Εξώφυλλο

Υπολογισμός και ανάλυση των τιμών του ERF για μια ομάδα ρύπων (CH₄, GHGs, HC, N₂O, O₃) σε σχέση με τα προβιομηχανικά επίπεδα με βάση το μοντέλο UKESM1 = calculation and analysis of the ERF valus for a group of pollutants (CH₄, GHGs, HC, N₂O, O₃) in relation to the pre-industrial levels based on the UKESM1 model.

Αλέξανδρος Βασίλης Τσιαμπαζης

Περίληψη


Στην παρακάτω εργασία εξετάζεται η μεταβλητή ERF (Effective Radiative Forcing) που αφορά την μεταβολή του ισοζυγίου ακτινοβολίας της Γης σε σχέση με την αύξηση ή μείωση ενός ρύπου ή μιας ομάδας ρύπων με αποτέλεσμα να προκληθεί θέρμανση ή ψύξη. Οι εξεταζόμενοι ρύποι είναι το μεθάνιο που είναι ένας αέριος υδρογονάνθρακας, το σύνολο των αερίων του θερμοκηπίου που αποτελούν βασική ομάδα ρύπων για την θερμοκρασία του πλανήτη μιας και σε αυτούς οφείλεται το φαινόμενο του θερμοκηπίου, τους αλογονάνθρακες στους οποίους συμπεριλαμβάνονται οι πολυσυζητημένοι χλωροφθοράνθρακες, το υποξείδιο του αζώτου που παράγεται κατά κύριο λόγο στο έδαφος και το όζον που αποτελεί ευεργετικό ρύπο στην στρατόσφαιρα και βλαβερό στην τροπόσφαιρα. Τα δεδομένα προέρχονται από το κλιματικό μοντέλο UKESM1 του προγράμματος CMIP6 (Coupled Model Interpolation Project 6) . Η ανάλυση των δεδομένων για την εξαγωγή των αποτελεσμάτων γίνεται με τη χρήση της γλώσσας προγραμματισμού R στο RStudio ενώ μέσω αυτού παράγονται και χάρτες που δείχνουν την κατάσταση του ERF σε σχέση με κάθε ρύπο ή ομάδα ρύπων κάνοντας ξεκάθαρη την ύπαρξη θέρμανσης ή ψύξης. Τέλος, παρουσιάζεται και μία σύγκριση με άλλα μοντέλα και εργασίες. Όπως αποκαλύπτεται από τα αποτελέσματα και από τη σύγκριση υπάρχουν τιμές του ERF που συμφωνούν με άλλα μοντέλα και εργασίες αλλά και κάποιες που αποκλίνουν.

In the following project, the variable ERF (Effective Radiative Forcing) is examined. ERF is a variable which concerns the change in the Earth's radiation balance in relation to the increase or decrease of a pollutant or a group of pollutants, resulting in warming or cooling. The pollutants examined are methane which is a gaseous hydrocarbon, greenhouse gases which are a basic group of pollutants for the temperature of the planet since they are responsible for the greenhouse effect, halocarbons which include the much-discussed chlorofluorocarbons, nitrous oxide which is mainly produced in the soil and ozone which is a beneficial pollutant in the stratosphere and a harmful one in the troposphere. The data stem from the UKESM1 climatic model of the CMIP6 (Coupled Model Interpolation Project 6). The analysis of the data, to extract the results is done using the R programming language in RStudio, while through it maps are also produced that show the state of the ERF in relation to each pollutant or group of pollutants making clear the existence of heating or cooling. In the end a comparison with other models and projects is being presented. As it is revealed by the results and the comparison there are some ERF values that agree with other models and projects and some others that diverge.

Πλήρες Κείμενο:

PDF

Αναφορές


Λαζαρίδης Μ.,(2020), Ατμοσφαιρική Ρύπανση με Στοιχεία Μετεωρολογίας 2η Έκδοση, Αθήνα: Εκδόσεις Τζιόλα.

Abernethy, S., O’Connor, F. M., Jones, C. D., & Jackson, R. B. (2021). Methane removal and the proportional reductions in surface temperature and ozone. Philosophical Transactions of the Royal Society A, 379(2210), 20210104. https://doi.org/10.1098/rsta.2021.0104

Allen, M. R., Shine, K. P., Fuglestvedt, J. S., Millar, R. J., Cain, M., Frame, D. J., & Macey, A. H. (2018). A solution to the misrepresenta-tions of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. npj Climate and Atmospheric Science, 1, 16. https://doi.org/10.1038/s41612-018-0026-8

Allen, R. J., Horowitz, L. W., Naik, V., Oshima, N., O'Connor, F. M., Turnock, S., et al. (2021). Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions. Environmental Research Letters, 16, 034010. https://doi.org/10.1088/1748-9326/abe06b

Andrews, T.: Using an AGCM to Diagnose Historical Effective Radiative Forcing and Mechanisms of Recent Decadal Climate Change, J. Climate, DOI: 10.1175/JCLI-D-13-00336.1, 2014.

Andrews, T., M. B. Andrews, A. Bodas-Salcedo, G. S. Jones, T. Kulhbrodt, J. Manners, M. B. Menary, J. Ridley, M. A. Ringer,A. A. Sellar, C. A. Senior, and Y. Tang: Forcings, feedbacks and climate sensitivity in HadGEM3-GC3.1 and UKESM1, J.Adv. Modeling Earth Sys., Submitted, 2019.

Andrews, T., and P. M. Forster: Energy budget constraints on historical radiative forcing, Nature Climate Change, Submitted, 2019.

Banerjee, A., A. T. Archibald, A. Maycock, P. Telford, N. L. Abraham, X. Yang, P. Braesicke, και J. Pyle. ‘Lightning NO<Sub>X</Sub>, a Key Chemistry–

Climate Interaction: Impacts of Future Climate Change and Consequences for Tropospheric Oxidising Capacity’. Preprint. Gases/Atmospheric Modelling/Troposphere/Chemistry (chemical composition and reactions), 31 Μάρτιος 2014. https://doi.org/10.5194/acpd-14-8753-2014.

Butler, James H, Mark Battle, Michael L Bender, Stephen A Montzka, Andrew D Clarke, και Eric S Saltzman. ‘A Record of Atmospheric Halocarbons during the Twentieth Century from Polar ®rn Air’ 399 (1999).

Chung, E.-S., and B. J. Soden: An assessment of methods for computing radiative forcing in climate models, Environ. Res.Lett., 10, 074004, 2015.

Clifton O E, Fiore A M, Correa G, Horowitz L W and Naik V 2014 Twenty-first century reversal of the surface ozone seasonal cycle over the northeastern United States Geophys. Res. Lett. 41 7343–50.

Collins, William J., Jean-François Lamarque, Michael Schulz, Olivier Boucher, Veronika Eyring, Michaela I. Hegglin, Amanda Maycock, κ.ά. ‘AerChemMIP: Quantifying the Effects of Chemistry and Aerosols in CMIP6’. Geoscientific Model Development 10, τχ. 2 (9 Φεβρουάριος 2017): 585–607. https://doi.org/10.5194/gmd-10-585-2017.

Etminan, M., G. Myhre, E. J. Highwood, and K. P. Shine: Radiative forcing of carbon dioxide, methane, and nitrous oxide: Asignificant revision of the methane radiative forcing, Geophys. Res. Lett., 43, 12614–12623, doi:10.1002/2016GL071930,2016.

Eyring, Veronika, Sandrine Bony, Gerald A. Meehl, Catherine A. Senior, Bjorn Stevens, Ronald J. Stouffer, και Karl E. Taylor. ‘Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization’. Geoscientific Model Development 9, τχ. 5 (26 Μάιος 2016): 1937–58. https://doi.org/10.5194/gmd-9-1937-2016.

Forster, P. M., T. Richardson, A. C. Maycock, C. J. Smith, B. H. Samset, G. Myhre, T. Andrews, R. Pincus, and M. Schulz:Recommendations for diagnosing effective radiative forcing from climate models for CMIP6, J. Geophys. Res.Atmos.,121,12460–12475, doi:10.1002/2016JD025320, 2016.

Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T. Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang, 2021: The

Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 923–1054, doi: 10.1017/9781009157896.009.

Fu, Yu, και Hong Liao. ‘Biogenic Isoprene Emissions over China: Sensitivity to the CO 2 Inhibition Effect’. Atmospheric and Oceanic Science Letters 9, τχ. 4 (3 Ιούλιος 2016): 277–84. https://doi.org/10.1080/16742834.2016.1187555.

Garrido-Perez J M, Ordóñez C, García-Herrera R and Barriopedro D 2018 Air stagnation in Europe: spatiotemporal variability and impact on air quality Sci. Total Environ. 645 1238–52.

Ghan, S. J.: Technical Note: Estimating aerosol effects on cloud radiative forcing, Atmos. Chem. Phys., 13, 9971-9974,https://doi.org/10.5194/acp-13-9971-2013, 2013.

Ghimire, Uttam, Narayan Kumar Shrestha, Asim Biswas, Claudia Wagner-Riddle, Wanhong Yang, Shiv Prasher, Ramesh Rudra, και Prasad Daggupati. ‘A Review of Ongoing Advancements in Soil and Water Assessment Tool (SWAT) for Nitrous Oxide (N₂O) Modeling’. Atmosphere 11, τχ. 5 (29 Απρίλιος 2020): 450. https://doi.org/10.3390/atmos11050450

Hansen, J., Sato, M., and R. Ruedy: Radiative Forcing and Climate Response, J. Geophys. Res., 102, D6, 6831-6864, 1997.

Hansen, J., M. Sato, R. Ruedy, L. Nazarenko, A. Lacis, G. A. Schmidt, G. Russell, I. Aleinov, M. Bauer, S. Bauer, N. Bell, B.Cairns, V. Canuto, M. Chandler, Y.

Cheng, A. Del Genio, G. Faluvegi, E. Fleming, A. Friend, T. Hall, C. Jackman, M. Kelley,N. Kiang, D. Koch, J. Lean, J. Lerner, K. Lo, S. Menon, R. Miller, P. Minnis, T. Novakov, V. Oinas, Ja. Perlwitz, Ju. Perlwitz, D. Rind, A. Romanou, D. Shindell, P. Stone, S. Sun, N. Tausnev, D. Thresher, B. Wielicki, T. Wong, M. Yao, and S.

Zhang:Efficacy of climate forcings, J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776, 2005.

Hollaway M J, Arnold S R, Collins W J, Folberth G and Rap A 2017 Sensitivity ofmidnineteenth century tropospheric ozone to atmospheric chemistry-vegetation interactions J. Geophys. Res. 122 2452–73.

Jiang, Zhe, Brian C. McDonald, Helen Worden, John R. Worden, Kazuyuki Miyazaki, Zhen Qu, Daven K. Henze, κ.ά. ‘Unexpected Slowdown of US Pollutant Emission Reduction in the Past Decade’. Proceedings of the National Academy of Sciences 115, τχ. 20 (15 Μάιος 2018): 5099–5104. https://doi.org/10.1073/pnas.1801191115.

Jing P, Lu Z and Steiner A L 2017 The ozone-climate penalty in the Midwestern US Atmos. Environ. 170 130–42.

Lehnert, N.; Coruzzi, G.; Hegg, E.; Seefeldt, L.; Stein, L. NSF workshop report: Feeding the world in the21st century: Grand challenges in the nitrogen cycle. 2017.

Lin, Meiyun, Larry W. Horowitz, Richard Payton, Arlene M. Fiore, και Gail Tonnesen. ‘US Surface Ozone Trends and Extremes from 1980–2014: Quantifying the Roles of Rising Asian Emissions, Domestic Controls, Wildfires, and Climate’. Preprint. Gases/Atmospheric Modelling/Troposphere/Chemistry (chemical

composition and reactions), 7 Δεκέμβριος 2016. https://doi.org/10.5194/acp-2016-1093.

Lin M, Horowitz L W, Xie Y, Paulot F, Malyshev S, Shevliakova E and Pilegaard K 2020 Vegetation feedbacks during drought exacerbate ozone air pollution extremes in Europe Nat. Clim. Change 10 444–51.

Ma, Mingchen, Yang Gao, Yuhang Wang, Shaoqing Zhang, L. Ruby Leung, Cheng Liu, Shuxiao Wang, κ.ά. ‘Substantial Ozone Enhancement over the North China Plain from Increased Biogenic Emissions Due to Heat Waves and Land Cover in Summer 2017’. Atmospheric Chemistry and Physics 19, τχ. 19 (2 Οκτώβριος 2019): 12195–207. https://doi.org/10.5194/acp-19-12195-2019.

Morgenstern, Olaf, Fiona M. O’Connor, Ben T. Johnson, Guang Zeng, Jane P. Mulcahy, Jonny Williams, João Teixeira, κ.ά. ‘Reappraisal of the Climate Impacts of Ozone‐Depleting Substances’. Geophysical Research Letters 47, τχ. 20 (28 Οκτώβριος 2020): e2020GL088295. https://doi.org/10.1029/2020GL088295.

Murray, Lee T. ‘Lightning NO x and Impacts on Air Quality’. Current Pollution Reports 2, τχ. 2 (Ιούνιος 2016): 115–33. https://doi.org/10.1007/s40726-016-0031-7.

Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T.Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang (2013a): Anthropogenic and Natural Radiative Forcing. In:Climate Change 2013: The Physical Science Basis. Contribution of Working

Group I to the Fifth Assessment Report of theIntergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A.Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York,NY, USA.

O'Connor, F. M., O. Boucher, N. Gedney, C.D. Jones, G.A. Folberth, R. Coppell, P. Friedlingstein, W.J. Collins, J. Chappellaz, 1265 J. Ridley, and C.E. Johnson (2010): The possible role of wetlands, permafrost and methane hydrates in the future methane cycle: A review, Rev. Geophys., 48, RG4005, doi:10.1029/2010RG000326.

O’Connor, Fiona M., N. Luke Abraham, Mohit Dalvi, Gerd Folberth, Paul Griffiths, Catherine Hardacre, Ben T. Johnson, κ.ά. ‘Assessment of Pre-Industrial to Present-Day Anthropogenic Climate Forcing in UKESM1’. Preprint. Gases/Atmospheric Modelling/Troposphere/Chemistry (chemical composition and reactions), 3 Φεβρουάριος 2020. https://doi.org/10.5194/acp-2019-1152.

O’Connor, Fiona M., Ben T. Johnson, Omar Jamil, Timothy Andrews, Jane P. Mulcahy, και James Manners. ‘Apportionment of the Pre‐Industrial to Present‐Day Climate Forcing by Methane Using UKESM1: The Role of the Cloud Radiative Effect’. Journal of Advances in Modeling Earth Systems 14, τχ. 10 (Οκτώβριος 2022): e2022MS002991. https://doi.org/10.1029/2022MS002991.

Patra, Abhik, Hanuman Singh Jatav, Kiran Kumar Mohapatra, Arnab Kundu, Satish Kumar Singh, Vipin Kumar, Laimayum Devarishi Sharma, και Mohsina Anjum. ‘Plant–Soil Interactions in a Changing World: A Climate Change Perspective’. Στο Frontiers in Plant-Soil Interaction, 1–27. Elsevier, 2021. https://doi.org/10.1016/B978-0-323-90943-3.00004-3.

Pincus, Robert, Piers M. Forster, και Bjorn Stevens. ‘The Radiative Forcing Model Intercomparison Project (RFMIP): Experimental Protocol for CMIP6’. Geoscientific Model Development 9, τχ. 9 (27 Σεπτέμβριος 2016): 3447–60. https://doi.org/10.5194/gmd-9-3447-2016.

Pinnock, Simon, Michael D. Hurley, Keith P. Shine, Timothy J. Wallington, και Timothy J. Smyth. ‘Radiative Forcing of Climate by Hydrochlorofluorocarbons and Hydrofluorocarbons’. Journal of Geophysical Research: Atmospheres 100, τχ. D11 (20 Νοέμβριος 1995): 23227–38. https://doi.org/10.1029/95JD02323.

Prather, Michael J., και Juno Hsu. ‘Coupling of Nitrous Oxide and Methane by Global Atmospheric Chemistry’. Science 330, τχ. 6006 (12 Νοέμβριος 2010): 952–54. https://doi.org/10.1126/science.1196285.

Ramaswamy, V., O. Boucher, J. Haigh, D. Hauglustaine, J. Haywood, G. Myhre, T. Nakajima, G. Y. Shi, and S. Solomon (2001), Radiative forcing of climate change, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by Y. Ding et al., Cambridge Univ. Press, Cambridge and New York.

Schnell J L and Prather M J 2017 Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America Proc. Natl Acad. Sci. 114 2854-9.

Shindell, D. T., G. Faluvegi, N. Bell, and G. A. Schmidt (2005): An emissions-based view of climate forcing by methane and tropospheric ozone, Geophys. Res. Lett., 32, L04803, doi:10.1029/2004GL021900.

Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., and Bauer, S. E. (2009): Improved attribution of climate forcing to emissions, Science, 326, 716–718, doi:10.1126/science.1174760.

Shindell, D., G. Faluvegi, L. Nazarenko, K. Bowman, J.-F. Lamarque, A. Voulgarakis, G. A. Schmidt, O. Pechony and R. Ruedy (2013a): Attribution of historical ozone forcing to anthropogenic emissions, Nature Climate Change, 3, pp. 567–570.

Subramaniam, Vijaya, και Choo Yuen May. ‘GREENHOUSE GAS EMISSIONS FOR THE PRODUCTION OF CRUDE PALM KERNEL OIL – A GATE-TO-GATE CASE STUDY’. JOURNAL OF OIL PALM RESEARCH, 2012.

Thornhill, Gillian D., William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O’Connor, Nathan Luke Abraham, κ.ά. ‘Effective Radiative Forcing from Emissions of Reactive Gases and Aerosols – a Multi-Model Comparison’. Atmospheric Chemistry and Physics 21, τχ. 2 (21 Ιανουάριος 2021): 853–74. https://doi.org/10.5194/acp-21-853-2021.

Winterstein, F., F. Tanalski, P. Jöckel, M. Dameris, and M. Ponater (2019): Implication of strongly increased atmospheric methane concentrations for chemistry–climate connections, Atmos. Chem. Phys., 19, 7151–7163, doi.org/10.5194/acp-19-1430 7151-2019.

Zanis, Prodromos, Dimitris Akritidis, Aristeidis K. Georgoulias, Robert J. Allen, Susanne E. Bauer, Olivier Boucher, Jason Cole, κ.ά. ‘Fast Responses on Pre-Industrial Climate from Present-Day Aerosols in a CMIP6 Multi-Model Study’. Atmospheric Chemistry and Physics 20, τχ. 14 (17 Ιούλιος 2020): 8381–8404. https://doi.org/10.5194/acp-20-8381-2020..

Zanis, Prodromos, Dimitris Akritidis, Steven Turnock, Vaishali Naik, Sophie Szopa, Aristeidis K Georgoulias, Susanne E Bauer, κ.ά. ‘Climate Change Penalty and Benefit on Surface Ozone: A Global Perspective Based on CMIP6 Earth System Models’. Environmental Research Letters 17, τχ. 2 (1 Φεβρουάριος 2022): 024014. https://doi.org/10.1088/1748-9326/ac4a34.

Zelinka, M. D., Andrews, T., Forster, P. M., and Taylor, K. E. (2014): Quantifying components of aerosol‐cloud‐radiation interactions in climate models, J. Geophys. Res. Atmos., 119, 7599– 7615, doi:10.1002/2014JD021710.https://doi.org/10.5194/acp-2019-1152Preprint. Discussion started: 3 February 2020c© Author(s) 2020. CC BY 4.0 License.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.