Συνοπτική μελέτη ενός επεισοδίου καύσωνα στην Ελλάδα και της επίδρασης του στο επιφανειακό όζον: Αξιολόγηση των προγνώσεων του επιφανειακού όζοντος από το παγκόσμιο και το περιοχικό προγνωστικό σύστημα μοντέλων CAMS = Synoptic study of a heatwave event in Greece and its impact on surface ozone: Evaluation of surface ozone forecasts from the CAMS global and regional forecast model systems.
Περίληψη
Στη συνέχεια, μελετάται ποια ήταν η επίδραση του καύσωνα αυτού στα επίπεδα ρύπανσης και συγκεκριμένα στο επιφανειακό όζον στην περιοχή μελέτης αλλά και στην ευρύτερη περιοχή. Η διερεύνηση γίνεται μέσω των παγκόσμιων δεδομένων επανάλυσης CAMS (Copernicus Atmosphere Monitoring Service) και των επίγειων παρατηρήσεων. Σύμφωνα με τις παρατηρήσεις αποδεικνύεται ότι υπάρχουν σημαντικές επιδράσεις, όπως στην περιοχή του Θησείου που καταγράφονται συγκεντρώσεις όζοντος οι οποίες φτάνουν τα 104 ppb λόγω των ΝΟx. Σύμφωνα με τα δεδομένα του CAMS global reanalysis φαίνεται ο καύσωνας να επέδρασε σημαντικά στα επίπεδα όζοντος, αλλά οι τιμές είναι αξιοσημείωτα αυξημένες που χρήζουν περαιτέρω διερεύνησης.
Τέλος, γίνεται αξιολόγηση των προγνωστικών δεδομένων του επιφανειακού όζοντος από το περιοχικό και από το παγκόσμιο προγνωστικό σύστημα μοντέλων CAMS, ώστε να δειχθεί το επίπεδο προγνωσιμότητας και η απόκλιση τους από την παρατήρηση και τα πεδία reanalysis. Τα δεδομένα που χρησιμοποιούνται για την αξιολόγηση των προγνώσεων είναι εκείνα του παγκόσμιου μοντέλου επανάλυσης CAMS καθώς και επίγειες παρατηρήσεις από τέσσερις σταθμούς της Ελλάδας. Ωστόσο, φαίνεται τα δεδομένα CAMS global reanalysis (με χωρική διακριτοποίηση 0.75ο x 0.75ο) να είναι χρήσιμα χωρικά αλλά να υπάρχει περιορισμός για χρήση σε τοπικό επίπεδο. Τα αποτελέσματα δείχνουν ότι το περιοχικό προγνωστικό μοντέλο CAMS κάνει πολύ καλές προγνώσεις, συμπεριλαμβανομένου του σταθμού της Φινοκαλιάς που -ως μία εξαίρεση- το παγκόσμιο προγνωστικό μοντέλο CAMS προβλέπει καλύτερα, με μικρή απόκλιση, το επιφανειακό Ο3. Γενικότερα, σύμφωνα με τα δεδομένα από όλους τους σταθμούς, την περίοδο που επιδρά η θερμή εισβολή τα σφάλματα γίνονται αισθητά μεγαλύτερα, ιδιαίτερα όσον αφορά το παγκόσμιο μοντέλο πρόγνωσης CAMS.
The present study investigates at first a synoptic analysis of a severe heatwave that affected the region of Greece on the 28th of July 2021 and lasted for 9 days. This study shows the extreme temperatures recorded in Greece as a result of heat advection of warm air at 850 hPa from Africa. Due to the location of the subtropical jet stream and the emergence of a high-altitude center in the upper levels, surface temperatures intensified through adiabatic heating from downward motion. According to the analysis, this heatwave has the typical characteristics that show such phenomena in the Eastern Mediterranean region.
Following this, it is being studied, what the effect of this heatwave was regarding pollution levels and specifically on the surface ozone in Greece and the surrounding countries. The investigation is done through CAMS (Copernicus Atmosphere Monitoring Service) global reanalysis data and ground observations. According to these observations, there seems to be significant effects as is in the area of Thissio where ozone concentrations are recorded to reach 104 ppb due to NOx. Also, the CAMS reanalysis data show an effect on ozone levels although the ozone values there notably elevated and they need further investigation.
Finally, the forecast data of the surface ozone, of the regional and global CAMS forecasting model systems, are evaluated to show their level of predictability and their deviations from observations and reanalysis data. The data used to evaluate the CAMS forecast systems are those of the CAMS global reanalysis dataset as well as ground observations from four stations in Greece. However, it appears that CAMS global reanalysis data (0.75ο x 0.75ο) are useful spatially but show limitations at local-scale use. The results show that, the regional CAMS forecast model system forecasts very well all stations including Finokalia, in which -as an exception- the global CAMS forecast model system forecasts the surface ozone better. Generally, according to the data from all stations, during the warm invasion, the errors become noticeably larger especially for the CAMS global forecast model system.
Πλήρες Κείμενο:
PDFΑναφορές
Ainsworth, E.A., Yendrek, C.R., Sitch, S., Collins, W.J., Emberson, L.D., 2012. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu. Rev. Plant Biol. 63, 637–661.
Akritidis, D., Pozzer, A., Zanis, P., Tyrlis, E., Škerlak, B., Sprenger, M., and Lelieveld, J.: On the role of tropopause folds in summertime tropospheric ozone over the eastern Mediterranean and the Middle East, Atmos. Chem. Phys., 16, 14025–14039, https://doi.org/10.5194/acp-16-14025-2016, 2016.
Allegrini, J., Dorer, V., Carmeliet, J., 2012. Analysis of convective heat transfer at building façades in street canyons and its influence on the predictions of space cooling demand in buildings. J. Wind Eng. Ind. Aerodyn. 104-106, 464-473.
Anderson, G.B.; Bell, M.L. Heat waves in the united states: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. Communities. Environ. Health Perspect. 2011, 119, 210–218.
Ashmore, M.R., 2005. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 28, 949–964.
Baertsch-Ritter, N., Keller, J., Dommen, J., and Prevot, A. S. H.: Effects of various meteorological conditions and spatial emissionresolutions on the ozone concentration and ROG/NOx limitationin the Milan area (I), Atmos. Chem. Phys., 4, 423–438, doi:10.5194/acp-4-423-2004, 2004.
Balafoutis, C., Makrogiannis, T., 2001. Analysis of a heat wave phenomenon over Greece and it’s implications for tourism and recreation. In: Matzarakis, A. and
de Freitas, C.R. (Eds), Proceedings of the First International Workshop on Climate, Tourism and Recreation. Report of a Workshop, Halkidiki, Greece, pp. 113–121.
Balafoutis, C.h., Makrogiannis, T., 2000. A contribution to the study of the heat wave phenomenon over Greece in August 1999. 3rd conference of applied
climatology , tools for the environment and man of year 2000, ECAC, Session 5, Urban, Heat and Tourism, 16–20 October, Piza, Italy.
Baniyounes, A.M., Liu, G., Rasul, M.G., Khan, M.M.K., 2012. Analysis of solar desiccant cooling system for an institutional building in subtropical Queensland, Australia. Renew. Sustain. Energy Rev. 16 (8), 423-6431.
Barring L, Mattsso J O and Lindqvist S 1985 Canyon Geometry, street temperatures and urban heat island in Malmo, Sweden; J. Climatol. 5 433–444
Bernard, S.M., Samet, J.M., Grambsch, A., Ebi, K.L., Romieu, I., 2001. The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environ. Health Perspect. 109 (Suppl. 2), 199–209.
Bhatia, A., Tomer, R., Kumar, V., Singh, S., Pathak, H., 2012. Impact of tropospheric ozone on crop growth and productivity–a review. J. Sci. Ind. Res. 71, 97–112.
Bianchini, F., Hewage, K., 2012. How “green” are the green roofs? Lifecycle analysis of green roof materials. Build. Environ. 48, 57-65.
Bieli, M., Pfahl, S. and Wernli, H. (2015) A Lagrangian investigation of hot and cold temperature extremes in Europe. Quarterly Journal of the Royal Meteorological Society, 141, 98–108
Bloomer B J, Stehr J W, Piety C A, Salawitch R J and Dickerson R R 2009 Observed relationships of ozone air pollution with temperature and emissions Geophys. Res. Lett. 36 L09803
Bobb, J.F., Dominici, F., Peng, R.D., 2011. A Bayesian model averaging approach for estimating the relative risk of mortality associated with heat waves in 105 U.S. cities. Biometrics 67 (4), 1605-1616.
Boer, M.M.; Nolan, R.H.; Resco De Dios, V.; Clarke, H.; Price, O.F.; Bradstock, R.A. Changing weather extremes call for early warning of potential for catastrophic fire. Earth’s Future 2017, 5, 1196–1202.
BoM, 2011. Heatwaves. Bureau of Meteorology, Commonwealth of Australia viewed 27th October 2013. http://www.bom.gov.au/wa/sevwx/perth/heatwaves.shtml.
Boyer, J. S. 1995. Biochemical and biophysical aspects of waterdeficits and the predisposition to disease. Annu. Rev.Phytopathol. 33:251–274
Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158.
Brikas, D., Karacostas, T., Pennas, P. et al. The role of the subtropical jet stream during heat wave events over north-central Greece. Meteorol. Atmos. Phys. 94, 219–233 (2006). https://doi.org/10.1007/s00703-006-0190-y
Brodribb, T. J., and H. Cochard. 2009. Hydraulic failuredefines the recovery and point of death. Plant Physiol.149:575–584
Brown-Steiner B, Hess P G and Lin M Y 2015 On the capabilities and limitations of GCCM simulations of summertime regional air quality: a diagnostic analysis of ozone and temperature simulations in the US using CESM CAM-Chem Atmos. Environ. 101 134–48
Camalier L, Cox W and Dolwick P 2007 The effects of meteorology on ozone in urban areas and their use in assessing ozone trends Atmos. Environ. 41 7127–37
Carlson, T.N. (1994) Mid-latitude Weather Systems, (p. 507). New York: Routledge.
Cassou, C., L. Terray, and A. S. Phillips (2005), Tropical Atlantic influenceon European heat waves,J. Clim.,18, 2805–2811
Chameides, W., Walker, J.C., 1973. A photochemical theory of tropospheric ozone. J. Geophys. Res. 78 (36), 8751–8760.
Chapman, S., 1930. A Theory of Upper-Atmospheric Ozone: Edward Stanford.
Chen, Y., Li, Y., 2017. An inter-comparison of three heat wave types in China during 1961–2010: observed basic features and linear trends. Sci. Rep. 7, 45619.
Chuwah C et al 2015 Global impacts of surface ozone changes on crop yields and land use Atmos. Environ. 106 11–23
Clark T L and Karl T R 1982 Application of prognostic meteorological variables to forecasts of daily maximum one-hour ozone concentrations in the northeastern United States; J. Appl. Meteorol. 21 1662–1671.
Colette, A., Andersson, C., Baklanov, A., Bessagnet, B., Brandt, J., Christensen, J.H., Doherty, R., Engardt, M., Geels, C., Giannakopoulos, C., Hedegaard,
G.B., Katragkou, E., Langner, J., Lei, H., Manders, A., Melas, D., Meleux, F., Rouïl, L., Sofiev, M., Soares, J., Stevenson, D.S., Tombrou-Tzella, M., Varotsos,
K.V., Young, P., 2015. Is the ozone climate penalty robust in Europe? Environ. Res. Lett. 10 (8), 084015
Constable JVH, Guenther AB, Schimel DS, Monson RK (1999) Modelling changes in VOC emission in response to climate change in the continental United States. Glob Chang Biol 5:791–806
Cristofanelli, P., Bonasoni, P., Tositti, L., Bonafe, U., Calzolari, F., Evangelisti, F., Sandrini, S., and Stohl, A.: A 6-year analysis of stratospheric intrusions and their influence on ozone at Mt. Cimone (2165 m above sea level), J. Geophys. Res.-Atmos., 111, D03306, https://doi.org/10.1029/2005JD006553, 2006.
Crutzen, P. J.: Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air, Tellus, 26, 47–57, 1974.
Crutzen, P., 1973. A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys. 106 (1), 1385–1399.
Cusack, L., de Crespigny, C., Athanasos, P., 2011. Heatwaves and their impact on people with alcohol, drug and mental health conditions: a discussion paper on clinical practice considerations. J. Adv. Nurs. 67 (4), 915-922.
Danielsen, E. F.: Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity, J. Atmos. Sci., 25, 502– 518, 1968.
Davies, T. D., Kelly, P. M., Low, P. S., and Pierce, C. E.: Surface ozone concentrations in Europe: links with regional-scale atmospheric circulation, J. Geophys. Res., 97(9), 819–832, 1992.
Dawson, J. P., Adams, P. J., and Pandis, S. N.: Sensitivity of ozone to summertime climate in the eastern USA: A modeling case study, Atmos. Environ., 41, 1494–1511, 2007.
Della-Marta, P. M., Luterbacher, J., von Weissenfluh, H., Xoplaki, E., Brunnet, M., and Wanner, H.: Summer heat waves over western Europe 1880-2003, their relationship to large-scale forcings and predictability, Clim. Dynam., 29, 251–275, 2007.
Depietri, Y., Renaud, F.G., Kallis, G., 2012. Heat waves and floods in urban areas: a policy-oriented review of ecosystem services. Sustain. Sci. 7 (1), 95-107.
Dimitriadou, S., Nikolakopoulos, K.G. Development of the Statistical Errors Raster Toolbox with Six Automated Models for Raster Analysis in GIS Environments. Remote Sens. 2022, 14, 5446.
Ding, A.J., Fu, C.B., Yang, X.Q., Sun, J.N., Zheng, L.F., Xie, Y.N., et al., 2013. Ozone and fine particle in the western Yangtze River Delta: an overview of 1 yr data at the SORPES station. Atmos. Chem. Phys. 13, 5813–5830
D'Ippoliti, D., Michelozzi, P., Marino, C., de'Donato, F., Menne, B., Katsouyanni, K., Kirchmayer, U., Analitis, A., Medina-Ramon, M., Paldy, A., Atkinson, R., Kovats, S., Bisanti, L., Schneider, A., Lefranc, A., Iniguez, C., Perucci, C., 2010. The impact of heat waves on mortality in 9 European cities: results from the
EuroHEAT project. Environ. Health 9 (1), 37.
Duan, H., J. S. Amthor, R. A. Duursma, A. P. O’Grady, B.Choat, and D. T. Tissue. 2013. Carbon dynamics of eucalyptseedlings exposed to progressive drought in elevated [CO2]and elevated temperature. Tree Physiol. 33:779–792
Efthimiou, N.; Alexandris, S.; Karavitis, C.; Mamassis, N. Comparative analysis of reference evapotranspiration estimation between various methods and the
FAO56 Penman—Monteith procedure. Eur. J. Water Qual. 2013, 42, 19–34.
Eltahir EAB. 1998. A soil moisture rainfall feedback mechanism 1. Theory and observations. Water Resources Research 34: 765–776.
Emberson, L., Ashmore, M., Simpson, D., Tuovinen, J.-P., and Cambridge, H.: Modelling and mapping ozone deposition in Europe, Water Air Soil Pollut., 130, 577–582, 2001.
Eyring V, Lamarque J-F and Hess P 2013 Overview of IGAC/SPARC chemistry-climate model initiative (CCMI) community simulations in support of upcoming ozone and climate assessments Tech. rep., SPARC Newsletter 40 48–66
Fiala, Jaroslav, 2003. Air Pollution by Ozone in Europe in Summer 2003 - Overview of Exceedances of EC Ozone Threshold Values During the Summer Season April–August 2003 and Comparisons with Previous Years. European Environment Agency Copenhagen.
Fischer E M and Schar C 2010 Consistent geographical patterns of ¨ changes in high-impact European heat-waves Nat. Geosci. 3 398–403
Fischer, E. M., Seneviratne, S. I., Lüthi, D., and Schär, C.: Contribution of land-atmosphere coupling to recent European summer heat waves, Geophys. Res. Lett., 34, L06707, https://doi.org/10.1029/2006GL029068, 2007a.
Fischer, E.M. , S.I. Seneviratne, P.L. Vidale, et al. Soil moisture–atmosphere interactions during the 2003 European summer heat wave J. Clim., 20 (20) (2007b), pp. 5081-5099
Fishman J and Crutzen P 1978 The origin of ozone in the troposphere; Nature 274 855–858
Fishman, J., Solomon, S., and Crutzen, P. J.: Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone, Tellus, 31, 432–446, 1979.
Fouillet, A., Rey, G., Laurent, F., Pavillon, G., Bellec, S., Guihenneuc-Jouyaux, C., et al., 2006. Excess mortality related to the August 2003 heat wave in
France. Int. Arch. Occup. Environ. Health 80, 16–24.
Founda D, Katavoutas G, Pierros F, Mihalopoulos N (2022) Centennial changes in heat waves characteristics in Athens (Greece) from multiple definitions based on climatic and bioclimatic indices. Glob Planet Change 212:103807.
Founda, D., Santamouris, M., 2017. Synergies between Urban Heat Island and Heat Waves in Athens (Greece) during an extremely hot summer (2012). Sci. Rep. 7, 10973. https://doi.org/10.1038/s41598-017-11407-6.
Fuentes JD, Lerdau M, Atkinson R, Baldocchi D, Bottenheim JW, Ciccioli P, Lamb B, Geron C, Gu L, Guenther A, Sharkey TD, Stockwell W (2000) Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bull Am Meteorol Soc 81:1537–1575
Gasparrini, A. and Armstrong, B.,2011, The impact of heat waves on mortality, Epidemiology. 22(1): 68-73. doi:10.1097/EDE.0b013e3181fdcd99
Giles, B.D., Balafoutis, C., 1990. The Greek heat waves on 1987 and 1988. International Journal of Climatology 10, 505–517.
Gill, S.E., Handley, J.F., Ennos, A.R., Pauleit, S., 2007. Adapting cities for climate change: the role of the green infrastructure. Built Environ. 33 (1), 115-133.
Gouldsbrough, L., Hossaini, R., Eastoe, E., Young, P.J., 2022. A Temperature Dependent Extreme Value Analysis of UK Surface Ozone, 1980 - 2019. Atmos. Environ. 273.
Granger, K., Berechree, M., 2009. Research Reports e Severe Weather. CHAPTER 10: HEAT WAVE RISKS. Geoscience, Australia
Grewe V 2007 Impact of climate variability on tropospheric ozone; Sci. Total Environ. 374 167–181.
Guerreiro, C. B. B., Foltescu, V., and de Leeuw, F.: Air quality status and trends in Europe, Atmos. Environ., 98, 376–384, https://doi.org/10.1016/
j.atmosenv.2014.09.017, 2014
Guicherit, R., van Dop, H., 1977. Photochemical production of ozone in Western Europe (1971–1975) and its relation to meteorology. Atmospheric Environment 11 (2), 145–155.
Gupta, S., Carmichael, C., Simpson, C., Clarke, M.J., Allen, C., Gao, Y., Chan, E.Y.Y., Murray, V., 2012. Electric fans for reducing adverse health impacts in heatwaves. Cochrane Libr. 7, 1-20.
Hemon, D., and E. Jougla (2004), Surmortalite ́ liee a` la canicule d aout 2003 (in French), report, 76 pp., L’Inst. Natl. de la Sante ́ et de la Rech. Medicale, Paris.
Hoell, A., Funk, C., Zinke, J., & Harrison, L. (2017). Modulation of the Southern Africa precipitation response to the El Niño SouthernOscillation by the subtropical Indian Ocean Dipole.Climate Dynamics,48(7), 2529–2540.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys., 33, 403–439, 1995.
Hulley, G.C., Dousset, B., Kahn, B.H., 2020. Rising trends in heatwave metrics across Southern California. Earth’s Future 8. https://doi.org/10.1029/2020EF001480 e202 0EF001480.
Im, U., Markakis, K., Poupkou, A., Melas, D., Unal, A., Gerasopoulos, E., et al., 2011. The impact of temperature changes on summer time ozone and its precursors in the Eastern Mediterranean. Atmos. Chem. Phys. Discuss. 11, 3847–3864
Jaén, C., Udina, M., Bech, J., Analysis of two heat wave driven ozone episodes in Barcelona and surrounding region: Meteorological and photochemical modeling, Atmospheric Environment 246 (2021) 118037, https://doi.org/10.1016/j.atmosenv.2020.118037
Josseran, L., Fouillet, A., Caillere, N., Brun-Ney, D., Ilef, D., Brucker, G., Medeiros, H., Astagneau, P. Assessment of a syndromic surveillance system based on morbidity data: Results from the oscour network during a heat wave. PLoS One. 2010 doi: 10.1371/journal.pone.0011984.
Kalkstein, L.S., Greene, J.S., Mills, D.M., Perrin, A.D., Samenow, J.P., Cohen, J.C., 2008. Analog European Heat Waves for U.S. cities to analyze impacts on heat-related mortality. BAMS 75–85. https://doi.org/10.1175/BAMS-89-1-75. Jan 2008
Kambezidis, H.D. 3.02—The Solar Resource. In Comprehensive Renewable Energy; Sayigh, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 27–84.
Katragkou E., P. Zanis, A. Tsikerdekis, J. Kapsomenakis, D. Melas, H. Eskes, J. Flemming, V. Huijnen, A. Inness, M.G. Schultz, O. Stein, C.S. Zerefos, Evaluation of near surface ozone over Europe from the MACC reanalysis, Geosci. Model Dev., 8, 2299-2314, doi:10.5194/gmd-8-2299-2015, 2015.
Katragkou, E., Zanis, P., Kioutsioukis, I., Tegoulias, I., Melas, D., Krüger, B.C., et al., 2011. Future climate change impacts on summer surface ozone from regional climate-air quality simulations over Europe. J. Geophys. Res.-Atmos. 116, D22307.
Kettlewell, P. S., Stephenson, D. B., Atkinson, M. D., and Hollins, P. D.: Summer rainfall and wheat grain quality: relationships with the North Atlantic Oscillation, Weather, 58, 155–164, 2003.
Kotroni, V., Lagouvardos, K., Lalas, D., 2001. The effect of the island of Crete on the Etesian winds over the Aegean Sea. Q. J. R. Meteorol. Soc. 127, 1917–1937
Krug, A.; Fenner, D.; Holtmann, A.; Scherer, D. Occurrence and Coupling of Heat and Ozone Events and Their Relation to Mortality Rates in Berlin, Germany, between 2000 and 2014. Atmosphere 2019, 10, 348. https://doi.org/10.3390/atmos10060348
Kubilay, N., Nickovic, S., Moulin, C., Dulac, F., 2000. An illustration of the transport of mineral dust onto the eastern Mediterranean. Atmospheric Environment 34, 1293–1303.
Kunkel, K. E., S. S. Changnon, B. Reike, and R. W. Arritt, 1996: The July 1995 heat wave in the Midwest: A climatic perspective and critical weather factors. Bull. Amer. Meteor. Soc., 77, 1507–1518.
Kurz, W. A., C. C. Dymond, G. Stinson, G. J. Rampley, E. T.Neilson, A. L. Carroll, et al. 2008. Mountain pine beetle andforest carbon feedback to climate change. Nature 452:987–990.
Kushnir, Y., Seager, R., Ting, M., Naik, N., & Nakamura, J. (2010). Mechanisms of Tropical Atlantic SST influence on North Americanprecipitation variability.Journal of Climate,23(21), 5610–5628
Kyselý, J., 2004. Mortality and displaced mortality during heat waves in the Czech Republic. Int. J. Biometeorol. 49, 91–97. https://doi.org/10.1007/s00484-004- 0218-2.
Lee, H., Kim, E. K., Kang, S. W., Kim, J. H., Hwang, H. J., & Kim, T. I. (2013). Effects of ozone exposure on the ocular surface. Free Radical Biology and
Medicine, 63, 78–89. https://doi.org/10.1016/j.freeradbiomed.2013.05.006
Lee, J. D., Lewis, A. C., Monks, P. S., Jacob, M., Hamilton, J. F., Hopkins, J. R., Watson, N. M., Saxton, J. E., Ennis, C., Carpenter, L. J., Carslaw, N., Fleming, Z., Bandy, B. J., Oram, D. E., Penkett, S. A., Slemr, J., Norton, E., Rickard, A. R., Whalley, L. K., Heard, D. E., Bloss, W. J., Gravestock, T., Smit, S. C.,
Stanton, J., Pilling, M. J., and Jenkin, M. E.: Ozone photochemistry and elevated isoprene during the UK heatwave of August 2003, Atmospheric Environment, 40, 7598–7613, 2006.
Leisner, C.P., Ainsworth, E.A., 2011. Quantifying the effects of ozone on plant reproductive growth and development. Glob. Chang. Biol. 18, 606–616.
Lelieveld, J. and Dentener, F. J.: What controls tropospheric ozone?, J. Geophys. Res.-Atmos., 105, 3531–3551, 2000.
Levanic, T., M. Cater, and N. G. McDowell. 2011. Associationsbetween growth, wood anatomy, carbon isotopediscrimination and mortality in aQuercus
roburforest. TreePhysiol. 31:298–308.
Levy B and Patz J 2015 Climate Change and Public Health (New York: Oxford University Press) p 368
Lewis, A. C., Lee, J. D., & Carpenter, L. J. (2004). Outdoor air pollution: The effects of ozone. The Lancet, 364(9435), 663. https://doi.org/10.1016/S0140-6736(04) 16888-8
Lhotka, O. & Kyselý, J. (2022) The 2021 European heat wave in the context of past major heat waves. Earth, Planets and Space, 9, 1–12. https://doi.org/10.1029/2022EA002567
Li, K., Jacob, D. J., Liao, H., Zhu, J., Viral Shah, L., Shen, K. H., … Zhai, S. (2019). A two-pollutant strategy for improving ozone and particulate air quality in China. Nature Geoscience, 12(11), 906–910. https://doi.org/10.1038/s41561-019-0464-x
Liu, L., Talbot, R., Lan, X., 2015. Influence of climate change and meteorological factors on Houston's air pollution: ozone a case study. Atmosphere 6, 623–640.
Logan, J. A.: Tropospheric ozone: Seasonal behavior, trends, and anthropogenic influence, J. Geophys. Res.-Atmos., 90, 10463– 10482, 1985.
Logothetis I., S. Dafka, K. Tourpali, S. Misios, P. Zanıs, E. Xoplakı, J. Luterbacher, E. Papagianoulis. The southeast Asian Monsoon and ENSO impact on the summer atmospheric circulation of East Mediterranean during 20th century based on ERA-20C and CMIPS simulations, International Journal of Climatology, 1-16, https://doi.org/10.1002/joc.7510, 2022
Lombardozzi D, Levis S, Bonan G, Hess P G and Sparks J P 2015 The influence of chronic ozone exposure on global carbon and water cycles J. Clim. 28 292–305
Lombardozzi D, Sparks J P and Bonan G 2013 Integrating O3 influences on terrestrial processes: Photosynthetic and stomatal response data available for regional and global modeling Biogeosciences 10 6815–31
Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta, J., Beekmann, M., Benedictow, A., Bergström, R., Bessagnet, B., Cansado, A., Chéroux, F.,
Colette, A., Coman, A., Curier, R. L., Denier van der Gon, et al.: A regional air quality forecasting system over Europe: the MACC-II daily ensemble production,
Geosci. Model Dev., 8, 2777–2813, 2015.
Matzarakis, A., Nastos, P.T., 2011. Human-biometeorological assessment of heat waves in Athens. Theor. Appl. Climatol. 105 (1e2), 99-106.
Mavromatis, T.; Georgoulias, A.K.; Akritidis, D.; Melas, D.; Zanis, P. Spatiotemporal Evolution of Seasonal Crop-Specific Climatic Indices under Climate Change in Greece Based on EURO-CORDEX RCM Simulations. Sustainability 2022, 14, 17048
McCarthy, M., Armstrong, L., Armstrong, N., 2019. A new heatwave definition for the UK. Weather 74 (11), 382–387. https://doi.org/10.1002/wea.3629.
McDonald R I, Green P, Balk D, Fekete B M, Revenga C, Todd M and Montgomery M 2011 Urban growth, climate change, and freshwater availability Proc. Natl Acad. Sci. USA 108 6312–7
Melas, D., Ziomas, I., Klemm, O., Zerefos, C.S., 1998. Flow dynamics in Athens area under moderate large-scale winds. Atmos. Environ. 32, 2209–2222.
Meleux, F., Solmon, F., and Giorgi, F.: Increase in summer European ozone amounts due to climate change, Atmos. Environ., 41(35), 7577–7587, 2007.
Metaxas, D.A., Kallos, G., 1980. Heat waves from a synoptic point of view. Riv. Di Meteor. Aeronaut. IL 2–2, 107–119
Mills G, Buse A, Gimeno B, Bermejo V, Holland M et al, A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops, Atmos Environ, 41 (2007) 2630-2643
Miralles, D., Gentine, P., Seneviratne, S., Teuling, A., 2018, Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Annals of the New York Academy of Sciences 1436, 19–35, doi: 10.1111/nyas.13912
Miralles, D., Teuling, A., van Heerwaarden, C. et al. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation.
Nature Geosci 7, 345–349 (2014). https://doi.org/10.1038/ngeo2141
Mitropoulos, D.; Pytharoulis, I.; Zanis, P.; Anagnostopoulou, C. Synoptic Analysis and Subseasonal Predictability of an Early Heatwave in the Eastern
Mediterranean. Atmosphere 2024, 15, 442. hĴps://doi.org/10.3390/ atmos15040442
Molfino, N. A., & Wright, S. C. (1991). Effect of low concentrations of ozone on inhaled allergen responses in asthmatic subjects. The Lancet, 338(8761), 199–203. https://doi.org/10.1016/0140-6736(91)90346-Q
Monks, P. S.: A review of the observations and origins of the spring ozone maximum, Atmos. Environ., 34, 3545–3561, 2000.
Monks, P. S.: Gas-phase radical chemistry in the troposphere, Chem. Soc. Rev., 34, 376–395, 2005.
Nagashima, T., Sudo, K., Akimoto, H., Kurokawa, J., Ohara, T., 2017. Long-term change in the source contribution to surface ozone over Japan. Atmos. Chem. Phys. 17, 8231–8246. https://doi.org/10.5194/acp-17-8231-2017.
Narumi, D., Kondo, A., Shimoda, Y., 2009. The effect of the increase in urban temperature on the concentration of photochemical oxidants. Atmos. Environ. 43,
–2359. https://doi.org/10.1016/j.atmosenv.2009.01.028.
Nayha, S., Rintamaki, H., Donaldson, G., Hassi, J., Jousilahti, P., Laatikainen, T., Jaakkola, J.J.K., Ikaheimo, T.M., 2014. Heat-related thermal sensation, comfort and symptoms in a northern population: the National FINRISK 2007 study. Eur. J. Pub. Health 24 (4), 620–626. https://doi.org/10.1093/eurpub/ckt159. August 2014.
Nickols, D. and Varas, A. J. 1992. Ozonation. Pp. 197-258 in: Disinfection alternatives for safe drinking water. Bryant, E.A., Fulton, G. P., and Budd, G. C. Van
Nostrand Reinhold, New York.
NWS (National Weather Service ) 1994. Excessive heat watch, warning and advisory heat index criteria. Regional Operations Manual Letter, E-5-94, Eastern Region, NWS, Bohemia, NY, 3pp.
Oltmans SJ, Levy H II (1994) Surface ozone measurements from a global network. Atmospheric Environment,28, 9–24
Ordóñez, C., Brunner, D., Staehelin, J., Hadjinicolaou, P., Pyle, J., Jonas, M., Wernli, H., and Prévôt, A.: Strong influence of lowermost stratospheric ozone on lower tropospheric background ozone changes over Europe, Geophys. Res. Lett., 34, L07805, https://doi.org/10.1029/2006GL029113, 2007.
Panwar, N.L., Kaushik, S.C., Kothari, S., 2011. Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15 (3), 1513-1524.
Parrish D D et al 2014 Long-term changes in lower tropospheric baseline ozone concentrations: comparing chemistry-climate models and observations at northern midlatitudes J. Geophys. Res. Atmos. 119 5719–36
Pascal, M., Wagner, V., Le Tertre, A., Laaidi, K., Honore, C., Benichou, F., Beaudeau, P., 2013. Definition of temperature thresholds: the example of the French heat wave warning system. Int. J. Biometeorol. 57 (1), 21-29.
Patz, J.A., Campbelllendrum, D., Holloway, T., Foley, J.A., 2005. Impact of regional climate change on human health. Nature 438, 310–317.
Pezza, A.B., van Rensch, P., Cai, W., 2012. Severe heat waves in Southern Australia: synoptic climatology and large scale connections. Clim. Dyn. 38 (1-2), 209-224.
Pfister G et al 2014 Projections of future summertime ozone over the US J. Geophys. Res. 119 5559–82
Porritt, S., Shao, L., Cropper, P., Goodier, C., 2011. Adapting dwellings for heat waves. Sustain. Cities Soc. 1 (2), 81-90.
Porritt, S.M., Cropper, P.C., Shao, L., Goodier, C.I., 2012. Ranking of interventions to reduce dwelling overheating during heat waves. Energy Build. 55, 16-27.
Power, S. B., Casey, T., Folland, C., Colman, A., & Mehta, V. (1999). Inter-decadal modulation of the impact of ENSO on Australia.ClimateDynamics,15(5), 319–324
Prezerakos, N.G., 1989. A contribution to the study of the extreme heat wave over the South Balkans in July 1987. Meteorol. Atmos. Phys. 41, 261–271.
Pu, X., Wang, T.J. , Huang, X., Melas, D., Zanis, P., Papanastasiou, D.K., Poupkou, A., 2017, Science of the Total Environment 603–604, 807–816,ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2017.03.056.
Pyrgou, A., Hadjinicolaou, P., Santamouris, M. (2018) Enhanced near-surface ozone under heatwave conditions in a Mediterranean island, Scientific REPOrTS, 8:9191, DOI:10.1038/s41598-018-27590-z
Querol, X.; Alastuey, A.; Reche, C.; Orio, A.; Pallares, M.; Reina, F.; Dieguez, J.; Mantilla, E.; Escudero, M.; Alonso, L.; et al. On the origin of the highest ozone episodes in Spain. Sci. Total Environ. 2016, 572, 379–389.
Racherla, P.N., Adams, P.J., 2006. Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. J. Geophys. Res.: Atmos. 111 (D24).
Ragettli, M., Vicedo-Cabrero, A.M., Schindler, C., Ro¨osli, ¨ M., 2017. Exploring the association between heat and mortality in Switzerland between 1995 and 2013. Environ. Res. 158, 703–709. https://doi.org/10.1016/j.envres.2017.07.021
Rasilla, D., Allende, F., Martilli, A., Fern´ andez, F., 2019. Heat waves and human wellbeing in Madrid (Spain). Atmosphere 10, 288. https://doi.org/10.3390/ atmos10050288
Reddy, P.J., Pfister, G.G., 2016. Meteorological factors contributing to the interannual variability of midsummer surface ozone in Colorado, Utah, and other western U.S. states. J. Geophys. Res.-Atmos. 121, 2434–2456
RIZQULLAH, Rifqi; SIREGAR, Johannes Kristian. The Determinant of Financial Performance Based on Good Corporate Governance and Company Size in the Basic Industrial and Chemical Sectors 2015-2019. In: First International Conference on Science, Technology, Engineering and Industrial Revolution (ICSTEIR 2020). Atlantis Press, 2021. p. 105-111.
Robinson, P.J., 2001. On the definition of a heat wave. Journal of Applied Meteorology 40, 762–775.
Rodwell, M. J. and Hoskins, B. J.: Monsoons and the dynamics of deserts, Q. J. R. Meteorol. Soc., 122, 1385–1404, 1996.
Rodwell, M. J. and Hoskins, B. J.: Subtropical anticyclones and summer monsoons, J. Climate, 14, 3192–3211, 2001.
Roelofs, G.-J. and Lelieveld, J.: Model study of the influence of cross-tropopause O3 transports on tropospheric O3 levels, Tellus B, 49, 38–55, 1997.
Rosenzweig, C., Solecki, W.D., Parshall, L., Chopping, M., Pope, G., Goldberg, R., 2005. Characterizing the urban heat island in current and future climates in New Jersey. Glob. Environ. Change Part B Environ. Hazards 6 (1), 51-62.
Royal Society (2008)Ground-level ozone in the 21st century: future trends, impacts andpolicy implications. Science Policy Report 15/08 London, October.
Rübbelke, D., Vogele, S., 2013. Short-term distributional consequences of climate € change impacts on the power sector: who gains and who loses? Clim. Change 116 (2), 191-206.
Santamouris, M., 2014. Cooling the cities e a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 103, 682-703.
Sartor, F., Snacken, R., Demuth, C., Walckiers, D., 1995. Temperature, ambient ozone levels, and mortality during summer, 1994, in Belgium. Environ. Res. 70, 105–113.
Scha ̈r, C., and G. Jendritzky (2004), Hot news from summer 2003,Nature,432, 559–560
Schar, C., Vidale, P.L., Luqthi, D., Frei, C., Haberli, C., Liniger, M., Appenzeller, C., 2004. The role of increasing temperature variability in European summer heat waves. Nature 427, 332–336.
Schnell, J.L.; Prather, M.J. Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America. Proc. Natl. Acad. Sci. USA 2017, 114, 2854–2859.
Seinfeld, J. and Pandis, S. (1998): From Air Pollution to Climate Change, Atmospheric Chemistry and Physics 19, 958–960.
Shimoda, Y., 2003. Adaptation measures for climate change and the urban heat island in Japan's built environment. Build. Res. Inf. 31 (3e4), 222-230.
Simpson, D., Emberson, L., Ashmore, M., and Tuovinen, J.: A comparison of two different approaches for mapping potential ozone damage to vegetation. A model study, Environ. Pollut., 146, 715–725, doi:10.1016/j.envpol.2006.04.013, 2007b.
Sitch S, Cox P M, Collins W J and Huntingford C 2007 Indirect radiative forcing of climate change through ozone effects on the land-carbon sink Nature 448 791–4
Smith, C., Lawson, N., 2012. Identifying extreme event climate thresholds for Greater Manchester, UK: examining the past to prepare for the future. Meteorol. Appl. 19 (1), 26-35.
Solberg, S., Coddeville, P., Forster, C., Ø. Hov, Y., Orsolini, K., & Uhse, K. (2005). European surface ozone in the extreme summer 2003. Atmospheric Chemistry & Physics Discussions, 5, 9003–9038.
Solberg, S., Hov, Ø., Søvde, A., Isaksen, I. S. A., Coddeville, P., De Backer, H., Forster, C., Orsolini, Y., and Uhse, K.: European surface ozone in the extreme summer 2003, J. Geophys. Res., 113, D07307, doi:10.1029/2007JD009098, 2008.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H. L.: IPCC, Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007.
Sousa, S.I.V., Alvim-Ferraz, M.C.M., Martins, F.G., 2013. Health effects of ozone focusing on childhood asthma: what is now known – a review from an epidemiological point of view. Chemosphere 90, 2051–2058.
Spalding, D. H. 1968. Effects of ozone atmospheres on spoilage of fruits and vegetables after harvest. Agricultural Research Service USDA Marketing Research Report No. 801.
Spanaki, A., Tsoutsos, T., Kolokotsa, D., 2011. On the selection and design of the proper roof pond variant for passive cooling purposes. Renew. Sustain. Energy Rev. 15 (8), 3523-3533.
Sperry, J. S., U. G. Hacke, R. Oren, and J. P. Comstock. 2002.Water deficits and hydraulic limits to leaf water supply.Plant, Cell Environ. 25:251–263
Steiner, A.L., Finlayson-Pitts, B.J., 2010. Observed suppression of ozone formation at extremely high temperatures due to chemical and biophysical feedbacks. Proc. Natl. Acad. Sci. 107, 19685–19690.
Stevenson, D., Doherty, R., Sanderson, M., Johnson, C., Collins, B., Derwent, D., 2005. Impacts of climate change and variability on tropospheric ozone and its precursors. Faraday Discuss. 130, 41–57.
Stevenson, D.S., Young, P.J., Naik, V., Lamarque, J.F., 2013. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP). Atmos. Chem. Phys. 12, 3063–3085
Strengers, Y., 2012. Peak electricity demand and social practice theories: reframing the role of change agents in the energy sector. Energy Policy 44, 226-234.
Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W. D., ... & Zanis, P. (2021). Short-Lived Climate Forcers (Chapter 6), https://doi.org/10.1017/9781009157896.008 Published online by Cambridge University Press
Tagaris, E., Liao, K.J., Delucia, A.J., Deck, L., Amar, P., Russell, A.G., 2009. Potential impact of climate change on air pollution-related human health effects. Environ. Sci. Technol. 43, 4979–4988.
Tai, A.P.K., Martin, M.V., Heald, C.L., 2014. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Chang. 4, 817–821.
Tan, J., Zheng, Y., Xu, T., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A.J., Li, F., Chen, H., 2010. The urban heat island and its impact on heat waves and human health in Shanghai. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 54 (1), 75-84.
Taylor, C.M., Lebel, T., 1998. Observational evidence of persistent convective-scale rainfall patterns. Mon. Weather Rev. 126, 1597–1607.
Tenhunen JD, Catarino FM, Lange OL, Oechel WC (1987) Plant responses to stress.Functional Analysis in Mediterranean Environments. In:NATO ASI Series, Series G:Ecological Sciences, vol. 15, pp. 305–327.
Thouret, V., Cammas, J.-P., Sauvage, B., Athier, G., Zbinden, R., Nédélec, P., Simon, P., and Karcher, F.: Tropopause referenced ozone climatology and inter-annual variability (1994–2003) from the MOZAIC programme, Atmos. Chem. Phys., 6, 1033–1051, doi:10.5194/acp-6-1033-2006, 2006
Tomczyk, A.M.; Bednorz, E. Heat waves in Central Europe and their circulation conditions. Int. J. Climatol. 2016, 36, 770–782.
Tong, S., Wang, X.Y., Barnett, A.G., 2010. Assessment of heat-related health impacts in Brisbane, Australia: comparison of different heatwave definitions. PLoS One 5 (8), e12155. https://doi.org/10.1371/journal.pone.0012155.
Tremeac, B., Bousquet, P., de Munck, C., Pigeon, G., Masson, V., Marchadier, C., Merchat, M., Poeuf, P., Meunier, F., 2012. Influence of air conditioning management on heat island in Paris air street temperatures. Appl. Energy 95, 102-110.
Turnock ST et al 2020 Historical and future changes in air pollutants from CMIP6 models Atmos. Chem. Phys. 20 14547-791
Tyrlis, E., Škerlak, B., Sprenger, M., Wernli, H., Zittis, G., and Lelieveld, J.: On the linkage between the Asian summer monsoon and tropopause fold activity over the eastern Mediterranean and the Middle East, J. Geophys. Res.-Atmos., 119, 3202–3221, 2014.
Val Martin M, Heald C L, Lamarque J-F, Tilmes S, Emmons L K and Schichtel B A 2015 How emissions, climate, and land use change will impact mid-century
air quality over the United States: a focus on effects at national parks Atmos. Chem. Phys. 15 2805–23
Van Vuuren D P et al 2011 The representative concentration pathways: an overview Clim. Change 109 5–31
Vandentorren, S., F. Suzan, S. Medina, M. Pascal, A. Maulpoix, J. C.Cohen, and M. Ledrans (2004), Mortality in 13 French cities duringthe August 2003 heat wave,Am. J. Public Health,94(9), 1518–1520
Vautard, R., Beekmann, M., Desplat, J., Hodzic, A., Morel, S., 2007. Air quality in Europe during the summer of 2003 as a prototype of air quality in a warmer climate. C R Geoscience 339, 747–763.
Vautard, R., Honore, C., Beekmann, M., and Rouil, L.: Simulation ´ of ozone during the August 2003 heat wave and emission control scenarios, Atmos. Environ., 39, 2957–2967, 2005.
Vautard, R., Yiou, P., D’Andrea, F., de Noblet, N., Viovy, N., Cassou, C., Polcher, J., Ciais, P., Kageyama, M., and Fan, Y.: Summertime European heat and drought waves forced by wintertime Mediterranean rainfall deficit, Geophys. Res. Lett., 34, L07711, doi:10.1029/2006GL028001, 2007.
Wagner, A, Bennouna, Y, Blechschmidt, A-M, Brasseur, G, Chabrillat, S, Christophe, Y, Errera, Q, Eskes, H, Flemming, J, Hansen, KM, Inness, A, Kapsomenakis, J, Langerock, B, Richter, A, Sudarchikova, N, Thouret, V, Zerefos, C. 2021. Comprehensive evaluation of the Copernicus Atmosphere
Monitoring Service (CAMS) reanalysis against independent observations: Reactive gases. Elementa: Science of the Anthropocene 9(1).
Walcek C J and Yuan H H 1999 Calculated influence of temperature-related factors on ozone formation rates in the lower troposphere; J. Appl. Meteorol. 34 1056–1069.
Wang, G., Dolman, A. J., and Alessandri, A.: A summer climate regime over Europe modulated by the North Atlantic Oscillation, Hydrol. Earth Syst. Sci., 15, 57–64, https://doi.org/10.5194/hess-15-57-2011, 2011.
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., & Zhang, L. (2017). Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment, 575, 1582-1596.
Wang, Y., Ma, Y.-F., Eskes, H., Inness, A., Flemming, J., and Brasseur, GP: Evaluation of the CAMS global atmospheric trace gas reanalysis 2003–2016 aircraft campaign observations, Atmos. Chem. Phys., 20, 4493–4521, https://doi.org/10.5194/acp-20-4493-2020, 2020.
Williams, D., Elghali, L., Wheeler, R., France, C., 2012a. Climate change influence on building lifecycle greenhouse gas emissions: case study of a UK mixed-use development. Energy Build. 48, 112-126.
Williams, S., Nitschke, M., Weinstein, P., Pisaniello, D.L., Parton, K.A., Bi, P., 2012b. The impact of summer temperatures and heatwaves on mortality and morbidity in Perth, Australia 1994e2008. Environ. Int. 40, 33-38.
Wu S et al 2008 Effects of 2000–2050 global change on ozone air quality in the United States J. Geophys. Res. 113 D06302
Yan, Y., Lin, J., and He, C.: Ozone trends over the United States at different times of day, Atmos. Chem. Phys., 18, 1185–1202, https://doi.org/10.5194/acp-18-1185-2018, 2018.
Yau, Y.H., Hasbi, S., 2013. A review of climate change impacts on commercial buildings and their technical services in the tropics. Renew. Sustain. Energy
Rev. 18, 430-441.
Yu, J., Ouyang, Q., Zhu, Y., Shen, H., Cao, G., Cui, W., 2012. A comparison of the thermal adaptability of people accustomed to air-conditioned environments and naturally ventilated environments. Indoor Air 22 (2), 110-118.
Zanis P., D. Akritidis, S. Turnock, V. Naik, S. Szopa, A. K. Georgoulias, S. E. Bauer, M. Deushi, L. W. Horowitz, J. Keeble, P. Le Sager, F. M. O'Connor, N. Oshima, K. Tsigaridis, T. van Noije, Climate change penalty and benefit on surface ozone: A global perspective based on CMIP6 Earth System Models, Environmental Research Letters, 17, 024014, https://doi.org/10.1088/1748-9326/ac4a34, 2022
Zanis, P., Hadjinicolaou, P., Pozzer, A., Tyrlis, E., Dafka, S., Mihalopoulos, N., and Lelieveld, J.: Summertime free-tropospheric ozone pool over the eastern Mediterranean/Middle East, Atmos. Chem. Phys., 14, 115–132, https://doi.org/10.5194/acp-14-115- 2014, 2014.
Zschenderlein P, Fink AH, Pfahl S, Wernli H., Processes determining heat waves across different European climates.QJRMeteorolSoc.2019;145:2973–2989. https://doi.org/10.1002/qj.3599
Ελληνική Βιβλιογραφία και επιπλέον πηγές
Σπύρου, Κ. (2000, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)), Συνοπτική και δυναμική μελέτη του φαινομένου του καύσωνα στον ευρύτερο ελλαδικό χώρο
Ζιακόπουλος, Δ., Φραγκούλη, Π. Β.,2015. Το Εγχειρίδιο του Μετεωρολόγου-Προγνώστη
Πυθαρούλης Ι., Σημειώσεις μαθήματος Συνοπτική Μετεωρολογία, 2021.
Ζάνης Π., Σημειώσεις μαθήματος Ατμοσφαιρική Ρύπανση, 2021.
Μαυρομμάτης Θ., Σημειώσεις μαθήματος Αγρομετεωρολογία, 2021.
Αναγνωστοπούλου Χ., Σημειώσεις μαθήματος Δυναμικής Φυσική και Κλιματολογία, 2021.
Πυθαρούλης Ι., Σημειώσεις μαθήματος Αριθμητική Πρόγνωση Καιρού, 2021.
Κατράγκου Ε., Σημειώσεις μαθήματος Κλιματικά Μοντέλα, 2021.
https://www.ccacoalition.org/en/slcps/tropospheric-ozone
http://www.emy.gr/emy/el/pdf/heatwave_2021.pdf
https://www.copernicus.eu/en/about-copernicus/copernicus-detail confluence.ecmwf.int
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.