Εξώφυλλο

Palaeoceonographic study of the Epidaurus basin during the last 1500 years: an organic biochemical approach = Παλαιοωκεανογραφική μελέτη της λεκάνης της Επιδαύρου τα τελευταία 1500 χρόνια μέσω οργανικών βιοδεικτών.

Maria-Sofia Nikolaos Kapiri,

Περίληψη


The current master thesis focuses οn the palaeoenvironmental reconstruction in the Epidaurus Basin region, which is located in the southwest Saronikos Gulf, over the past 1500 years. It addresses the interactions of the terrestrial and marine environments and the response modes of the marine environment in relation to the climatic changes observed in the area. For this purpose, the sedimentary record of the multicore S25_1 was analysed for selected biogeochemical markers and indices of terrestrial and marine origin, which convey a specific signal from the environment in which they were biosynthesised. The aforesaid biomarkers are lipid organic compounds, i.e. n-alkanes, n-alkanols, long chain alkenones and steroid alcohols that allow the reconstruction of the past, and specifically of parameters such as the sea surface temperature (SST), the hydrological regime, the paleo-productivity trends, the water mass circulation, the organic matter inputs and sources, the preservation vs. degradation of organic matte along with the stratification and oxygenation dynamics of the water column and the underlying sediment and the anthropogenic imprint that the region receives, mainly in the years of the industrial revolution (~ last 150 years). In the current thesis the age intervals that are analysed are 1) Dark Ages - DA (7th-10th centuries), with decreased SST compared to the rest of the dataset but concurrently with an upward trend, 2) Medieval Climate Anomaly – MCA (10th-13th centuries), which exhibited an upward trend in SST values, 3) Little Ice Age - LIA, which divides into two phases, namely the warming phase (13th-16th centuries) and cooling (16th-19th centuries) and 4) Industrial Period - IP (19th century onwards), in which age interval the anthropogenic impact on the environment is observed through certain indicators and this century marked by a downward trend in SST values during the early 20th century.

Η παρούσα διπλωματική εργασία έχει ως κύριο στόχο την ανασύσταση του παλαιοπεριβάλλοντος στη λεκάνη της Επιδαύρου, η οποία βρίσκεται στα νοτιοδυτικά του Σαρωνικού κόλπου, τα τελευταία 1500 χρόνια. Πιο αναλυτικά, ασχολείται με τον προσδιορισμό των αλληλεπιδράσεων χερσαίου και υδάτινου περιβάλλοντος και την απόκριση του θαλάσσιου περιβάλλοντος σε σχέση με τις κλιματολογικές αλλαγές που σημειώνονται στην περιοχή. Για την εμπεριστατωμένη μελέτη των προαναφερόμενων χαρακτηριστικών χρησιμοποιήθηκε το ίζημα του πυρήνα S25_1 και πιο συγκεκριμένα ορισμένοι βιογεωχημικοί δείκτες χερσαίας και θαλάσσιας προέλευσης, οι οποίοι μεταφέρουν ένα συγκεκριμένο σήμα από το περιβάλλον στο οποίο έγινε η βιοσύνθεσή τους. Οι βιοδείκτες αυτοί αποτελούν λιπιδικές οργανικές ενώσεις και συγκεκριμένα ανήκουν στις ομάδες κ-αλκάνια, κ-αλκανόλες, αλκενόνες και στεροειδείς αλκοόλες που επιτρέπουν την ανάπλαση των παρελθοντικών συνθηκών της εκάστοτε περιοχής και πιο συγκεκριμένα μέσω παραμέτρων όπως τη θερμοκρασία στην επιφάνεια της θάλασσας (SST), το υδρολογικό καθεστώς, τις τάσεις παλαιοπαραγωγικότητας, την κυκλοφορία των υδάτινων μαζών, τις εισροές και πηγές της οργανικής ύλης, τη διατήρηση έναντι της αποικοδόμησης της οργανικής ύλης μαζί με τη δυναμική της στρωμάτωσης και οξυγόνωσης της υδάτινης στήλης και του υποκείμενου ιζήματος, αλλά και του οικολογικού αποτυπώματος της ανθρώπινης δραστηριότητας που δέχεται η περιοχή, κυρίως τα χρόνια της βιομηχανικής επανάστασης (~ τα τελευταία 150 έτη). Στην παρούσα διατριβή τα ηλικιακά διαστήματα που αναλύονται είναι τα εξής: 1) η περίοδος των σκοτεινών χρόνων του Μεσαίωνα (Dark Ages - DA), (7ος-10ος αιώνας), που παρουσιάζονται μειωμένες τιμές SST σε σχέση με τα υπόλοιπα διαστήματα που αναλύονται αλλά με ταυτόχρονη αυξητική τάση, 2) η περίοδος κλιματικής ανωμαλίας του Μεσαίωνα (Medieval Climate Anomaly - MCA), (10ος-13ος αιώνας), το οποίο διάστημα παρουσίασε ανοδική τάση στις τιμές SST, 3) η μικρή Παγετώδης Περίοδος (Little Ice Age - LIA), η οποία χωρίζεται σε δύο φάσεις, τη θερμή φάση (13ος-16ος αιώνας) και την ψυχρή φάση (16ος-19ος αιώνας) και 4) τα χρόνια από την έναρξη της βιομηχανικής επανάστασης έως σήμερα (Industrial Period – IP), (19ος αιώνας και μετά), κατά την οποία παρατηρείται σταδιακά η ανθρώπινη παρέμβαση στο περιβάλλον και στις αρχές του 20ου αιώνα καταγράφονται μειωμένες τιμές SST.


Πλήρες Κείμενο:

PDF

Αναφορές


Abram, N. J., McGregor, H. V., Tierney, J. E., Evans, M. N., McKay, N. P., Kaufman, D. S., Thirumalai, K., Martrat, B., Goosse, H., Phipps, S. J., Steig, E. J., Kilbourne, K. H., Saenger,

C. P., Zinke, J., Leduc, G., Addison, J. A., Mortyn, P. G., Seidenkrantz, M. S., Sicre, M. A., … Von Gunten, L. (2016). Early onset of industrial-era warming across the oceans and continents. Nature, 536(7617), 411–418. https://doi.org/10.1038/nature19082

Al-Khion, D. D., Al-Ali, B. S., Al-Saad, H. T., & Rushdi, A. I. (2021). Levels and source of aliphatic hydrocarbons in marine fishes from coast of Iraq Based on biomarkers and biogeochemical indices. Indian Journal of Ecology, 48(2), 536–544.

Altenbach, A. V. (1992). Short term processes and patterns in the foraminiferal response to organic flux rates. Marine Micropaleontology, 19(1–2), 119–129. https://doi.org/10.1016/0377-8398(92)90024-E

Appolinario, L. R., Tschoeke, D., Calegario, G., Barbosa, L. H., Moreira, M. A., Albuquerque, A.

L. S., Thompson, C. C., & Thompson, F. L. (2020). Oil leakage induces changes in microbiomes of deep-sea sediments of Campos Basin (Brazil). Science of the Total Environment, 740, 139556. https://doi.org/10.1016/j.scitotenv.2020.139556

Boon, J. J., Meer, F. W., Schuyl, P. J. W., Leeuw, J. W., & Schenk, P. A. (1978). Organic geochemical analyses of core samples from site 362, Walvis Ridge, DSDP LEG 40. 4(1), 627–637.

Brassell, S. C., Eglinton, G., Marlowe, I. T., Pfaumann, U., & Sarnthein, M. (1986). Molecular

stratigraphy : a new tool for climatic assessment. Nature, 320, 129–133.

Bray, E., & Evans, E. (1961). Distribution of n-paraffins as a clue to recognition of source beds.

Geochim. Cosmochim. Acta, 22(1), 2–15.

Brocks, J. ., & Grice, K. (2011). Biomarkers (Molecular Fossils). 147–167. https://doi.org/10.1007/978-1-4020-9212-1_30

Broerse, A. T. C., Ziveri, P., Van Hinte, J. E., & Honjo, S. (2000). Coccolithophore export production, species composition, and coccolith-CaCO3 fluxes in the NE Atlantic (34 °N 21

°W and 48 °N 21 °W). Deep-Sea Research Part II: Topical Studies in Oceanography, 47(9–11), 1877–1905. https://doi.org/10.1016/S0967-0645(00)00010-2

Büntgen, U., Crivellaro, A., Arseneault, D., Baillie, M., Barclay, D., Bernabei, M., Bontadi, J., Boswijk, G., Brown, D., Christie, D. A., Churakova, O. V., Cook, E. R., D’Arrigo, R., Davi, N., Esper, J., Fonti, P., Greaves, C., Hantemirov, R. M., Hughes, M. K., … Piermattei, A. (2022). Global wood anatomical perspective on the onset of the Late Antique Little Ice Age (LALIA) in the mid-6th century CE. Science Bulletin, 67(22), 2336–2344. https://doi.org/10.1016/j.scib.2022.10.019

Büntgen, U., Myglan, V. S., Ljungqvist, F. C., McCormick, M., Di Cosmo, N., Sigl, M., Jungclaus, J., Wagner, S., Krusic, P. J., Esper, J., Kaplan, J. O., De Vaan, M. A. C., Luterbacher, J., Wacker, L., Tegel, W., & Kirdyanov, A. V. (2016). Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience, 9(3), 231–236. https://doi.org/10.1038/ngeo2652

Cavagna, A. J., Dehairs, F., Bouillon, S., Woule-Ebongué, V., Planchon, F., Delille, B., &

Bouloubassi, I. (2013). Water column distribution and carbon isotopic signal of

cholesterol, brassicasterol and particulate organic carbon in the Atlantic sector of the Southern Ocean. Biogeosciences, 10(4), 2787–2801. https://doi.org/10.5194/bg-10-2787-2013

Cisneros, M., Cacho, I., Frigola, J., Canals, M., Masqué, P., Martrat, B., Casado, M., Grimalt, J. O., Pena, L. D., Margaritelli, G., & Lirer, F. (2016). Sea surface temperature variability in the central-western Mediterranean Sea during the last 2700 years: A multi-proxy and multi-record approach. Climate of the Past, 12(4), 849–869. https://doi.org/10.5194/cp- 12-849-2016

Consortium, P. 2k. (2017). A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 4, 170088. https://doi.org/10.1038/sdata.2017.88

Conte, M. H., Sicre, M. A., Rühlemann, C., Weber, J. C., Schulte, S., Schulz-Bull, D., & Blanz, T. (2006). Global temperature calibration of the alkenone unsaturation index (U 37k) in surface waters and comparison with surface sediments. Geochemistry, Geophysics, Geosystems, 7(2). https://doi.org/10.1029/2005GC001054

Cook, B. I., Anchukaitis, K. J., Touchan, R., Meko, D. M., & Cook, E. R. (2016). Spatiotemporal drought variability in the mediterranean over the last 900 years. Journal of Geophysical Research, 121(5), 2060–2074. https://doi.org/10.1002/2015JD023929

Cortés, M. ., Bollmann, J., & Thierstein, H. R. (2001). Coccolithophore ecology at the HOT station Cortés M. Y., Bollmann J. & Thierstein H. R. 2001. Coccolithophore ecology at the HOT station ALOHA, Hawaii. Deep. Res. Part II Top. Stud. Oceanogr., 48:1957– 1981.ALOHA, Hawaii. Deep-Sea Research Part II: Topical Studies in Oceanography, 48(8– 9), 1957–1981.

Cranwell, P. A. (1972). Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biology, 3(3), 259–265. papers2://publication/uuid/A8180EC1-59C5-42C7-A514-6C4280EAABB7

Dachs, J., & Méjanelle, L. (2010). Organic pollutants in coastal waters, sediments, and biota: A relevant driver for ecosystems during the anthropocene? Estuaries and Coasts, 33(1), 1– 14. https://doi.org/10.1007/s12237-009-9255-8

Dobrovolný, P., Moberg, A., Brázdil, R., Pfister, C., Glaser, R., Wilson, R., van Engelen, A., Limanówka, D., Kiss, A., Halíčková, M., Macková, J., Riemann, D., Luterbacher, J., & Böhm, R. (2010). Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Climatic Change, 101(1), 69–107. https://doi.org/10.1007/s10584-009-9724-x

Drǎguşin, V., Staubwasser, M., Hoffmann, D. L., Ersek, V., Onac, B. P., & Veres, D. (2014). Constraining Holocene hydrological changes in the Carpathian-Balkan region using speleothem δ18O and pollen-based temperature reconstructions. Climate of the Past, 10(4), 1363–1380. https://doi.org/10.5194/cp-10-1363-2014

Drakatos, G., Karastathis, V., Makris, J., Papoulia, J., & Stavrakakis, G. (2005). 3D crustal structure in the neotectonic basin of the Gulf of Saronikos (Greece). Tectonophysics, 400(1–4), 55–65. https://doi.org/10.1016/j.tecto.2005.02.004

Duan Fengkui, F., He, K., & Liu, X. (2010). Characteristics and source identification of fine particulate n-alkanes in Beijing, China. Journal of Environmental Sciences, 22(7), 998– 1005. https://doi.org/10.1016/S1001-0742(09)60210-2

Eglinton, G., & Hamilton, R. J. (1967). Leaf epicuticular waxes : The waxy outer surfaces of

most plants display a wide diversity of fine structure and chemical constituents. Science, 156(3780), 1322–1335.

Esper, J., Frank, D., Büntgen, U., Verstege, A., Luterbacher, J., & Xoplaki, E. (2007). Long-term drought severity variations in Morocco. Geophysical Research Letters, 34(17), 1–5. https://doi.org/10.1029/2007GL030844

Facorellis, Y., & Vardala-Theodorou, E. (2015). Sea Surface Radiocarbon Reservoir Age Changes in the Aegean Sea from about 11,200 BP to Present. Radiocarbon, 57(3), 493– 505. https://doi.org/10.2458/azu_rc.57.18363

Felis, T., Pätzold, J., Loya, Y., Fine, M., Nawar, A. H., & Wefer, G. (2000). A coral oxygen isotope record from the northern Red Sea documenting NAO, ENSO, and North Pacific teleconnections on Middle East climate variability since the year 1750. Paleoceanography, 15(6), 679–694. https://doi.org/10.1029/1999PA000477

Foutrakis, P. M., & Anastasakis, G. (2020). Quaternary continental shelf basins of Saronikos Gulf, Aegean Sea. Geo-Marine Letters, 40(5), 629–647. https://doi.org/10.1007/s00367- 020-00653-9

Friligos, N. (1983). Enrichment of inorganic nutrients in the Western Saronikos Gulf. Marine Pollution Bulletin, 14(2), 52–57. https://doi.org/10.1016/0025-326X(83)90191-1

Gelin, F., Boogers, I., Noordeloos, A. A. M., Sinninghe Damsté, J. S., Riegman, R., & De Leeuw,

J. W. (1997). Resistant biomacromolecules in marine microalgae of the classes eustigmatophyceae and chlorophyceae: Geochemical implications. Organic Geochemistry, 26(11–12), 659–675. https://doi.org/10.1016/S0146-6380(97)00035-1

Gibbard, P. L., Bauer, A. M., Edgeworth, M., Ruddiman, W. F., Gill, J. L., Merritts, D. J., Finney,

S. C., Edwards, L. E., Walker, M. . C., Maslin, M., & Ellis, E. C. (2022). A practical solution: the Anthropocene is a geological event, not a formal epoch. Episodes, 45(4), 349–357. https://doi.org/10.18814/epiiugs/2021/021029

Gogou, A., Bouloubassi, I., Lykousis, V., Arnaboldi, M., Gaitani, P., & Meyers, P. A. (2007). Organic geochemical evidence of Late Glacial-Holocene climate instability in the North Aegean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(1–2), 1–20. https://doi.org/10.1016/j.palaeo.2007.08.002

Gogou, A., Bouloubassi, I., & Stephanou, E. G. (2000). Marine organic geochemistry of the Eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments. Marine Chemistry, 68(4), 265–282. https://doi.org/10.1016/S0304- 4203(99)00082-1

Gogou, A., Triantaphyllou, M., Xoplaki, E., Izdebski, A., Parinos, C., Dimiza, M., Bouloubassi, I., Luterbacher, J., Kouli, K., Martrat, B., Toreti, A., Fleitmann, D., Rousakis, G., Kaberi, H., Athanasiou, M., & Lykousis, V. (2016). Climate variability and socio-environmental changes in the northern Aegean (NE Mediterranean) during the last 1500 years. Quaternary Science Reviews, 136, 209–228. https://doi.org/10.1016/j.quascirev.2016.01.009

Gough, M. A., & Rowland, S. J. (1990). Characterization of unresolved complex mixtures of hydrocarbons in petroleum. In Nature (Vol. 344, Issue 6267, pp. 648–650). https://doi.org/10.1038/344648a0

Graham, N. E., Ammann, C. M., Fleitmann, D., Cobb, K. M., & Luterbacher, J. (2011). Support for global climate reorganization during the “Medieval Climate Anomaly.” Climate Dynamics, 37(5), 1217–1245. https://doi.org/10.1007/s00382-010-0914-z

Grice, K., Klein Breteler, W. C. M., Schouten, S., Grossi, V., De Leeuw, J. W., & Sinninghe Damsté, J. S. (1998). Effects of zooplankton herbivory on biomarker proxy records. Paleoceanography, 13(6), 686–693. https://doi.org/10.1029/98PA01871

Harada, N., Handa, N., Harada, K., & Matsuoka, H. (2001). Alkenones and particulate fluxes in sediment traps from the central equatorial Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 48(3), 891–907. https://doi.org/10.1016/S0967-

(00)00077-7

Hasanuzzaman, M., Ueno, A., Ito, H., Ito, Y., Yamamoto, Y., Yumoto, I., & Okuyama, H. (2007). Degradation of long-chain n-alkanes (C36 and C40) by Pseudomonas aeruginosa strain WatG. International Biodeterioration and Biodegradation, 59(1), 40–43. https://doi.org/10.1016/j.ibiod.2006.07.010

Hays, M. D., Smith, N. D., & Dong, Y. (2004). Nature of unresolved complex mixture in size- distributed emissions from residential wood combustion as measured by thermal desorption-gas chromatography-mass spectrometry. Journal of Geophysical Research D: Atmospheres, 109(16), 1–13. https://doi.org/10.1029/2003JD004051

Herbert, T. D. (2003). Alkenone Paleotemperature Determinations. Treatise on Geochemistry, 6–9, 391–432. https://doi.org/10.1016/B0-08-043751-6/06115-6

Hernández, A., Martin-Puertas, C., Moffa-Sánchez, P., Moreno-Chamarro, E., Ortega, P., Blockley, S., Cobb, K. M., Comas-Bru, L., Giralt, S., Goosse, H., Luterbacher, J., Martrat, B., Muscheler, R., Parnell, A., Pla-Rabes, S., Sjolte, J., Scaife, A. A., Swingedouw, D., Wise, E., & Xu, G. (2020). Modes of climate variability: Synthesis and review of proxy-based reconstructions through the Holocene. Earth-Science Reviews, 209(December 2019), 103286. https://doi.org/10.1016/j.earscirev.2020.103286

Huang, Y., Dupont, L., Sarnthein, M., Hayes, J. M., & Eglinton, G. (2000). Mapping of C4 plant input from North West Africa into North East Atlantic sediments. Geochimica et Cosmochimica Acta, 64(20), 3505–3513. https://doi.org/10.1016/S0016-7037(00)00445-2

Hudson, E. D., Parrish, C. C., & Helleur, R. J. (2001). Biogeochemistry of sterols in plankton, settling particles and recent sediments in a cold ocean ecosystem (Trinity Bay, Newfoundland). Marine Chemistry, 76(4), 253–270. https://doi.org/10.1016/S0304-4203(01)00066-4

Huguet, C., Kim, J. H., González-Arango, C., Ramírez-Valencia, V., Kang, S., Gal, J. K., & Shin, K.

H. (2019). Sources of organic matter in two contrasting tropical coastal environments: The Caribbean Sea and the eastern Pacific. Journal of South American Earth Sciences, 96(September). https://doi.org/10.1016/j.jsames.2019.102349

Hurrell, J. W., Kushnir, Y., Ottersen, G., & Visbeck, M. (2003). An overview of the north atlantic oscillation. Geophysical Monograph Series, 134, 1–35. https://doi.org/10.1029/134GM01

Incarbona, A., Abu-Zied, R. H., Rohling, E. J., & Ziveri, P. (2019). Reventilation Episodes During the Sapropel S1 Deposition in the Eastern Mediterranean Based on Holococcolith Preservation. Paleoceanography and Paleoclimatology, 34(10), 1597–1609. https://doi.org/10.1029/2019PA003626

Incarbona, A., Martrat, B., Mortyn, P. G., Sprovieri, M., Ziveri, P., Gogou, A., Jordà, G., Xoplaki,

E., Luterbacher, J., Langone, L., Marino, G., Rodríguez-Sanz, L., Triantaphyllou, M., Di Stefano, E., Grimalt, J. O., Tranchida, G., Sprovieri, R., & Mazzola, S. (2016). Mediterranean circulation perturbations over the last five centuries: Relevance to past Eastern Mediterranean Transient-type events. Scientific Reports, 6(January). https://doi.org/10.1038/srep29623

Isoe, S., Hyeon, S. B., Katsumura, S., & Sakan, T. (1972). Photo-oxygenation of carotenoids. II. The absolute configuration of loliolide and dihydroactinidiolide. Tetrahedron Letters, 13(25), 2517–2520. https://doi.org/10.1016/S0040-4039(01)84863-2

Jalali, B., Sicre, M. A., Klein, V., Schmidt, S., Maselli, V., Lirer, F., Bassetti, M. A., Toucanne, S., Jorry, S. J., Insinga, D. ., Petrosino, P., & Châles, F. (2018). Deltaic and Coastal Sediments as Recorders of Mediterranean Regional Climate and Human Impact Over the Past Three Millennia. Paleoceanography and Paleoclimatology, 33(6), 579–593. https://doi.org/10.1029/2017PA003298

Jones, P. D., Osborn, T. J., & Briffa, K. R. (2001). The evolution of climate over the last millennium. Science, 292(5517), 662–667. https://doi.org/10.1126/science.1059126

Klok, J., Baas, M., Cox, H. C., de Leeuw, J. W., & Schenck, P. A. (1984). Loliolides and dihydroactinidiolide in a recent marine sediment probably indicate a major transformation pathway of carotenoids. Tetrahedron Letters, 25(48), 5577–5580. https://doi.org/10.1016/S0040-4039(01)81631-2

Konecky, B. L., McKay, N. P., Churakova, O. V., Comas-Bru, L., Dassié, E. P., DeLong, K. L., Falster, G. M., Fischer, M. J., Jones, M. D., Jonkers, L., Kaufman, D. S., Leduc, G., Managave, S. R., Martrat, B., Opel, T., Orsi, A. J., Partin, J. W., Sayani, H. R., Thomas, E. K., … Yoshimura, K. (2020). The Iso2k database: A global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate. Earth System Science Data, 12(3), 2261–2288. https://doi.org/10.5194/essd-12-2261-2020

Kontoyiannis, H. (2010). Observations on the circulation of the Saronikos Gulf: A Mediterranean embayment sea border of Athens, Greece. Journal of Geophysical Research: Oceans, 115(6), 1–23. https://doi.org/10.1029/2008JC005026

Kontoyiannis, H., Pavlidou, A., Zeri, C., Krasakopoulou, E., Simboura, N., Hatzianestis, I., Papadopoulos, V. P., Rousselaki, E., Asimakopoulou, G., & Siokou, I. (2023). Science of the Total Environment Thirty years of a bottom oxygen depletion-renewal cycle in the coastal yet deep environment of the West Saronikos Gulf ( Greece ): Its drivers and the impact on the benthic communities. 902(June).

Kouli, K., Gogou, A., Bouloubassi, I., Triantaphyllou, M. V., Ioakim, C., Katsouras, G., Roussakis, G., & Lykousis, V. (2012). Late postglacial paleoenvironmental change in the northeastern Mediterranean region: Combined palynological and molecular biomarker evidence. Quaternary International, 261, 118–127. https://doi.org/10.1016/j.quaint.2011.10.036

Lolis, C. J., Bartzokas, A., & Katsoulis, B. D. (2002). Spatial and temporal 850 hPa air temperature and sea-surface temperature covariances in the Mediterranean region and their connection to atmospheric circulation. International Journal of Climatology, 22(6), 663–676. https://doi.org/10.1002/joc.759

Luo, G., Yang, H., Algeo, T. J., Hallmann, C., & Xie, S. (2018). Lipid biomarkers for the reconstruction of deep-time environmental conditions. Earth-Science Reviews, 189, 99– 124. https://doi.org/10.1016/j.earscirev.2018.03.005

Luterbacher, J., García-Herrera, R., Akcer-On, S., Allan, R., Alvarez-Castro, M. C., Benito, G., Booth, J., Büntgen, U., Cagatay, N., Colombaroli, D., Davis, B., Esper, J., Felis, T., Fleitmann, D., Frank, D., Gallego, D., Garcia-Bustamante, E., Glaser, R., Gonzalez-Rouco,

F. J., … Zorita, E. (2012). A Review of 2000 Years of Paleoclimatic Evidence in the Mediterranean. In The Climate of the Mediterranean Region: From the Past to the Future (Issue November). https://doi.org/10.1016/B978-0-12-416042-2.00002-1

Mahairas, P., & Balafoutis, C. (1997). General Climatology with Meteorology elements. UNIVERSITY STUDIO PRESS.

Malinverno, E., Triantaphyllou, M. V., Stavrakakis, S., Ziveri, P., & Lykousis, V. (2009). Seasonal and spatial variability of coccolithophore export production at the South-Western margin of Crete (Eastern Mediterranean). Marine Micropaleontology, 71(3–4), 131–147. https://doi.org/10.1016/j.marmicro.2009.02.002

Marlowe, I. T., Green, J. C., Neal, A. C., Brassell, S. C., & Course, P. A. (1984). Long chain (n- C37-C39) alkenones in the Prymnesiophyceae. Distribution of lkenones and other lipids and their taxonomic significance. British Phycological Journal, 19(September 1), 37–41.

Martín-Chivelet, J., Muñoz-García, M. B., Edwards, R. L., Turrero, M. J., & Ortega, A. (2011). Land surface temperature changes in Northern Iberia since 4000yrBP, based on δ13C of speleothems. Global and Planetary Change, 77(1–2), 1–12. https://doi.org/10.1016/j.gloplacha.2011.02.002

Martín-Puertas, C., Jiménez-Espejo, F., Martínez-Ruiz, F., Nieto-Moreno, V., Rodrigo, M., Mata, M. P., & Valero-Garcés, B. L. (2010). Late Holocene climate variability in the southwestern Mediterranean region: An integrated marine and terrestrial geochemical approach. Climate of the Past, 6(6), 807–816. https://doi.org/10.5194/cp-6-807-2010

Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A., & Stocker, T. F. (2007). Four Climate Cycles of Recurring Deep and Surface Water Destabilizations on the Iberian Margin. Science, 317(July), 502–507. https://doi.org/10.1126/science.113999

Marullo, S., Artale, V., & Santoleri, R. (2011). The SST multidecadal variability in the Atlantic- Mediterranean region and its relation to AMO. Journal of Climate, 24(16), 4385–4401. https://doi.org/10.1175/2011JCLI3884.1

Matiatos, I. (2010). Isotope hydrology study of areas in Argolis Peninsula [National and Kapodistrian University of Athens]. https://thesis.ekt.gr/thesisBookReader/id/24160?lang=el#page/1/mode/2up

McGregor, H. V., Evans, M. N., Goosse, H., Leduc, G., Martrat, B., Addison, J. A., Mortyn, P. G., Oppo, D. W., Seidenkrantz, M. S., Sicre, M. A., Phipps, S. J., Selvaraj, K., Thirumalai, K., Filipsson, H. L., & Ersek, V. (2015). Robust global ocean cooling trend for the pre- industrial Common Era. Nature Geoscience, 8(9), 671–677. https://doi.org/10.1038/ngeo2510

Menzel, D., Van Bergen, P. F., Schouten, S., & Sinninghe Damsté, J. S. (2003). Reconstruction of changes in export productivity during Pliocene sapropel deposition: A biomarker approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 273–287. https://doi.org/10.1016/S0031-0182(02)00610-7

Michelakaki, M., & Kitsiou, D. (2005). Estimation of Anisotropies in Chlorophyll A spatial distributions based on satellite data and variography. Global NEST JournalGlobal NEST: The International Journal, 7(2), 204–211. https://doi.org/10.30955/gnj.000361

Moldoveanu, S. C., & David, V. (2019). Derivatization Methods in GC and GC/MS. Gas Chromatography - Derivatization, Sample Preparation, Application, 1–33. https://doi.org/10.5772/intechopen.81954

Moreno-Chamarro, E., Zanchettin, D., Lohmann, K., Luterbacher, J., & Jungclaus, J. H. (2017). Winter amplification of the European Little Ice Age cooling by the subpolar gyre. Scientific Reports, 7(1), 1–8. https://doi.org/10.1038/s41598-017-07969-0

Mouradian, M., Panetta, R. J., De Vernal, A., & Gélinas, Y. (2007). Dinosterols or dinocysts to estimate dinoflagellate contributions to marine sedimentary organic matter? Limnology and Oceanography, 52(6), 2569–2581. https://doi.org/10.4319/lo.2007.52.6.2569

Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I., & Rosell-Melé, A. (1998). Calibration of the alkenone paleotemperature index U37K based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochimica et Cosmochimica Acta, 62(10), 1757–1772. https://doi.org/10.1016/S0016-7037(98)00097-0

Nash, D., Leeming, R., Clemow, L., Hannah, M., Halliwell, D., & Allen, D. (2005). Quantitative determination of sterols and other alcohols in overland flow from grazing land and possible source materials. Water Research, 39(13), 2964–2978. https://doi.org/10.1016/j.watres.2005.04.063

Nieto-Moreno, V., Martinez-Ruiz, F., Giralt, S., Gallego-Torres, D., García-Orellana, J., Masqué, P., & Ortega-Huertas, M. (2013). Climate imprints during the “Medieval Climate Anomaly” and the “Little Ice Age” in marine records from the Alboran Sea basin. Holocene, 23(9), 1227–1237. https://doi.org/10.1177/0959683613484613

Ohkouchi, N., Kawamura, K., Kawahata, H., & Taira, A. (1997). Latitudinal distributions of terrestrial biomarkers in the sediments from the Central Pacific. Geochimica et Cosmochimica Acta, 61(9), 1911–1918. https://doi.org/10.1016/S0016-7037(97)00040-9

Ouyang, X., Guo, F., & Bu, H. (2015). Lipid biomarkers and pertinent indices from aquatic environment record paleoclimate and paleoenvironment changes. Quaternary Science Reviews, 123, 180–192. https://doi.org/10.1016/j.quascirev.2015.06.029

Pallacks, S., Ziveri, P., Martrat, B., Mortyn, P. G., Grelaud, M., Schiebel, R., Incarbona, A., Garcia-Orellana, J., & Anglada-Ortiz, G. (2021). Planktic foraminiferal changes in the western Mediterranean Anthropocene. Global and Planetary Change, 204, 103549. https://doi.org/10.1016/j.gloplacha.2021.103549

Papanikolaou, D., & Sideris, C. I. (2014). Geology (7th ed.). Patakis. Parinos, C., Gogou, A., Bouloubassi, I., Pedrosa-Pàmies, R., Hatzianestis, I., Sanchez-Vidal, A., Rousakis, G., Velaoras, D., Krokos, G., & Lykousis, V. (2013). Occurrence, sources and transport pathways of natural and anthropogenic hydrocarbons in deep-sea sediments of the eastern Mediterranean Sea. Biogeosciences, 10(9), 6069–6089. https://doi.org/10.5194/bg-10-6069-2013

Pedrosa-Pàmies, R., Conte, M. H., Weber, J. C., & Johnson, R. (2018). Carbon cycling in the Sargasso Sea water column: Insights from lipid biomarkers in suspended particles. Progress in Oceanography, 168, 248–278. https://doi.org/10.1016/j.pocean.2018.08.005

Pedrosa-Pàmies, R., Conte, M. H., Weber, J. C., & Johnson, R. (2019). Hurricanes Enhance Labile Carbon Export to the Deep Ocean. Geophysical Research Letters, 46(17–18), 10484–10494. https://doi.org/10.1029/2019GL083719

Pedrosa-Pàmies, R., Parinos, C., Sanchez-Vidal, A., Gogou, A., Calafat, A., Canals, M., Bouloubassi, I., & Lampadariou, N. (2015). Composition and sources of sedimentary organic matter in the deep eastern Mediterranean Sea. Biogeosciences, 12(24), 7379– 7402. https://doi.org/10.5194/bg-12-7379-2015

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen- Geiger climate classification. Hydrol. Earth Syst., 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007

Percot, A., Yalçin, A., Aysel, V., Erduǧan, H., Dural, B., & Güven, K. C. (2009). Loliolide in marine algae. Natural Product Research, 23(5), 460–465. https://doi.org/10.1080/14786410802076069

Poynter, J., & Eglinton, G. (1990). Molecular composition of three sediments from hole 717C: the Bengal Fan. Proc., Scientific Results, ODP, Leg 116, Distal Bengal Fan, 116, 155–161. https://doi.org/10.2973/odp.proc.sr.116.151.1990

Prahl, F. G., Muehlhausen, L. A., & Zahnle, D. L. (1988). Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta, 52(9), 2303–2310. https://doi.org/10.1016/0016-7037(88)90132-9

Prahl, F. G., & Wakeham, S. G. (1987). Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature, 330(6146), 367–369. https://doi.org/10.1038/330367a0

Rampen, S. W., Schouten, S., Koning, E., Brummer, G. J. A., & Sinninghe Damsté, J. S. (2008). A 90 kyr upwelling record from the northwestern Indian Ocean using a novel long-chain diol index. Earth and Planetary Science Letters, 276(1–2), 207–213. https://doi.org/10.1016/j.epsl.2008.09.022

Rampen, S. W., Willmott, V., Kim, J. H., Uliana, E., Mollenhauer, G., Schefuß, E., Sinninghe Damsté, J. S., & Schouten, S. (2012). Long chain 1,13- and 1,15-diols as a potential proxy for palaeotemperature reconstruction. Geochimica et Cosmochimica Acta, 84, 204–216. https://doi.org/10.1016/j.gca.2012.01.024

Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., … van der Plicht, J. (2013). IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon, 55(4), 1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947

Repeta, D. J. (1989). Carotenoid diagenesis in recent marine sediments: II. Degradation of fucoxanthin to loliolide. Geochimica et Cosmochimica Acta, 53(3), 699–707. https://doi.org/10.1016/0016-7037(89)90012-4

Roberts, N., Moreno, A., Valero-Garcés, B. L., Corella, J. P., Jones, M., Allcock, S., Woodbridge, J., Morellón, M., Luterbacher, J., Xoplaki, E., & Türkeş, M. (2012). Palaeolimnological evidence for an east-west climate see-saw in the Mediterranean since AD 900. Global and Planetary Change, 84–85, 23–34. https://doi.org/10.1016/j.gloplacha.2011.11.002

Robinson, A. R., Malanotte-Rizzoli, P., Hecht, A., Michelato, A., Roether, W., Theocharis, A., Ünlüata, Ü., Artegiani, A., Bergamasco, A., Bishop, J., Brenner, S., Christianidis, S., Gacic, M., Georgopoulos, D., Golnaraghi, M., Hausmann, M., Junghaus, H. G., Lascaratos, A., Latif, M. A., … Osman, M. (1992). General circulation of the Eastern Mediterranean. Earth Science Reviews, 32(4), 285–309. https://doi.org/10.1016/0012-8252(92)90002-B

Rodrigo-Gámiz, M., Martínez-Ruiz, F., Rampen, S. W., Schouten, S., & Sinninghe Damsté, J. S. (2013). Sea surface temperature variations in the western Mediterranean Sea over the last 20 kyr: A dual-organic proxy (UK’37 and LDI) approach. 87–98. https://doi.org/10.1002/2013PA002466.Received

Rohling, E. J. (1994). Review and new aspects concerning the formation of eastern Mediterranean sapropels. Marine Geology, 122(1–2), 1–28. https://doi.org/10.1016/0025-3227(94)90202-X

Rohling, E. J., Marino, G., & Grant, K. M. (2015). Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Science Reviews, 143, 62–97. https://doi.org/10.1016/j.earscirev.2015.01.008

Rosell-Melé, A., & McClymont, E. L. (2007). Biomarkers as Paleoceanographic Proxies. Developments in Marine Geology, 1(07), 441–490. https://doi.org/10.1016/S1572- 5480(07)01016-0

Rushdi, A. I., Douabul, A. ., Mohammed, S. S., & Simoneit, B. R. T. (2006). Compositions and sources of extractable organic matter in Mesopotamian marshland surface sediments of Iraq. I: Aliphatic lipids. Environmental Geology, 50(6), 857–866. https://doi.org/10.1007/s00254-006-0257-6

Rushdi, A. I., DouAbul, A. A. Z., Al-Maarofi, S. S., & Simoneit, B. R. T. (2018). Impacts of Mesopotamian wetland re-flooding on the lipid biomarker distributions in sediments. Journal of Hydrology, 558, 20–28. https://doi.org/10.1016/j.jhydrol.2018.01.030

Sargent, J. R., & Gatten, R. R. (1974). The distribution and metabolism of wax esters in marine invertebrates. 4(April 1976), 9–11.

Sawada, K., Handa, N., Shiraiwa, Y., Danbara, A., & Montani, S. (1996). Long-chain alkenones and alkyl alkenoates in the coastal and pelagic sediments of the northwest north Pacific, with special reference to the reconstruction of Emiliania huxleyi and Gephyrocapsa oceanica ratios. Organic Geochemistry, 24(8–9), 751–764. https://doi.org/10.1016/S0146-6380(96)00087-3

Scarlett, A., Galloway, T. S., & Rowland, S. J. (2007). Chronic toxicity of unresolved complex mixtures (UCM) of hydrocarbons in marine sediments. Journal of Soils and Sediments, 7(4), 200–206. https://doi.org/10.1065/jss2007.06.232

Sicre, M. A., Jalali, B., Martrat, B., Schmidt, S., Bassetti, M. A., & Kallel, N. (2016). Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era. Earth and Planetary Science Letters, 456, 124–133. https://doi.org/10.1016/j.epsl.2016.09.032

Sikes, E. L., Volkman, J. K., Robertson, L. G., & Pichon, J. J. (1997). Alkenones and alkenes in surface waters and sediments of the Southern Ocean: Implications for paleotemperature estimation in polar regions. Geochimica et Cosmochimica Acta, 61(7), 1495–1505. https://doi.org/10.1016/S0016-7037(97)00017-3

Simoneit, B. R. T. (1984). Organic matter of the troposphere-III. Characterization and sources of petroleum and pyrogenic residues in aerosols over the western united states. Atmospheric Environment (1967), 18(1), 51–67. https://doi.org/10.1016/0004-6981(84)90228-2

Sprengel, C., Baumann, K. H., & Neuer, S. (2000). Seasonal and interannual variation of coccolithophore fluxes and species composition in sediment traps north of Gran Canaria (29 °N15°W).Marine Micropaleontology,39(1–4),157–178. https://doi.org/10.1016/S0377-8398(00)00019-0

Strong, D., Flecker, R., Valdes, P. J., Wilkinson, I. P., Rees, J. G., Michaelides, K., Zong, Y. Q., Lloyd, J. M., Yu, F. L., & Pancost, R. D. (2013). A new regional, mid-Holocene palaeoprecipitation signal of the Asian Summer Monsoon. Quaternary Science Reviews, 78, 65–76. https://doi.org/10.1016/j.quascirev.2013.07.034

Theocharis, A., Georgopoulos, D., Lascaratos, A., & Nittis, K. (1993). Water masses and circulation in the central region of the Eastern Mediterranean. Deep-Sea Research II, 40(6), 1121–1142.

Tierney, J. E., & Tingley, M. P. (2018). BAYSPLINE: A New Calibration for the Alkenone Paleothermometer. Paleoceanography and Paleoclimatology, 33(3), 281–301. https://doi.org/10.1002/2017PA003201

Triantaphyllou, M., & Dimiza, M. (2012). Micropalaeontology and Geoenvironment. ION Publishing Group.

Triantaphyllou, M., Gogou, A., Dimiza, M., Kostopoulou, S., Parinos, C., Roussakis, G., Geraga, M., Bouloubassi, I., Fleitmann, D., Zervakis, V., Velaoras, D., Diamantopoulou, A., Sampatakaki, A., & Lykousis, V. (2016). Holocene Climatic Optimum centennial-scale paleoceanography in the NE Aegean (Mediterranean Sea). Geo-Marine Letters, 36(1), 51–66. https://doi.org/10.1007/s00367-015-0426-2

Triantaphyllou, M. V., Baumann, K. H., Karatsolis, B. T., Dimiza, M. D., Psarra, S., Skampa, E., Patoucheas, P., Vollmar, N. M., Koukousioura, O., Katsigera, A., Krasakopoulou, E., & Nomikou, P. (2018). Coccolithophore community response along a natural CO2 gradient off Methana (SW Saronikos Gulf, Greece, NE Mediterranean). PLoS ONE, 13(7). https://doi.org/10.1371/journal.pone.0200012

Triantaphyllou, M., Ziveri, P., Gogou, A., Marino, G., Lykousis, V., Bouloubassi, I., Emeis, K. C., Kouli, K., Dimiza, M., Rosell-Melé, A., Papanikolaou, M., Katsouras, G., & Nunez, N. (2009). Late Glacial-Holocene climate variability at the south-eastern margin of the Aegean Sea. Marine Geology, 266(1–4), 182–197. https://doi.org/10.1016/j.margeo.2009.08.005

Tselepides, A., Zervakis, V., Polychronaki, T., Danovaro, R., & Chronis, G. (2000). Distribution of nutrients and particulate organic matter in relation to the prevailing hydrographic features of the Cretan Sea (NE Mediterrarean). Progress in Oceanography, 46(2–4), 113– 142. https://doi.org/10.1016/S0079-6611(00)00015-X

Tyson, R. (2006). The Biomarker Guide. Volume 1: Biomarkers and Isotopes in the Environment and Human History. Volume 2: Biomarkers and Isotopes in Petroleum Exploration and Earth History . Second Edition. (First. Geological Magazine, 143(2), 249– 250. https://doi.org/10.1017/s0016756806212056

Tzanis, A., Efstathiou, A., Chailas, S., & Stamatakis, M. (2018). Evidence of recent plutonic magmatism beneath Northeast Peloponnesus (Greece) and its relationship to regional tectonics. Geophysical Journal International, 212(3), 1600–1626. https://doi.org/10.1093/gji/ggx486

Van der Meer, M. T. J., Benthien, A., Bijma, J., Schouten, S., & Sinninghe Damsté, J. S. (2013). Alkenone distribution impacts the hydrogen isotopic composition of the C37:2 and C37:3 alkan-2-ones in emiliania huxleyi. Geochimica et Cosmochimica Acta, 111, 162– 166. https://doi.org/10.1016/j.gca.2012.10.041

Velaoras, D., Zervakis, V., & Theocharis, A. (2021). The Physical Characteristics and Dynamics of the Aegean Water Masses. https://doi.org/10.1007/698_2020_730

Versteegh, G. J. M. (2005). Solar forcing of climate. 2: Evidence from the past. Space Science Reviews, 120(3–4), 243–286. https://doi.org/10.1007/s11214-005-7047-4

Versteegh, G. J. M., Jansen, J. H. F., De Leeuw, J. W., & Schneider, R. R. (2000). Mid-chain diols and keto-ols in SE Atlantic sediments: A new tool for tracing past sea surface water masses? Geochimica et Cosmochimica Acta, 64(11), 1879–1892. https://doi.org/10.1016/S0016-7037(99)00398-1

Versteegh, G. J. M., & Lipp, J. (2019). Detection of new long-chain mid-chain keto-ol isomers from marine sediments by means of HPLC–APCI-MS and comparison with long-chain mid-chain diols from the same samples. Organic Geochemistry, 133, 92–102. https://doi.org/10.1016/j.orggeochem.2019.04.004

Volkman, J. K. (1986). A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 9(2), 83–99. https://doi.org/10.1016/0146-6380(86)90089-6

Volkman, J. K. (2003). Sterols in microorganisms. Applied Microbiology and Biotechnology, 60(5), 495–506. https://doi.org/10.1007/s00253-002-1172-8

Volkman, J. K. (2005). Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways. Organic Geochemistry, 36(2), 139–159. https://doi.org/10.1016/j.orggeochem.2004.06.013

Volkman, J. K., Barrett, S. M., & Blackburn, S. I. (1999). Eustigmatophyte microalgae are potential sources of C29 sterols, C22-C28 n-alcohols and C28-C32 n-alkyl diols in freshwater environments. Organic Geochemistry, 30(5), 307–318. https://doi.org/10.1016/S0146-6380(99)00009-1

Volkman, J. K., Barrett, S. M., Blackburn, S. I., & Sikes, E. L. (1995). Alkenones in Gephyrocapsa oceanica: Implications for studies in paleoclimate. Science, 59(3), 513–520.

Walker, M. J. C., Berkelhammer, M., Björck, S., Cwynar, L. C., Fisher, D. A., Long, A. J., Lowe, J. J., Newnham, R. M., Rasmussen, S. O., & Weiss, H. (2012). Formal subdivision of the Holocene Series/Epoch: A Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). Journal of Quaternary Science, 27(7), 649–659. https://doi.org/10.1002/jqs.2565

Wang, Z., Fingas, M., & Page, D. S. (1999). Oil spill identification. Journal of Chromatography A, 843(1–2), 369–411. https://doi.org/10.1016/S0021-9673(99)00120-X

Zanchetta, G., Van Welden, A., Baneschi, I., Drysdale, R., Sadori, L., Roberts, N., Giardini, M., Beck, C., Pascucci, V., & Sulpizio, R. (2012). Multiproxy record for the last 4500 years from Lake Shkodra (Albania/Montenegro). Journal of Quaternary Science, 27(8), 780– 789. https://doi.org/10.1002/jqs.2563

Zanetos, Α., & Papathanassiou, E. (2005). State of the Hellenic Marine Environment. http://epublishing.ekt.gr/sites/ektpublishing/files/ebooks/Sohelme.pdf

Zervoudaki, S., Siokou, I., Krasakopoulou, E., Kontoyiannis, H., Pavlidou, A., Assimakopoulou, G., Katsiaras, N., Reizopoulou, S., Karageorgis, A. P., Kaberi, H., Lardi, P. I., Gerakaris, V., Tsiamis, K., Salomidi, M., Zeri, C., Pitta, E., Strogyloudi, E., Parinos, C., Hatzianestis, I., … Simboura, N. (2022). Biogeochemical Characteristics in the Saronikos Gulf (Aegean Sea, Eastern Mediterranean). 2000(June 2023),2012–2015. https://doi.org/10.1007/698_2022_898

Zheng, Y., Huang, Y., Andersen, R. A., & Amaral-Zettler, L. A. (2016). Excluding the di- unsaturated alkenone in the UK37 index strengthens temperature correlation for the common lacustrine and brackish-water haptophytes. Geochimica et Cosmochimica Acta, 175, 36–46. https://doi.org/10.1016/j.gca.2015.11.024


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.