.W., 1994. The Miocene differentiation of old world Pecora (Mammalia). Historical Biology 7, 115–158. https://doi.org/10.1080/10292389409380449

Gentry, A.W., 1990. Evolution and Dispersal of African Bovidae, in: Bubenik, G.A., Bubenik, A.B. (Eds.), Horns, Pronghorns, and Antlers: Evolution, Morphology, Physiology, and Social Significance. Springer, New York, NY, pp. 195–227. https://doi.org/10.1007/978-1-4613-8966-8_6

Gifford-Gonzalez, D., 1991. Bones are not enough: Analogues, knowledge, and interpretive strategies in zooarchaeology. Journal of Anthropological Archaeology 10, 215–254. https://doi.org/10.1016/0278-4165(91)90014-O

Gilbert, C., Ropiquet, A., Hassanin, A., 2006. Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): Systematics, morphology, and biogeography. Molecular Phylogenetics and Evolution 40, 101–117. https://doi.org/10.1016/j.ympev.2006.02.017

Gruwier, B., De Vos, J., Kovarovic, K., 2015. Exploration of the taxonomy of some Pleistocene Cervini (Mammalia, Artiodactyla, Cervidae) from Java and Sumatra (Indonesia): a geometric- and linear morphometric approach. Quaternary Science Reviews 119, 35–53. https://doi.org/10.1016/j.quascirev.2015.04.012

Harzhauser, M., Kroh, A., Mandic, O., Piller, W.E., Göhlich, U., Reuter, M., Berning, B., 2007. Biogeographic responses to geodynamics: A key study all around the Oligo–Miocene Tethyan Seaway. Zoologischer Anzeiger - A Journal of Comparative Zoology 246, 241–256. https://doi.org/10.1016/j.jcz.2007.05.001

Hassanin, A., Douzery, E.J.P., 2003. Molecular and Morphological Phylogenies of Ruminantia and the Alternative Position of the Moschidae. Systematic Biology 52, 206–228. https://doi.org/10.1080/10635150390192726

Hatch, J.A., Newsom, S.K., 2010. Life History, in: International Encyclopedia of Education. Elsevier, pp. 430–435. https://doi.org/10.1016/B978-0-08-044894-7.01517-7

Hayashi, S., Kubo, M.O., Sánchez-Villagra, M.R., Taruno, H., Izawa, M., Shiroma, T., Nakano, T., Fujita, M., 2020. Variation and process of life history evolution in insular dwarfism as revealed by a natural experiment (preprint). Evolutionary Biology. https://doi.org/10.1101/2020.12.23.424186

Hilgen L, S., Pop, E., Adhityatama, S., A. Veldkamp, T., W.K. Berghuis, H., Sutisna, I., Yurnaldi, D., Dupont-Nivet, G., Reimann, T., Nowaczyk, N., F. Kuiper, K., Krijgsman, W., B. Vonhof, H., Ekowati, D.R., Alink, G., Ni Luh Gde Dyah Mega Hafsari, Drespriputra, O., Verpoorte, A., Bos, R., Simanjuntak, T., Prasetyo, B., Joordens, J.C.A., 2023. Revised age and stratigraphy of the classic Homo erectus-bearing succession at Trinil (Java, Indonesia). Quaternary Science Reviews 301, 107908. https://doi.org/10.1016/j.quascirev.2022.107908

Hillson, S., 2005. Teeth, 2nd ed. Cambridge University Press. https://doi.org/10.1017/CBO9780511614477

Hertler, C., & Rizal, Y., 2005. Excursion guide to the Pleistocene hominid sites in Central and East Java. JWG University Frankfurt–ITB.

Hooijer, D.A., 1958. A. The Pleistocene Vertebrate Fauna of Celebes. Asian Perspectives 2, 71–76.

Hooijer, D.A., 1958. Fossil Bovidae from the Malay Archipelago and the Punjab. Zoologische Verhandelingen 38, 1–112.

Hooijer, D.A., Kurtén, B., 1984. Trinil and Kedungbrubus: the Pithecanthropus-bearing fossil faunas of Java and their relative age. Annales Zoologici Fennici 21, 135–141.

Huffman, O.F., Berkhout, A.W.J., Albers, P.C.H., De Vos, J., Aziz, F., 2022. Geology and discovery record of the Trinil Pithecanthropus erectus site, Java (preprint). Paleontology. https://doi.org/10.1101/2022.03.15.484451

Huffman, O.F., Zaim, J., 2023. Geological age estimate for the Mojokerto child’s skull Homo erectus. Comment on Berghuis et al. “The eastern Kendeng Hills (Java, Indonesia) and the hominin-bearing beds of Mojokerto, a re-interpretation” [Quat. Sci. Rev. 295 (2022) 107692]. Quaternary Science Reviews 108058. https://doi.org/10.1016/j.quascirev.2023.108058

Irwin, D.M., Árnason, Ú., 1994. Cytochromeb gene of marine mammals: Phylogeny and evolution. J Mammal Evol 2, 37–55. https://doi.org/10.1007/BF01464349

Jordana, X., Marín-Moratalla, N., DeMiguel, D., Kaiser, T.M., Köhler, M., 2012. Evidence of correlated evolution of hypsodonty and exceptional longevity in endemic insular mammals. Proc. R. Soc. B. 279, 3339–3346. https://doi.org/10.1098/rspb.2012.0689

Keates, S.G., Pasveer, J.M., 2021. Modern Quaternary Research in Southeast Asia, Volume 18: Quaternary Research In Indonesia. CRC Press.

Klein, R., 1982. Patterns of ungulate mortality and ungulate mortality profiles from Langebaanweg (Early Pliocene) and Elandsfontein (Middle Pleistocene), south-western Cape Province, South Africa. Annals of the South African Museum 90, 49–94.

Klein, R.G., Cruz-Uribe, K., 1984. The Analysis of Animal Bones from Archeological Sites, Prehistoric Archeology and Ecology series. University of Chicago Press, Chicago, IL.

Klein, R.G., Cruz-Uribe, K., 1983a. The Computation of Ungulate Age (Mortality) Profiles from Dental Crown Heights. Paleobiology 9, 70–78.

Klein, R.G., Cruz-Uribe, K., 1983b. The Computation of Ungulate Age (Mortality) Profiles from Dental Crown Heights. Paleobiology 9, 70–78.

Köhler, M., Moyà-Solà, S., 2009. Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc. Natl. Acad. Sci. U.S.A. 106, 20354–20358. https://doi.org/10.1073/pnas.0813385106

Kohut, G., 2022. Tooth Wear Age Estimation of Ruminants from Archaeological Sites. Pathways 3, 82–105. https://doi.org/10.29173/pathways33

Koike, H., Ohtaishi, N., 1987. Estimation of prehistoric hunting rates based on the age composition of sika deer (Cervus nippon). Journal of Archaeological Science 14, 251–269. https://doi.org/10.1016/0305-4403(87)90014-8

Kolb, C., Scheyer, T.M., Lister, A.M., Azorit, C., de Vos, J., Schlingemann, M.A., Rössner, G.E., Monaghan, N.T., Sánchez-Villagra, M.R., 2015. Growth in fossil and extant deer and implications for body size and life history evolution. BMC Evol Biol 15, 19. https://doi.org/10.1186/s12862-015-0295-3

Kubo, M.O., Fujita, M., Matsu’Ura, S., Kondo, M., Suwa, G., 2011. Mortality profiles of late Pleistocene deer remains of Okinawa Island: evidence from the Hananda-Gama cave and Yamashita-cho cave I sites. AS 119, 183–201. https://doi.org/10.1537/ase.091215

Kumawat, R., Joshi, S., Mathur, R., Choudhary, O.P., 2014. Gross Morphological Studies on Mandible of Indian Spotted Deer (Axis axis). The Indian Veterinary Journal.

Lowe, V.P.W., 1967. Teeth as indicators of age with special reference to Red deer ( Cervus elaphus ) of known age from Rhum. Journal of Zoology 152, 137–153. https://doi.org/10.1111/j.1469-7998.1967.tb01881.x

Lydekker, R., 1898. The deer of all lands; a history of the family Cervidæ living and extinct. London, R. Ward, limited.

Meijaard, E., Groves, C.P., 2004. Morphometrical relationships between South‐east Asian deer (Cervidae, tribe Cervini): evolutionary and biogeographic implications. Journal of Zoology 263, 179–196. https://doi.org/10.1017/S0952836904005011

Michelin, A., 2023. Axis porcinus (hog deer) [WWW Document]. Animal Diversity Web. URL https://animaldiversity.org/accounts/Axis_porcinus/ (accessed 4.16.23).

Minami, M., Ohnishi, N., Higuchi, N., Takatsuki, S., 2009. Early Mortality of Sika Deer, Cervus nippon , on Kinkazan Island, Northern Japan. Mammal Study 34, 117–122. https://doi.org/10.3106/041.034.0207

Monson, T.A., Hlusko, L.J., 2018. The Evolution of Dental Eruption Sequence in Artiodactyls. J Mammal Evol 25, 15–26. https://doi.org/10.1007/s10914-016-9362-9

Moores, E.M. (Ed.), 1997. Encyclopedia of European and Asian regional geology, The encyclopedia of earth sciences series. Chapman & Hall, London Weinheim.

Morrison, D., Whitridge, P., 1997. Estimating the Age and Sex of Caribou from Mandibular Measurements. Journal of Archaeological Science 24, 1093–1106. https://doi.org/10.1006/jasc.1996.0189

Nishioka, Y., Vidthayanon, C., 2018. First occurrence of Duboisia santeng (Bovidae, Artiodactyla, Mammalia) from Thailand. Foss. Rec. 21, 291–299. https://doi.org/10.5194/fr-21-291-2018

Oli, M.K., Coulson, T., 2016. Life History, What is?, in: Encyclopedia of Evolutionary Biology. Elsevier, pp. 394–399. https://doi.org/10.1016/B978-0-12-800049-6.00083-4

Palkovacs, E.P., 2003. Explaining adaptive shifts in body size on islands: a life history approach. Oikos 103, 37–44. https://doi.org/10.1034/j.1600-0706.2003.12502.x

Philippe, H., Douzery, E., 1994. The pitfalls of molecular phylogeny based on four species, as illustrated by the Cetacea/Artiodactyla relationships. J Mammal Evol 2, 133–152. https://doi.org/10.1007/BF01464365

Pianka, E.R., 2011. Evolutionary Ecology. URL http://www.zo.utexas.edu/courses/bio373/erpevolecol.html.

Prothero, D., Domning, D., Fordyce, R., Foss, S., Janis, C., Lucas, S., Marriott, K., Métais, G., Naish, D., Padian, K., Rössner, G., Solounias, N., Spaulding, M., Stucky, R., Theodor, J., Uhen, M., 2021. On the Unnecessary and Misleading Taxon “Cetartiodactyla.” Journal of Mammalian Evolution 29. https://doi.org/10.1007/s10914-021-09572-7

Raia, P., Meiri, S., 2006. The island rule in large mammals: Paleontology meets ecology. Evolution 60, 1731–1742. https://doi.org/10.1111/j.0014-3820.2006.tb00516.x

Randi, E., Mucci, N., Claro-Hergueta, F., Bonnet, A., Douzery, E.J.P., 2001. A mitochondrial DNA control region phylogeny of the Cervinae: speciation in Cervus and implications for conservation. Animal Conservation 4, 1–11. https://doi.org/10.1017/S1367943001001019

Renema, W. (Ed.), 2007. Biogeography, Time, and Place: Distributions, Barriers, and Islands, Topics In Geobiology. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-1-4020-6374-9

Rögl, F., 1999. Mediterranean and paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview).

Rozzi, R., Winkler, D.E., De Vos, J., Schulz, E., Palombo, M.R., 2013. The enigmatic bovid Duboisia santeng (Dubois, 1891) from the Early–Middle Pleistocene of Java: A multiproxy approach to its paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology 377, 73–85. https://doi.org/10.1016/j.palaeo.2013.03.012

Ruscillo, D. (Ed.), 2015. Recent Advances in Ageing and Sexing Animal Bones. Oxbow Books. https://doi.org/10.2307/j.ctvh1ds02

Salles, T., Mallard, C., Husson, L., Zahirovic, S., Sarr, A.-C., Sepulchre, P., 2021. Quaternary landscape dynamics boosted species dispersal across Southeast Asia. Commun Earth Environ 2, 240. https://doi.org/10.1038/s43247-021-00311-7

Senseman, R.L., 2023. Cervus elaphus (elk) [WWW Document]. Animal Diversity Web. URL https://animaldiversity.org/accounts/Cervus_elaphus/ (accessed 4.16.23).

Shipman, P., Storm, P., 2002. Missing links: Eugène Dubois and the origins of paleoanthropology. Evol. Anthropol. 11, 108–116. https://doi.org/10.1002/evan.10021

Spinage, C.A., 1973. A review of the age determination of mammals by means of teeth, with especial reference to Africa. African J Ecol 11, 165–187. https://doi.org/10.1111/j.1365- 2028.1973.tb00081.x

Spinage, C.A., Jolly, G.M., 1974. Age Estimation of Warthog. The Journal of Wildlife Management 38, 229. https://doi.org/10.2307/3800728

Steele, T.E., Weaver, T.D., 2012. Refining the Quadratic Crown Height Method of age estimation: do elk teeth wear quadratically with age? Journal of Archaeological Science 39, 2329–2334. https://doi.org/10.1016/j.jas.2012.02.017

Stiner, M.C. (Ed.), 1991. Human predators and prey mortality, Westview special studies in archaeological research. Westview Press, Boulder.

Storm, P., Nelson, A.J., 1992. The Many Faces of Wadjak Man. Archaeology in Oceania 27, 37–46.

Susilohadi, 1995. Late Tertiary and Quaternary geology of the East Java Basin, Indonesia. University of Wollongong Thesis Collection 1954-2016.

Sutcliffe, A.J., 1973. Similarity of bones and antlers gnawed by deer to human artefacts. Nature 246, 428–430. https://doi.org/10.1038/246428a0

Twiss, K.C., 2008. An assessment of the archaeological applicability of faunal ageing methods based on dental wear. Int. J. Osteoarchaeol. 18, 329–351. https://doi.org/10.1002/oa.940

van den Bergh, G., Vos, J., Sondaar, P., Aziz, F., 1996. Pleistocene zoogeographic evolution of Java (Indonesia) and glacio-eustatic sea level fluctuations: a background for the presence of Homo. Indo-Pacific Prehistory Association Bulletin 14, 7–21.https://doi.org/10.7152/bippa.v14i0.11583

van den Bergh, G.D., De Vos, J., Sondaar, P.Y., 2001. The Late Quaternary palaeogeography of mammal evolution in the Indonesian Archipelago. Palaeogeography, Palaeoclimatology, Palaeoecology 171, 385–408. https://doi.org/10.1016/S0031-0182(01)00255-3

van der Geer, A., Lyras, G., Vos, J., 2021. The Island Rule: Dwarfism and Gigantism. Evolution of Island Mammals: Adaptation and Extinction of Placental Mammals on Islands, pp. 477–502. https://doi.org/10.1002/9781119675754.ch23

van der Geer, A., Lyras, G., Vos, J. de, Dermitzakis, M., 2021. Evolution of Island Mammals: Adaptation and Extinction of Placental Mammals on Islands, 2nd edition. ed. Wiley-Blackwell, Hoboken, NJ.

van der Geer, A.A.E., Lyras, G.A., MacPhee, R.D.E., Lomolino, M., Drinia, H., 2014. Mortality in a Predator-free Insular Environment: the Dwarf Deer of Crete. American Museum Novitates 3807, 1–26. https://doi.org/10.1206/3807.1

van der Geer, A.A.E., Lyras, G.A., Volmer, R., 2018. Insular dwarfism in canids on Java (Indonesia) and its implication for the environment of Homo erectus during the Early and earliest Middle Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 507, 168–179. https://doi.org/10.1016/j.palaeo.2018.07.009

Van Gorsel, H., 2020. Bibliography of the Geology of Indonesia and surrounding areas, Ed. 7.1. https://doi.org/10.13140/RG.2.2.19811.58409

Veitschegger, K., Sánchez-Villagra, M., 2016. Tooth Eruption Sequences in Cervids and the Effect of Morphology, Life History, and Phylogeny. Journal of Mammalian Evolution 23. https://doi.org/10.1007/s10914-015-9315-8

Voorhies, M.R., 1969. Taphonomy and Population Dynamics of an Early Pliocene Vertebrate Fauna, Knox County, Nebraska. University of Wyoming, Laramie, WY.https://doi.org/10.2113/gsrocky.8.special_paper_1.1

Waddell, P., Okada, N., Hasegawa, M., 1999. Waddell PJ, Okada N, Hasegawa M. Towards resolving the interordinal relationships of placental mammals. Syst Biol 48: 1-5. Systematic Biology 48. https://doi.org/10.1093/sysbio/48.1.1

Wang, Q., Yang, C., 2013. The Phylogeny of the Cetartiodactyla Based on Complete Mitochondrial Genomes. IJB 5, p30. https://doi.org/10.5539/ijb.v5n3p30

Wibowo, A., 2020. Suitable Habitat Modeling of Prehistoric Antelope-like Bovid Duboisia santeng in Java Island in The Early Pleistocene . Earth Sciences. https://doi.org/10.20944/preprints202009.0355.v1

Zaim, Y., de Vos, J., Huffman, O.F., Aziz, F., Kappelman, J., Rizal, Y., 2003. A new antler specimen from the 1936 Perning hominid site, East Jawa, Indonesia, attributable to Axis lydekkeri (MARTIN, 1886). Journal of Mineral Technology, The Faculty of Earth Sciences and Mineral Technology, Institute Technology, Bandung. 10, 1-10


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.