Μελέτη της σύνδεσης των ακραίων βροχοπτώσεων με τη σχέση Clausius-Clapeyron: η περίπτωση της Θεσσαλονίκης, Ελλάδα = The link of extreme precipitation with the Clausius-Clapeyron relation: The case study of Thessaloniki, Greece.
Περίληψη
Climate change is one of the most important issues of the 21st century worldwide. One of its direct effects is the increase in the frequency and intensity of extreme precipitation events observed in many world regions. This has very significant social and economic consequences for the affected areas (flooding, loss of life, destruction of infrastructure, etc.). Future trends indicate further intensification of extreme rainfall events in the second half of the century, making the need for timely and accurate forecasting of these events more urgent than ever. However, despite the very large technological development of meteorological and climate models in recent years, which are now able to provide very high accuracy results for various meteorological parameters, they still have a significant problem in detecting extreme values, especially for the precipitation parameter. The aim of the present thesis is the climatological study of extreme precipitation events in the region of Thessaloniki and the investigation of their sensitivity to temperature based on the Clausius-Clapeyron (CC) relationship. Subsequently, the ability of reanalysis data and climate and meteorological models in the detection of extreme precipitation is studied and the use of rainfall-temperature relations is tested in order to improve these results. The findings of this work are of particular importance in improving the ability to estimate (climatologically) and forecast (meteorologically) extreme rainfall events as well as the design parameters of flood-prone infrastructures in order to prevent against extreme events.
Πλήρες Κείμενο:
PDFΑναφορές
Ali, E., & Cramer, W. (2023). Mediterranean Region. In Climate Change 2022 – Impacts, Adaptation and Vulnerability (pp. 2233–2272). Cambridge University Press. https://doi.org/10.1017/9781009325844.021
Ali, H., & Mishra, V. (2017). Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-01306-1
Allen, M. R., & Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic cycle. In Nature (Vol. 419, Issue 6903). https://doi.org/10.1038/nature01092
Berg, P., Moseley, C., & Haerter, J. O. (2013). Strong increase in convective precipitation in response to higher temperatures. Nature Geoscience, 6(3). https://doi.org/10.1038/ngeo1731
Bisselink, B., & Dolman, A. J. (2008). Precipitation recycling: Moisture sources over Europe using ERA-40 data. Journal of Hydrometeorology, 9(5). https://doi.org/10.1175/2008JHM962.1
Bolton, D. (1980). The computation of equivalent potential temperature. Monthly Weather Review, 108(7). https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
Chen, C., Guerit, L., Foreman, B. Z., Hassenruck-Gudipati, H. J., Adatte, T., Honegger, L., Perret, M., Sluijs, A., & Castelltort, S. (2018). Estimating regional flood discharge during Palaeocene-Eocene global warming. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-31076-3
Cherif, S., Doblas-Miranda, E., & Lionello, P. (2020). Drivers of change. In Climate and environmental change in the Mediterranean basin – Current situation and risks for the future. First Mediterranean assessment report, Union for the Mediterranean.
Diakakis, M., & Deligiannakis, G. (2017). Flood fatalities in Greece: 1970–2010. Journal of Flood Risk Management, 10(1). https://doi.org/10.1111/jfr3.12166
Diakakis, M., Mavroulis, S., & Deligiannakis, G. (2012). Floods in Greece, a statistical and spatial approach. Natural Hazards, 62(2). https://doi.org/10.1007/s11069-012-0090-z
Diakakis, M., Papagiannaki, K., & Fouskaris, M. (2023). The Occurrence of Catastrophic Multiple-Fatality Flash Floods in the Eastern Mediterranean Region. Water (Switzerland), 15(1). https://doi.org/10.3390/w15010119
Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., & Maher, N. (2016). More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6(5). https://doi.org/10.1038/nclimate2941
Drobinski, P., Silva, N. Da, Panthou, G., Bastin, S., Muller, C., Ahrens, B., Borga, M., Conte, D., Fosser, G., Giorgi, F., Güttler, I., Kotroni, V., Li, L., Morin, E.,
Önol, B., Quintana-Segui, P., Romera, R., & Torma, C. Z. (2018). Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios. Climate Dynamics, 51(3), 1237–1257. https://doi.org/10.1007/s00382-016-3083-x
Feidas, H., Noulopoulou, C., Makrogiannis, T., & Bora-Senta, E. (2007). Trend analysis of precipitation time series in Greece and their relationship with circulation using surface and satellite data: 1955-2001. Theoretical and Applied Climatology, 87(1–4). https://doi.org/10.1007/s00704-006-0200-5
Gaume, E., Borga, M., Llasat, M. C., Maouche, S., Lang, M., & Diakakis, M. (2018). Sub-chapter 1.3.4. Mediterranean extreme floods and flash floods. In The Mediterranean region under climate change. https://doi.org/10.4000/books.irdeditions.23181
Giorgi, F., Raffaele, F., & Coppola, E. (2019). The response of precipitation characteristics to global warming from climate projections. Earth System Dynamics, 10(1). https://doi.org/10.5194/esd-10-73-2019
Gomis-Cebolla, J., Rattayova, V., Salazar-Galán, S., & Francés, F. (2023). Evaluation of ERA5 and ERA5-Land reanalysis precipitation datasets over Spain (1951–2020). Atmospheric Research, 284. https://doi.org/10.1016/j.atmosres.2023.106606
Grillakis, M. G., & Koutroulis, A. G. (2018). Hydrometeorological Extremes in a Warmer Climate: A Local Scale Assessment for the Island of Crete. https://doi.org/10.3390/ecws-3-05818
IPCC. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. https://doi.org/10.59327/IPCC/AR6-9789291691647
Jiang, Q., Li, W., Fan, Z., He, X., Sun, W., Chen, S., Wen, J., Gao, J., & Wang, J. (2021). Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. Journal of Hydrology, 595. https://doi.org/10.1016/j.jhydrol.2020.125660
Lavers, D. A., Simmons, A., Vamborg, F., & Rodwell, M. J. (2022). An evaluation of ERA5 precipitation for climate monitoring. Quarterly Journal of the Royal Meteorological Society, 148(748). https://doi.org/10.1002/qj.4351
Lenderink, G., Barbero, R., Loriaux, J. M., & Fowler, H. J. (2017). Super-Clausius-Clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. Journal of Climate, 30(15). https://doi.org/10.1175/JCLI-D-16-0808.1
Lenderink, G., & Van Meijgaard, E. (2008). Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geoscience, 1(8). https://doi.org/10.1038/ngeo262
Lionello, P., & Scarascia, L. (2020). The relation of climate extremes with global warming in the Mediterranean region and its north versus south contrast. Regional Environmental Change, 20(1). https://doi.org/10.1007/s10113-020-01610-z
Madsen, H., Lawrence, D., Lang, M., Martinkova, M., & Kjeldsen, T. R. (2014). Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. Journal of Hydrology, 519(PD). https://doi.org/10.1016/j.jhydrol.2014.11.003
Manola, I., Van Den Hurk, B., De Moel, H., & Aerts, J. C. J. H. (2018). Future extreme precipitation intensities based on a historic event. Hydrology and Earth System Sciences, 22(7). https://doi.org/10.5194/hess-22-3777-2018
Martinkova, M., & Kysely, J. (2020). Overview of observed clausius-clapeyron scaling of extreme precipitation in midlatitudes. In Atmosphere (Vol. 11, Issue 8). https://doi.org/10.3390/ATMOS11080786
Molnar, P., Fatichi, S., Gaál, L., Szolgay, J., & Burlando, P. (2015). Storm type effects on super Clausius-Clapeyron scaling of intense rainstorm properties with air temperature. Hydrology and Earth System Sciences, 19(4). https://doi.org/10.5194/hess-19-1753-2015
Nastos, P., & Zerefos, C. (2010). Climate change and precipitation in Greece. Hellenic Journal of Geosciences, 45(1), 185–192.
Pakalidou, N., & Karacosta, P. (2018). Study of very long-period extreme precipitation records in Thessaloniki, Greece. Atmospheric Research, 208. https://doi.org/10.1016/j.atmosres.2017.07.029
Pakalidou, N., Karacosta, P., & Douka, M. (2021). Associating short-duration precipitation extreme events with land surface temperature in Thessaloniki. COMECAP2021.
Pall, P., Allen, M. R., & Stone, D. A. (2007). Testing the Clausius-Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate
Dynamics, 28(4). https://doi.org/10.1007/s00382-006-0180-2
Papadopoulos-Zachos, A. (2020). STUDY OF THE EXTREME PRECIPITATION INDICES IN THE GREEK AREA. Aristotle University of Thessaloniki, School of Geology.
Papagiannaki, K., Lagouvardos, K., & Kotroni, V. (2013). A database of high-impact weather events in Greece: A descriptive impact analysis for the period 2001-2011. Natural Hazards and Earth System Science, 13(3). https://doi.org/10.5194/nhess-13-727-2013
Pereira, S., Diakakis, M., Deligiannakis, G., & Zêzere, J. L. (2017). Comparing flood mortality in Portugal and Greece (Western and Eastern Mediterranean). International Journal of Disaster Risk Reduction, 22. https://doi.org/10.1016/j.ijdrr.2017.03.007
Philandras, C. M., Nastos, P. T., Kapsomenakis, J., Douvis, K. C., Tselioudis, G., & Zerefos, C. S. (2011). Long term precipitation trends and variability within the Mediterranean region. Natural Hazards and Earth System Sciences, 11(12). https://doi.org/10.5194/nhess-11-3235-2011
Schroeer, K., & Kirchengast, G. (2018). Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective. Climate Dynamics, 50(11–12). https://doi.org/10.1007/s00382-017-3857-9
Tang, J., Lu, Y., Wang, S., Guo, Z., Lu, Y., & Fang, J. (2023). Projection of Hourly Extreme Precipitation Using the WRF Model Over Eastern China. Journal of
Geophysical Research: Atmospheres, 128(1). https://doi.org/10.1029/2022JD036448
Tolika, K., Maheras, P., & Anagnostopoulou, C. (2018). The exceptionally wet year of 2014 over Greece: a statistical and synoptical-atmospheric analysis over the region of Thessaloniki. Theoretical and Applied Climatology, 132(3–4). https://doi.org/10.1007/s00704-017-2131-8
Tramblay, Y., & Somot, S. (2018). Future evolution of extreme precipitation in the Mediterranean. Climatic Change, 151(2). https://doi.org/10.1007/s10584-018-2300-5
Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2). https://doi.org/10.3354/cr00953
Utsumi, N., Seto, S., Kanae, S., Maeda, E. E., & Oki, T. (2011). Does higher surface temperature intensify extreme precipitation? Geophysical Research Letters, 38(16). https://doi.org/10.1029/2011GL048426
Van de Vyver, H., Van Schaeybroeck, B., De Troch, R., Hamdi, R., & Termonia, P. (2019). Modeling the Scaling of Short-Duration Precipitation Extremes With Temperature. Earth and Space Science, 6(10). https://doi.org/10.1029/2019EA000665
Zhang, W., Villarini, G., & Wehner, M. (2019). Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures. Climatic Change. https://doi.org/10.1007/s10584-019-02415-8
Zittis, G., Bruggeman, A., & Lelieveld, J. (2021). Revisiting future extreme precipitation trends in the Mediterranean. Weather and Climate Extremes, 34. https://doi.org/10.1016/j.wace.2021.100380
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.