Εξώφυλλο

Early Pleistocene nannofossil biostratigraphy in Rhodes Island, Aegean Sea = Βιοστρωματογραφία ναννοαπολιθωμάτων κατά το κατώτερο Πλειστόκαινο στο νησί της Ρόδου, Αιγαίο Πέλαγος.

Gerasimos Pantelis Diamantis

Περίληψη


Calcareous nannofossils are extremely useful for dating marine sediments as well as geological sections because they provide stable age indicators due to the abundance of nannofossil representatives in even minute amounts of sediment and their increased resistance to dissolution as well as their small life cycles. Three geological sections were studied biostratigraphically: Agathi Beach, Plimiri V and Plimiri VI in terms of calcareous nannoplankton, with the help of indicator species of the Late – Pliocene to Early – Pleistocene interval. In the Agathi Beach section, a greater abundance of the species Calcidiscus macintyrei was observed together with the complete absence of Gephyrocapsa >=4 μm.  Helicosphaera sellii, is also abundant (up to 48% of the genus Helicosphaera), concluding that this section is older than the top of this species within CNPL 9 (Backman et al. 2012), in the Calabrian stage. Thus, Agathi Beach is assigned to Calcareous Nannofossil Zone (CNPL) 7 (Backman et al., 2012) that covers an interval between 1.93 and 1.71 Ma in the Early Pleistocene (Gelasian-Calabrian boundary) and is correlated with the lower part of Neogene Nannoplankton NN19 (Martini, 1971) biozone and Mediterranean Neogene Nannoplankton MNN19a (Rio et al., 1990). Plimiri V section displays Discoaster pentaradiatus up to 70%, together with Discoaster tamalis covering up to 48%, Discoaster brouweri up to 36% and Discoaster assymetricus up to 30%. Based on this assemblage the entire section is assigned to the Neogene Nannoplankton NN16 biozone of Martini (1971), which correlates to the Calcareous Nannofossil Zone (CNPL) 4 (3.81 Ma to 2.76 Ma) of Backman et al. (2012) in the Piacenzian.  As far as the Plimiri VI section is considered, the dominant nannofossil is Calcidiscus macintyrei with max. more than 60%. The species Helicospharea sellii moves in slightly lower percentages, about 18% on average among the species of the genus Helicospharea, while Gephyrocapsa 3.5-4 µm individuals were measured to represent around 9% of the placoliths. At approximately the same levels as Gephyrocapsa 3.5-4 μm, the placolith Pseudoemiliania lacunosa is also observed. Finally, the general lack of Gephyrocapsa ≥ 4 μm is noteworthy, except of very few specimens in only two of the studied samples. The findings above indicate that the Plimiri VI section is biostratigraphically assigned to the lower part of the Martini biozone NN19, that correlates with biozone MNN19b of Rio et al. (1990) or to the lower part of CNPL8 biozone (Backman et al. 2012), above the base of Gephyrocapsa ≥ 4 μm at 1.71 Ma and below the top of the species Calcidiscus macintyrei at 1.60 Ma.

Τα ασβεστολιθικά νανοαπολιθώματα είναι εξαιρετικά χρήσιμα για τη χρονολόγηση θαλάσσιων ιζημάτων καθώς και γεωλογικών τομών, επειδή παρέχουν σταθερούς δείκτες ηλικίας λόγω της αφθονίας των εκπροσώπων νανοαπολιθωμάτων σε ελάχιστες ποσότητες ιζήματος, της αυξημένης αντοχής τους στη διάλυση καθώς και των μικρών κύκλων ζωής τους. Μελετήθηκαν βιοστρωματογραφικά τρεις γεωλογικές τομές: η τομή Agathi Beach, η τομή Plimiri profil V και η τομή Plimiri profil VI ως προς το ασβεστολιθικό ναννοπλαγκτόν, με τη βοήθεια ειδών δεικτών του διαστήματος Ανωτέρου Πλειόκαινου έως Κατώτερου Πλειστόκαινου. Στην τομή Agathi Beach, παρατηρήθηκε μεγαλύτερη αφθονία του είδους Calcidiscus macintyrei μαζί με την πλήρη απουσία Gephyrocapsa >=4 μm. Το είδος Helicosphaera sellii, είναι επίσης άφθονο (έως και 48% του γένους Helicosphaera), καταλήγοντας στο συμπέρασμα ότι αυτή η τομή είναι παλαιότερη από την τελευταία εμφάνιση αυτού του είδους στη CNPL 9 (Backman et al. 2012), στο Καλάβριο. Έτσι, η τομή Agathi Beach αντιστοιχεί στη βιοζώνη CNPL 7 (Backman et al., 2012) που καλύπτει ένα διάστημα μεταξύ 1,93 και 1,71 Ma στο Ανώτερο Πλειστόκαινο (όρια Γελάσιο-Καλάβριο) και συσχετίζεται με το κατώτερο τμήμα των βιοζωνών NN19 (Martini, 1971) και MNN19a (Rio et al. 1990). Στην τομή Plimiri profil V παρατηρήθηκε το είδος Discoaster pentaradiatus έως 70%, μαζί με τα Discoaster tamalis που καλύπτει έως και 48%, Discoaster brouweri έως 36% και Discoaster assymetricus έως 30%. Με βάση αυτή τη συνάθροιση, ολόκληρη η τομή αντιστοιχεί στη βιοζώνη NN16 (Martini, 1971) η οποία συσχετίζεται με τη CNPL 4 (3,81 Ma έως 2,76 Ma) των Backman et al. (2012) στο Πλακέντιο. Όσον αφορά την τομή Plimiri VI, το κυρίαρχο είδος είναι το Calcidiscus macintyrei με μέγιστα ποσοστά εμφανίσεως που ξεπερνούν το 60%. Το είδος Helicospharea sellii ακολουθεί με ελαφρώς χαμηλότερα ποσοστά, περίπου 18% κατά μέσο όρο μεταξύ των ειδών του γένους Helicospharea, ενώ τα άτομα Gephyrocapsa 3,5-4 μm μετρήθηκαν ότι αντιπροσωπεύουν περίπου το 9% των πλακόλιθων. Στα ίδια περίπου επίπεδα με τη Gephyrocapsa 3,5-4 μm, παρατηρείται και το είδος Pseudoemiliania lacunosa. Τέλος, αξιοσημείωτη είναι η γενική έλλειψη Gephyrocapsa ≥ 4 μm, εκτός από πολύ λίγους αντιπροσώπους σε δύο μόνο από τα δείγματα που μελετήθηκαν. Τα παραπάνω ευρήματα υποδεικνύουν ότι η τομή Plimiri VI αντιστοιχεί βιοστρωματογραφικά με το κατώτερο μέρος της βιοζώνης NN19 (Martini, 1971), που συσχετίζεται με τη βιοζώνη MNN19b των Rio et al. (1990) ή στο κάτω μέρος της βιοζώνης CNPL8 (Backman et al. 2012), πάνω από την πρώτη εμφάνιση του είδους Gephyrocapsa ≥ 4 μm στα 1,71 Ma και κάτω από την τελευταία  εμφάνιση του είδους Calcidiscus macintyrei στα 1,60 Ma.

Πλήρες Κείμενο:

PDF

Αναφορές


Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J. & Rio, D. 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy 47, 131–181.

Backman, J. and Shackleton, NJ., 1983. Quantitative biochronology of Pliocene and early Pleistocene nannofossils from the Atlantic, Indian and Pacific oceans. Marine Micropaleontology, 8, 141-170.

Backman, J., Raffi, I., 1997. Calibration of Miocene nannofossil events to orbitally tuned cyclostratigraphies from Ceara Rise. In: Curry, W. B., Shackleton, N. J., Richter, C., Bralower, T. J., et al., Proceedings ODP Scientific Results 154 (Ocean Drilling Program, College Station, TX), 83–99. doi: 10.2973/odp.proc. sr.154.101.1997.

Backman, J., Raffi, I., Rio, D., Fornaciari, E., & Pälike, H., 2012. Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy, 45(3), 221-244.

Barbieri, F, 1967, The Foraminifera in the Pliocene section Vernasca- Castell’Arquato including the “Piacenzian Stratotype”: Soc. It. Sc. Nat. Mus. Civ. Sc. Nat. Milano, Mem., v. 15, pp. 145 163.

Beckman, LJ., 1995. Stratigraphical and sedimentological investigations of Pliocene/Pleistocene deposits at Lindos Bay, Rhodes. Unpublished Ph.D. Thesis, University of Tromsø. 147 pp.

Benda, L., Meulenkamp, JE., van de Weerd, A., 1977. Biostratigraphic correlations in the eastern Mediterranean Neogene: 3. Correlation between mammal, sporomorph and marine microfossil assemblages from the Upper Cenozoic of Rhodos, Greece. Newsletters on Stratigraphy 6 (2), 117–130.

Benson, RH., and Hodell DA., 1994, Comment on "A critical evaluation of the Miocene/Pliocene boundary as defined in the Mediterranean": Earth and Planetary Science Letters, v. 124, pp. 245-250.

Benson, RH., and Rakic el-Bied, K., 1996, The Bou Regreg Section, Morocco: proposed global boundary stratotype section and point of the Pliocene: Service Géologique de Maroc, Notes et Mémoires, v. 383, pp. 51-150.

Berggren WA., Kent DV., Swisher CC. & Aubry MP., 1995a. A revised Cenozoic geochronology and Chronostratigraphy. SEPM, Sp. Publ., 54, 129-212.

Berggren, WA., Hilgen FJ., Langereis CG., Kent DV., Obradovich JD., Raffi I., Raymo ME. & Shackleton, NJ, 1995. Late Neogene chronology: new perspectives in high-resolution stratigraphy, GSA Bulletin, 107 (11), 1272-1287.

Betzler, C., Brachert, TC., Nebelsick, J., 1997. The warm temperate carbonate province – A review of the facies, zonations, and delimitations. Courier Forschungsinstitut Senckenberg 201: 83-99.

Billard C., 1994. Life cycles. In: Green JC, Leadbeater BSC (eds) The haptophyte algae, vol 51, Systematics association special volumes. Clarendon, Oxford, pp 167–186.

Billard, C., Inouye, I., 2004. What’s new in coccolithophore biology? In: Thierstein HR, Young JR (eds) Coccolithophores – from molecular processes to global

impact. Springer, Berlin/ Heidelberg, pp 1–30.

Bramlette, M., and Riedel, WR., 1954. Stratigraphic value of discoasters and some other microfossils related to Recent cocolithophores. Jour. Paleontol., v.28(4), pp. 385-403.

Broekman, JA, 1972. Sedimentation and paleoecology of Pliocene lagoonal–shallow deposits on the island of Rhodos (Greece). Unpublished Ph.D. Thesis, Rijksuniversitet Utrecht. 132 pp.

Broekman, JA, 1974. Sedimentation and paleoecology of Pliocene lagoonal–shallow marine deposits on the Island of Rhodes (Greece). Utrecht Micropaleontological Bulletins 8, 1–142.

Brownlee, C., & Taylor, A., 2004. Calcification in coccolithophores: a cellular perspective. In Coccolithophores: from molecular processes to global impact (pp. 31-49). Berlin, Heidelberg: Springer Berlin Heidelberg.

Bukry, D., 1973. Coccolith stratigraphy, eastern Equatorial Pacific, Leg 16 Deep Sea Drilling Project. In: Van Andel, T.H., Heath G.R. et al., Initial ReportsDSDP, 16, 653-711.

Bukry, D., 1973a. Low-latitude coccolith biostratigraphic zonation. In: Edgar, N.T., Saunders, J. B., et al., Initial Reports DSDP 15, Washington (U.S. Govt. Printing Office),685–703. doi: 10.2973/dsdp.proc.15.116.1973.

Bukry, D., 1975. Coccolith and silicoflagellate stratigraphy, northwestern Pacific Ocean, Deep Sea Drilling ProjectLeg 32. In: Larson, R. L., Moberly, R., et al., Initial Reports DSDP 32, Washington (U.S. Govt. Printing Office), 677–701. doi: 10.2973/dsdp.proc.32.124.1975.

Bukry, D., 1978. Biostratigraphy of Cenozoic marine sediments by calcareous nannofossils. Micropaleontology 24, 44–60.

Bukry, D., Bramlette, MN., 1970. Coccolith age determinations Leg 3, Deep Sea Drilling Project. In: Maxwell, A. E., et al., Initial Reports DSDP 3, Washington (U.S. Govt. Printing Office), 589–611. doi: 10.2973/dsdp.proc.3.118.1970.

Burky, D. and Bramlette, MN., 1969. Some new and stratigraphically useful calcareous nannofossils of the Cenozoic. Tulane Stud. Geol. Pal., 7(3): 131-142.

Butler, WH, Grasso, M., and Lickorish, H., 1995, Plio-Quaternary megasequence geometry and its tectonic control within the Maghrebian thrust belt of south-central Sicily: Terra Nova, v. 7, pp.171–178

Castradori, D., 1998, Calcareous nannofossils in the basal Zanclean of Eastern Mediterranean: Remarks on paleoceanography and sapropel formation. Proceedings of the Ocean Drilling Program, Scientific Results, v. 160, pp. 113-123.

Channell, JET., & Guyodo, Y., 2004. The Matuyama Chronozone at ODP Site 982 (Rockall Bank): evidence for decimeter-scale magnetization lock-in depths. Timescales of the paleomagnetic field, 145(1), 205-219.

Cita, MB., 1975a, The Miocene-Pliocene boundary: history and definition, in Saito, T., and Burckle, L.D., eds., Late Neogene Epoch Boundaries: New York: Micropaleontology Press, Special Publication v. 1, pp. 1-30.

Cita, MB., and Gartner, S., 1973, Studi sul Pliocene e gli strati di passagio dal Miocene al Pliocene, IV. The stratotype Zanclean foraminiferal and nannofossil biostratigraphy: Rivista Italiana di Paleontologia e Stratigraphia, v. 79, pp. 503-558.

Cita, MB., Gibbard, PL., Head, MJ., and The Subcommission on Quaternary Stratigraphy, 2012, Formal ratification of the base Calabrian Stage GSSP (Pleistocene Series, Quaternary System). Episodes, v. 35, pp. 388–397.

Cohen, KM., Finney, SC., Gibbard, PL., and Fan, JX., 2013, The ICS International Chronostratigraphic Chart. Episodes, v. 36, pp. 199–204 [v. 2020/01; updated, January 2020].

Cornée, J J., Münch, P., Quillévéré, F., Moissette, P., Vasiliev, I., Krijgsman, W., Verati, C. & Lécuyer, C. 2006b. Timing of Late Pliocene to Middle Pleistocene tectonic events in Rhodes (Greece) inferred from magneto-biostratigraphy and 40Ar/39Ar dating of a volcaniclastic layer. Earth and Planetary Science Letters 250, 281–91.

Cornée, JJ, Moissette P, Joannin S, et al. 2006. Tectonic and climatic controls on coastal sedimentation: the Late Pliocene–Middle Pleistocene of northeastern Rhodes, Greece. Sedimentary Geology 187: 159–181.

Cornée, JJ., Moissette, P., Joannin, S., Suc, JP., Quillévéré, F., Krijgsman, W., Hilgen, F., Koskeridou, E., Münch, P., Lécuyer, C. & Desvignes, P. 2006a. Tectonic and climatic controls on coastal sedimentation: the Late Pliocene–Middle Pleistocene of northeastern Rhodes, Greece. Sedimentary Geology 187, 159–81.

Cros, L., Kleijne, A., Zeltner, A., Billard, C. and Young, JR, 2000. New examples of holococcolith-heterococcolith combination coccospheres and their implications for coccolithophorid biology. Mar. Micropaleintol., v.39, pp. 1-34.

De Kaenel, E., Siesser, WG., Murat, A., 1999. Pleistocene calcareous nannofossil biostratigraphy and the western mediterranean sapropels, sites 974 to 977 and 979. In: Zahn R, Comas MC, Klaus A (eds) Proceedings of the Ocean Drilling Program, scientifi c results, vol 161. College Station, pp 159–183.

De Vargas, C., Aubry, MP., Probert, I., Young JR., 2007. Origin and evolution of coccolithophores:from coastal hunters to oceanic farmers. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the Sea. Elsevier, Boston, pp 251–285.

De Vargas, C., Saez, AG., Medlin, LK. & Thierstein, HR., 2004: Super-species in the calcareous plankton. In Thiersten, H.R. & Young, J.R. (eds): Coccolithophores – From Molecular Processes to Global Impact, 271–298. Springer, Berlin.

Dennison, JM, & Hay, WW, 1967. Estimating the needed sampling area for subaquatic ecologic studies. Journal of Paleontology, 706-708.

Dermitzakis, MD, & Triantaphyllou, MV, 1997. Biostratigraphical observations in Pliocene deposits of Heraklion Province, Crete. Skythia section. Géologie méditerranéenne, 24(1), 15-26.

Di Stefano, E., Sprovieri, R., and Scarantino, S., 1996, Chronology of biostratigraphic events at the base of the Pliocene: Palaeopelagos, v. 6, pp. 401-414.

Duermeijer, CE., Nyst, M., Meijer, PT., Langereis, CG., Spakman, W., 2000. Neogene evolution of the Aegean arc: paleomagnetic and geodetic evidence for a rapid and young rotation phase. Earth and Planetary Science Letters 176, 509–525.

Eichner, D., Schmiedl, G., Titschack, J., Triantaphyllou, M., Andersen, N., Forster, N., Milker, Y., 2024. Impact of hydrological changes and vertical motions on

Pleistocene marine environments of the eastern coast of the island of Rhodes (Greece), Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 636, ISSN 0031-0182, https://doi.org/10.1016/j.palaeo.2023.111980.

Facenna, C., Bellier, O., Martinod, J., Piromallo, C.,Regard, V., 2006. Slab detachment beneath eastern Anatolia: a possible cause for the formation of the Anatolian fault, Earth Planet. Sci. Lett. 242 85–97.

Falkowski, PG., Katz, ME., Knoll, AH., Quigg, A., Raven, JA., Schofield, O., & Taylor, FJ. R., 2004. The evolution of modern eukaryotic phytoplankton. science, 305(5682), 354-360.

Fischer, G., Karakas, G., 2009. Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fl uxes to the deep ocean. Biogeosciences 6:85–102.

Flemming, NC., Woodworth, PL., 1988. Monthly mean sea levels in Greece during 1969–1983 compared to relative vertical land movements measured over different timescales. Tectonophysics 148 (1–2), 59–72.

Frydas, D., 1994. Die Pliozän/Pleistozän-Grenze auf der Insel Rhodos (Griechenland). Münstersche Forschungen zur Geologie und Paläontologie 76, 331–344.

Gartner, S., 1969. Correlation of Neogene planktonic foraminifer and calcareous nannofossil zones. Transactions of the Gulf Coast Association of Geological Societies 19, 585–599.

Gartner, S., 1971. Calcareous nannofossils from the JOIDES Blake Plateau cores and revision of Paleogene nannofossil zonation. Tulane Stud. Geol. 8, 101–121.

Gartner, S., 1977. Calcareous nannofossil biostratigraphy and revised zonation of the Pleistocene. Marine Micropaleontology 2, 1–25.

Gautier, P., Brun, JP, Moriceau, R., Sokoutis D., Martinod, J., Jolivet L., 1999. Timing, kinematics and cause of the Aegean extension: a scenario based on comparison with simple analogue experiments, Tectonophysics 315: 31–72.

Geisen, M., Billard, C., Broerse, ATC., Cros, L., Probert, I., Young JR., 2002.Life-cycle associations involving pairs of holococcolithophorid species: intraspecifi c variation or cryptic speciation? Eur J Phycol 37:531–550.

Gibbard PL, Head MJ. 2009b. IUGS ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. Quaternaire 20: 411–412.

Gibbard, P., Head, MJ., 2009a. The definition of the Quaternary System/Era and the Pleistocene Series/Epoch. Quaternaire 20: 125–133.

Gibbard, PL., and Head, MJ., 2009, IUGS ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. Quaternaire, v. 20, pp. 411–412.

Hanken, NM., Bromley, RG., Miller, J., 1996. Plio–Pleistocene sedimentation in coastal grabens, north-east Rhodes, Greece. Geological Journal 31 (3), 271–296.

Hansen, KS., 1999. Development of a prograding carbonate wedge during sea level fall: lower Pleistocene of Rhodes, Greece. Sedimentology 46 (3), 559–576.

Hay, WW, 2004. Carbonate fluxes and calcareous nannoplankton. In: Thierstein, H.R. and Young, J.R. (eds.), Coccolithophores. From molecular processes to global impact. Berlin, Springer, pp. 509-528.

Hay, WW., Mohler, H., Roth, PH., Schmidt, RR., Boudreaux, JE., 1967. Calcareous nannoplankton zonation of the Cenozoic of the Gulf Coast and Caribbean– Antillean area, and transoceanic correlation. Transactionsof the Gulf Coast Association of Geological Societies 17, 428–480.

Head, MJ., 2019, Formal subdivision of the Quaternary System/Period: present status and future directions. Quaternary International, v. 500, pp. 32–51.

Head, MJ., and Gibbard, PL., 2015a, Formal subdivision of the Quaternary System/Period: Past, present, and future. Quaternary International, v. 383, pp. 4–35.

Head, MJ., Pillans, B., Farquhar, SA., 2008b. The Early–Middle Pleistocene Transition: characterization and proposed guide for the defining boundary. Episodes 31: 255–259.

Hilgen FJ., 1991. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the geomagnetic polarity time scale. Earth and Planetary Science Letters 104: 226– 244.

Hilgen, F.J. (1991a). Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale. Eurrh and Planetary Science Letters, 104, 226 244.

Hilgen, F.J. (199lb). Extension of the astronomically calibrated (polarity) time scale to the Miocene-Pliocene boundary. Earth and Planetary Science Letters, 107, 349-368.

Hilgen, F.J., and Langereis C.G., 1993, A critical evaluation of the Miocene/ Pliocene boundary as defined in the Mediterranean: Earth and Planetaryt Science Letters, v. 118, pp. 167-179.

Hilgen, FJ., 1987. Sedimentary rhythms and high-resolution chronostratigraphic correlations in the Mediterranean Pliocene: Newsl. Stratigr., v. 17, pp. 109–127.

Hilgen, FJ., and Langereis, CG., 1988, The age of the Miocene-Pliocene boundary in the Capo Rossello area (Sicily): Earth and Planetary Science Letters, v. 91, pp. 214-222.

Hinsbergen, DJJ., van, Krijgsman, W., Langereis, CG., Cornée, JJ., Duermeijer, CE, & van Vugt, N., 2007. Discrete Plio-Pleistocene phases of tilting and counterclockwise rotation in the southeastern Aegean arc (Rhodos, Greece): Early Pliocene formation of the South Aegean left-lateral strike-slip system. Journal of the Geological Society, London, 164, 1133–1144.

Honjo, S., 1976. Coccoliths: production, transportation and sedimentation. Mar Micropaleontol 1:65–79

Hsü, KJ., Ryan, WBF., and Cita MB., 1973. Late Miocene desiccation of the Mediterranean: Nature, v. 242, pp. 240-244.

Huxley, TH., 1858. Appendix A. In: Dayman, J. (ed.), Deep Sea Soundings in the North Atlantic Ocean between Ireland and Newfoundland, made in H. M. S. Cyclops. Lords Commisioners of the Admiralty, London, pp. 63-68.

Jafar, SA., & Martini, E., 1975. On The Validity of The Calcareous Nannoplankton Genus Helicosphaera.

JOIDES Journal, June 1979

Kamptner, E., 1943. Zur Revision der Coccolithineen-Spezies Pontospaera huxleyi LOHM. Anz. Akad. Wiss.Wien, Math.-Natuw. Kl., 80(11): 43-49.

Kamptner, E., 1963. Coccolithineen-Skelettreste aus Tiefseeablagerungen des Pazifischen Ozeans. Ann. Nat.Mus.Wien, 66: 139-204.

Kamptner, E., 1967. Kalkflaggelaten-Skelettreste aus Tiefseeablagerungen des Sudatlantischen Ozeans. Ann. Nat. Mus. Wien, 71: 117-198.

Kanamatsu, T., 2012. A detailed paleomagnetic record between 2.1 and 2.75 Ma at IODP Site U1314 in the North Atlantic. Geomagnetic excursions and the Gauss–Matuyama transition. Geochem. Geophys. Geosyst. 13 (1), Q12Z39. https:// doi.org/10.1029/2012GC004080.

Kazaoka, O., Suganuma, Y., Okada, M., Kameo, K., Head, MJ, Yoshida, T., Kameyama, S., Nirei, H., Aida, N., and Kumai, H., 2015. Stratigraphy of the Kazusa Group, Central Japan: a high-resolution marine sedimentary sequence from the Lower to Middle Pleistocene. Quaternary International, v. 383, pp. 116–135.

Langereis, C G, and Hilgen, F J, 1991, The Rossello composite: a Mediterranean and global reference section for the Early to early Late Pliocene: Earth and

Planet. Science Letters, v. 104, pp. 211–225.

Lawrence, KT, Bailey, I., Raymo, ME, 2013. Re-evaluation of the age model for North Atlantic Ocean Site 982 – arguments for a return to the original chronology. Clim. Past 9, 2391–2397.

Lekkas, E., Danamos, G., Skourtsos, E., Sakellariou, D., 2001. Position of the Middle Triassic Tyros beds in theGavrovo-Tripolis unit (Rhodes island, Dodecanese, Greece), Geol. Carpath. 53: 37–44.

Loeblich, AR., & Tappan, H., 1978. The coccolithophorid genus Calcidiscus Kamptner and its synonyms. Journal of Paleontology, 1390-1392.

Lourens L, Hilgen F, Shackleton NJ, et al. 2005. The Neogene Period. In A Geologic Time Scale 2004, Gradstein FM, Ogg JG, Smith AG (eds). Cambridge University Press: Cambridge, UK; 409–440 [Imprinted 2004].

Lourens, L J, Antonarakou, A, Hilgen, F J, Van Hoof, A A M, Vergnaud- Grazzini, C, and Zachariasse, W J, 1996a, Evaluation of the Plio-Pleistocene astronomical timescale: Paleoceanography, v. 11, pp. 391-413.

Lourens, L J, Hilgen, F J, Raffi, I, and Vergnaud-Grazzini, C, 1996b, Early Pleistocene chronology of the Vrica section (Calabria, Italy): Paleoceanography, v. 11, pp. 797–812.

Lourens, LJ, Hilgen, FJ, Ra, I., 1998. Base of large Gephyrocapsa and astronomical calibration of Early Pleistocene sapropels in Site 967 and Hole 969D: solving the chronology of the Vrica section (Calabria, Italy). In: Robertson, A.H.F., Emeis, K.-C., Richter, C., Camerlenghi, A. (Eds.), Proc. ODP Sci. Results 160. pp. 191^197.

Lourens, LJ., Hilgen, FJ., Shackleton, NJ., Laskar, J., and Wilson, D., 2005a. Appendix 2. Orbital tuning calibrations and conversions for the Neogene Period. In: Gradstein, F., Ogg, J., and Smith, A. (eds.), A geologic time scale 2004: Cambridge University Press, Cambridge, U.K., pp. 469– 484. [Imprinted 2004]

Løvlie, R., Støle, G., Spjeldnaes, N., 1989. Magnetic polarity stratigraphy of Pliocene–Pleistocene marine sediments from Rhodos, eastern Mediterranean. Physics of the Earth and Planetary Interiors 54 (3–4), 340–352.

Lyell, C., 1835. I. The Bakerian Lecture. —On the proofs of a gradual rising of the land certain parts of Sweden. Philosophical transactions of the Royal Society of London, (125), 1-38.

Maiorano, P., and Marino, M., 2004. Calcareous nannofossil bioevents and environmental control on temporal and spatial patterns at the earlymiddle Pleistocene. Marine Micropaleontology, v. 53, pp. 405–422.

Martini, E., & Bramlette, M.N. 1963. Calcareous nannoplankton from the experimental Mohole drilling. Journal of Paleontology, 845-856.

Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation, in: Farinacci A. (Edit.), Proceedings II Planktonic Conference Roma, 1970, Roma (Technoscienzja), 2, 738-785.

Matsuoka, H., and H. Okada, Time-progressive morphometric changes of the genus Gephyrocapsa in the Quaternary sequence of the tropicaI lndian Ocean, Site 709, Proc. Ocean Drill. Prog. Sci. Results, 115, 255-270, 1990.

Meulenkamp, JE., De Mulder, EFJ., Van De Weerd, A., 1972. Sedimentary history and paleogeography of the Late Cenozoic of the Island of Rhodos. Zeitschrift der Deutschen Geologischen Gesellschaft 123, 541–553.

Milker, Y., Weinkauf, MFG., Titschack, J., Freiwald, A., Krüger, S., Jorissen, FJ., & Schmiedl, G., 2017. Testing the applicability of a benthic foraminiferal-based transfer function for the reconstruction of paleowater depth changes in Rhodes (Greece) during the early Pleistocene. PLoS One, 12, e0188447.

Milliman, J.D., 1993: Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochemical Cycles 7, 927–957.

Moissette, P., Spjeldnaes, N., 1995. Plio–Pleistocene deep-water bryozoans from Rhodes, Greece. Palaeontology 38 (4), 771–799.

Mutti, E., Orombelli, G., Pozzi, R., 1970. Geological studies on the Dodecanese Islands (Aegean Sea): IX. Geological map of the island of Rhodes (Greece); explanatory notes. Annales Géologiques des Pays Helléniques 22, 79–226.

Negri, A., Amorosi, A., Antonioli, F., Bertini, A., Florindo, F., Lurcock, P.C., Marabini, S., Mastronuzzi, G., Regattieri, E., Rossi, V., Scarponi, D., Taviani, M.,

Zanchetta, G., and Vai, GB., 2015. A potential global boundary stratotype section and point (GSSP) for the Tarentian Stage, Upper Pleistocene, from the Taranto

area (Italy): Results and future perspectives. Quaternary International, v. 383, pp. 145–157. Nelson et al. 2001.

Nelson, CS., Freiwald, A., Titschack, J., List, S., 2001. Lithostratigraphy and sequence architecture of temperate mixed siliciclastic carbonate facies in a new Plio–Pleistocene section at Plimiri, Rhodes Island (Greece). Occasional Report, vol. 25. Department of Earth Sciences, University of Waikato, pp. 1–50.

Ogniben, L, 1969, Schema introduttivo alla geologia del confine calabrolucano: Mem. Soc. Geol. It., v. 8, pp. 453–563.

Ohno, M., Hayashi, T., Komatsu, F., Murakami, F., Zhao, M., Guyodo, Y., Acton, G., Evans, HF, Kanamatsu, T., 2012. A detailed paleomagnetic record between 2.1 and 2.75 Ma at IODP Site U1314 in the North Atlantic. Geomagnetic excursions and the Gauss–Matuyama transition. Geochem. Geophys. Geosyst. 13 (1),

Q12Z39. https:// doi.org/10.1029/2012GC004080.

Okada, H. & Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphic zonation. Marine Micropal., 5, 321-325.

Okada, M., and Niitsuma, N., 1989, Detailed paleomagnetic records during the Brunhes–Matuyama geomagnetic reversal and a direct determination of depth lag for magnetization in marine sediments. Physics of the Earth and Planetary Interiors, v. 56, pp. 133–150.

Olafsson, G., 1991. Late Oligocene through late Meiocene calcareous nannofossil biostratigraphy and biochronology. Meddelanden fram Stockholms.Universiteits Institution for Geology och Geokem,PhD Thesis, Publ.283.

Pareto, M., 1865, Sur les subdivisions que l’on pourrait établir dand les terraines Tertiaires de l’Apennin septentrional: Bull. Soc. Geol. France, v. 22, pp. 210–277.

Parke, M., Adams, I., 1960. The motile ( Crystallolithus hyalinus Gaarder & Markali) and non-motile phases in the life history of Coccolithus pelagicus (Wallich) Schiller. J Mar Biol Ass U K 39:263–274.

Pirazzoli, PA., Montaggioni, LF., Saliege, JF., Segonzac, G., Thommeret, Y., Vergnaud-Grazzini, C., 1989. Crustal block movements from Holocene shorelines:

Rhodes Island (Greece). Tectonophysics 170 (1–2), 89–114.

Raffi I. & Rio D., 1979. Calcareous nannofossil biostratigraphy of DSDP Site 132-Leg 13 (Tyrrhenian Sea-Westem Mediterranean). Riv. Ital. Paleont. Strat., 85, 127-172.

Raffi, I., Backman, J., Rio, D. and Shackleton, NJ, 1993. Plio- Pleistocene nannofossil biostratigraphy and calibration to oxygen isotope stratigraphies from Deep Sea Drilling Project Site 607 and Ocean Drilling Program Site 677. Paleoceanography, 8,387-408.

Raffi, S, Rio, D, Sprovieri, R, Valleri, G, Monegatti, P, Raffi, I, and Barrier, P, 1989, New stratigraphic data on the Piacenzian stratotype: Boll. Soc. Geol. It., v. 108, pp. 183–196.

Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., & Hilgen, F., 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Science Reviews, 25(23-24), 3113-3137.

Rasmussen TL., Hastrup, A., Thomsen, E., 2005. Lagoon to deep-water foraminifera and ostracods from the Plio-Pleistocene Kallithea bay section,

Rhodes,Greece, in: E. Thomsen (Ed.), Special Publication, vol. 39, Cushman Foundation for Foraminiferal Research, pp. 1–290.

Remane, J., Bassett, MG, Cowie, JW, Gohrbandt, KH, Lane, HR, Michelsen, O., and Wang, N., with the cooperation of members of ICS, 1996. Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS). Episodes, v. 19, pp. 77–81.

Richmond, GM, 1996. The INQUA-approved provisional Lower–Middle Pleistocene boundary. In: Turner, C. (Eds.), The Early–Middle Pleistocene in Europe. Balkema, Rotterdam, pp. 319–327.

Rio, D, Sprovieri, R, Raffi, I, and Valleri, G, 1988, Biostratigrafia e paleoecologia della sezione stratotipica del Piacenziano: Boll. Soc. Paleont. It., v. 27, pp. 213–238.

Rio, D., 1982. The fossil distribution of coccolithophore genus Gephyrocapsa Kamptner and related Plio-Pleistocene chronostratigraphic problems. In : Prell W.L., Gardner J.V. et al., Init. Repts. DSDP, 68, 325-343.

Rio, D., Raffi, I., Villa, G., & Kastens, K. A., 1990. Pliocene-Pleistocene calcareous nannofossil distribution patterns in the Western Mediterranean. In Proceedings of the ocean drilling program, Scientific results (Vol. 107, pp. 513-533). College Station, Texas, USA: Ocean Drilling Program.

Rio, D., Raffi, I. & Villa, G., 1990a. Pliocene- Pleistocene calcareous nannofossil distribution patterns in the Western Mediterranean, Proceedings Ocean Drilling Programme, Scientific Results 1, 513-533.

Rio, D., Sprovieri, R., and Di Stefano, E., 1994, The Gelasian Stage: a proposal of a new chronostratigraphic unit of the Pliocene Series. Rivista Italiana di Paleontologia e Stratigrafia, v. 100, pp. 103–124.

Rio, D., Sprovieri, R., Castradori, D., and Di Stefano, E., 1998, The Gelasian Stage (Upper Pliocene): a new unit of the global standard chronostratigraphic scale. Episodes, v. 21, pp. 82–87.

Rio, D., Sprovieri, R., Thunell, R., Vergnaud-Grazzini, C. & Glacon, G., 1990b. Pliocene-Pleistocene paleoenvironmental history of the western Mediterranean: a synthesis of ODP Site 653. Proc. ODP Sci. Res., 107, 513-533.

Rio., D., 1974. Remarks on late Pliocene – early Pleistocene calcareous nannofossil stratigraphy in Italy. LʻAteneo Parmense. Acta Naturalia 10, 409–449.

Rohling, EJ., Marino, G., and Grant, KM., 2015, Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Science Reviews, v. 143, pp. 62–97.

Rost, B., Riebesell, U., 2004. Coccolithophore calcification and the biological pump: response to environmental changes. In: Thierstein HR, Young JR (eds) Coccolithophores–from molecular processes to global impact. Springer, Berlin/Heidelberg, pp 99–125.

Ruddiman, WF., McIntyre, A., Raymo, M., 1986. Paleoenvironmental results from North Atlantic Sites 607 and 609. In: Ruddiman, W.F., Kidd, R.B., Thomas, E. (Eds.), Initial Reports of the DSDP, pp. 855–878.

Ruggieri, G., 1967, The Miocene and later evolution of the Mediterranean Sea, in Adams, C.G. and Ager, D.V., eds., Aspects of Tethyan biogeography, London, Systematic Studies Association, Publication 7, pp. 283- 290.

Samtleben, C., 1980. Die Evolution der Coccolithophoriden-Gattung Gephyrocapsa nach Befunden im Atlantic, Palaontol. Z., 54, 91-127.

Sato, T., Kameo, K., and Mita, I., 1999.Validity of the latest Cenozoic calcareous nannofossil datums and its application to the tephrochronology. Earth Science (Chikyu Kagaku), v. 53, pp. 265–274 (in Japanese with English abstract).

Sato, T., Takayama, T., Kato, M., Kudo, T., Kameo, K., 1988. Calcareous microfossil biostratigraphy of the uppermost Cenozoic formations distributed in the coast of the Japan Sea, Part 4: Conclusion. Journal of the Japanese Association of Petroleum Technologist, v. 53, pp. 474–491 (in Japanese with English abstract).

Schmidt, RR., 1978. Calcareous nannofossils. In W.J.Zachariasse et al: Micropaleontological counting methods techniques An exercise on an eight metres section of the Lower Pliocene of Capo Rosello, Sicily. Utr.Micropal.Bull, 17:241-265.

Shackleton, NJ, Sánchez-Goñi, MF, Pailler, D., and Lancelot, Y., 2003, Marine Isotope Substage 5e and the Eemian Interglacial. Global and Planetary Change, v. 36, pp. 151–155.

Shackleton, NJ., Baldauf, J., Flores, JA., Iwai, M., Moore, TC., Raffi, I., Vincent, E., 1995. Biostratigraphic summary for Leg 138. In Pisias, NG., Mayer, LA.,

Janecek, TR., Palmer-Julson, A., van Andel, TH., et al., Proceedings ODP, Scientific Results 138 (Ocean Drilling Program, College Station, TX), 517–536. doi: 10.2973/odp.proc.sr.138.127.1995.

Shackleton, NJ., Crowhurst, S., 1997. Sediment fluxes based on an orbitally tuned time scale 5 Ma to 14 Ma, Site 926. In: Curry, W. B., Shackleton, N. J., Richter, C., Bralower, T. J., et al., Proceedings ODP, Scientific Results 154 (Ocean Drilling Program, College Station, TX), 69–82. doi: 10.2973/odp.proc. sr.154.102.1997.

Spjeldnaes, N., Moissette, P., 1997. Celleporid (bryozoan) thickets from the upper Pliocene of the Island of Rhodes, Greece. In: James, N.P., Clarke, J.A.D. (Eds.), Cool-Water Carbonates. SEPM Special Publication, vol. 56, pp. 263–270. Tulsa.

Steinmetz JC, 1994. Sedimentation of coccolithophores. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 179–198

Steinthorsdottir, M., 2002. Depositional environment of the Pliocene Kolymbia Limestone, Rhodes, Greece. Unpublished MSc Thesis, University of Copenhagen. 92 pp.

Suc, J. P., Combourieu-Nebout, N., Seret, G., Popescu, S. M., Klotz, S., Gautier, F., ... & Sandhu, A. S. (2010). The Crotone series: a synthesis and new data. Quaternary International, 219(1-2), 121-133.

Suc, J.-P., Clauzon, G., and Gautier, F., 1997, The Miocene/Pliocene boundary: present and future, in Montanari, A., Odin, G.S., and Coccioni, R., eds., Miocene stratigraphy: an integrated approach. Amsterdam: Elsevier Science B.V., pp. 149-154.

Suganuma, Y., Haneda, Y., Kameo, K., Kubota, Y., Hayashi, H., Itaki, T., Okuda, M., Head, M.J., Sugaya, M., Nakazato, H., Igarashi, A., Shikoku, K., Hongo, M.,

Watanabe, M., Satoguch, Y., Takeshita, Y., Nishida, N., Izumi, K., Kawamura, K., Kawamata, M., Okuno, J., Yoshida, T., Ogitsu, I., Yabusaki, H., and Okada, M., 2018, Paleoclimatic and paleoceanographic records through Marine Isotope Stage 19 at the Chiba composite section, central Japan: A key reference for the

Early–Middle Pleistocene Subseries boundary. Quaternary Science Reviews, v. 191, pp. 406–430.

Takayama, T., Sato, T., 1987. Coccolith biostratigraphy of the North Atlantic Ocean, Deep Sea Drilling Project Leg 94. Init. Rep. DSDP 94. pp. 651-702.

Tan Shin Hok, 1927. Discoasteridae incertae sedis. Proc. Ned. Akad. Wet., 30: 1-9.

Ten Veen, JH., Kleinspehn, KL., 2002. Geodynamics along an increasingly curved convergent plate margin: Late Miocene– Pleistocene Rhodes, Greece. Tectonics 21 (3), 1–21.

Ten Veen, JT., Boulton, SJ., & Alçiçek, MC., 2009. From palaeotectonics to neotectonics in the Neotethys realm: the importance of kinematic decoupling and inherited structural grain in SW Anatolia (Turkey). Tectonophysics, 473(1-2), 261-281.

Tesakov, AS., Shik, SM., Velichko, AA., Gladenkov, YuB., Lavrushin, YuA., and Yanina, TA., 2015, Proposed changes in the stratigraphic structure of the Quaternary for the General Stratigraphic Scale of Russia. In: Proceedings of the All-Russian Scientific Meeting “Stratigraphic and Paleogeographic Problems of

the Neogene and Quaternary of Russia (new materials and methods)”. GEOS, 2015 (Moscow), pp. 57–59.

Theodoridis, S. 1984. Calcareous nannofossil biozonation of the Miocene and revision of the helicoliths and discoasters (Doctoral dissertation, Utrecht University).

Thomsen, E., Rasmussen, TL., Hastrup, A., 2001. Calcareous nannofossil, ostracode and foraminifera biostratigraphy of Plio– Pleistocene deposits, Rhodes (Greece), with a correlation to the Vrica section (Italy). Journal of Micropalaeontology 20 (2), 143–154.

Titschack, J., Bromley, RG., Freiwald, A., 2005. Plio-Pleistocene cliffbound, wedge-shaped, warm-temperate carbonate deposits from Rhodes (Greece): sedimentology and facies, Sediment. Geol. 180: 29–56.

Titschack, J., Joseph, N., Fietzke, J., Freiwald, A. & Bromley, RG, 2013. Record of a tectonicallycontrolled regression captured by changes in carbonate skeletal associations on a structured island shelf (mid-Pleistocene, Rhodes, Greece). Sedimentary Geology 283, 15–33.

Triantaphyllou MV, Drinia H, Dermitzakis MD. 1997. The Plio-Pleistocene boundary in the Gerakas section, Zakynthos (Ionian Islands). Neues Jahrbuch fu r Geologie und Palaontologie, Monatshefte H.1: 12–30.

Triantaphyllou MV, Drinia H, Dermitzakis MD. 1999. Biostratigraphical and palaeoenvironmental determination of a marine Plio/Pleistocene outcrop in Cefallinia island. Ge´ologie Me´diterrane´enne 26: 3–18.

Triantaphyllou MV., 1996. Biostratigraphical and ecostratigraphical observations based on calcareous nannofossils of the Eastern Mediterranean Plio-Pleistocene deposits. PhD thesis, National and Kapodistrian University of Athens.

Van Couvering, JA, and Miller, JA., 1971, Late Miocene marine and nonmarine time scale in Europe: Nature, 230: 559-563.

Van Hinsbergen, DJJ., Krijgsman, W., Langereis, CG., Cornée, JJ., Duermeijer, CE & Van Vugt, N., 2007. Discrete Plio-Pleistocene phases of tilting and counterclockwise rotation in the southeastern Aegean arc (Rhodos, Greece): early Pliocene formation of the south Aegean left-lateral strike-slip system. Journal of the Geological Society 164, 1133–44.

Wallich, GC., 1861. Remarks on some novel phases of organic Life, and on the boring powers of minute Annelids, at great depths in the sea. Annals and Magazine of Natural History, 8(43), 52-58.

Wei, W., 1993. Calibration of upper Pliocene-lower Pleistocene nannofossil events with oxygen isotope stratigraphy. Paleoceanography 8, 85–99.

Woldstedt, P., 1953, Über die Benennung einiger Unterabteilungen des Pleistozäns. Eiszeitalter und Gegenwart, v. 3, pp. 14–18.

Young, JR, Davis, SA, Bown, PR, Mann, S., 1999. Coccolith ultrastructure and biomineralisation. J Struct Biol 126:195–215.

Young, JR, Geisen, M., Probert, I., 2005. A review of selected aspects of coccolithophore biology with implications for palaeobiodiversity estimation.

Micropaleontol 51(4):267–288.

Zijderveld, J D A, Hilgen, F J, Langereis, C G, Verhallen, P J J M, and Zachariasse, W J, 1991, Integrated magnetostratigraphy and biostratigraphy of the upper Pliocene-lower Pleistocene from the Monte Singa and Crotone areas in Calabria (Italy): Earth and Planet. Science Letters, v. 107, pp.697–714.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.