Εξώφυλλο

Τα μέταλλα της μπαταρίας στην ενεργειακή μετάβαση: νικέλιο και τα κοιτάσματά του = The battery metals in energy transmission. Nickel and its deposits.

Γεώργιος Φέισαλ Κ. Σαϊντ Αλ Μπέντρι

Περίληψη


Η υπερθέρμανση του πλανήτη έχει ως αποτέλεσμα την αναζήτηση εναλλακτικών ενεργειακών λύσεων κυρίως όσο αφορά τη χρήση ορυκτών καυσίμων. Αυτό έχει ως αποτέλεσμα τόσο στην κίνηση όσο και στη βιομηχανία αλλά και την οικιακή χρήση το πέρασμα σε ήπιες ανανεώσιμες μορφές ενέργειας όπως η ηλιακή και η αιολική. Σε αυτή την περίπτωση ή παραγόμενη ενέργεια δεν μπορεί να ρυθμιστεί ανάλογα με τις καταναλωτικές απαιτήσεις αφού εξαρτάται από τα καιρικά φαινόμενα (φως, άνεμος). Αυτό έχει ως αποτέλεσμα την αναζήτηση τρόπων αποθήκευσής της σε ώρες που η ζήτηση είναι μικρή και την απόδοσή της όταν υπάρχει αύξηση της κατανάλωσης. Οι μπαταρίες διαδραματίζουν πολύ σημαντικό όλο σε αυτό το κύκλο (παραγωγή - αποθήκευση - κατανάλωση).
Η μπαταρία είναι μια συσκευή που μπορεί να μετατρέπει, μέσα από οξειδοαναγωγικές διεργασίες, την χημική ενέργεια σε ηλεκτρική (εκφόρτιση), ενώ οι επαναφορτιζόμενές μπορούν να μετατρέψουν την ηλεκτρική σε χημική (φόρτιση) και να την αποθηκεύσουν με τον τρόπο αυτό, για μελλοντική χρήση. Για την κατασκευή τους χρησιμοποιούνται μια σειρά από μέταλλα που πρέπει να πληρούν βασικές προϋποθέσεις όπως μικρό βάρος και κόστος και να είναι όσο δυνατόν πιο φιλικά προς το περιβάλλον μειώνοντας το αποτύπωμα σε CO2 σε όλα τα στάδια (εξόρυξη, χρήση, ανακύκλωση).
Από τα μέταλλα που βρίσκουν βιομηχανική εφαρμογή σε την παραγωγή μπαταριών είναι το νικέλιο (Ni). Η πρώτη μπαταρία Ni / Fe κατασκευάστηκε από τον Σουηδό Jungner το 1897 και το 1901 αντικατέστησε το σίδηρο (Fe) από κάδμιο (Cd), ενώ η μαζική χρήση των μπαταριών NiCd εμφανίστηκε από τα μέσα του 20ου αιώνα. Το νικέλιο εντοπίζεται σε βασικά - υπερβασικά πετρώματα και εξάγεται από λατερίτες και σουλφίδια.
Στην παρούσα εργασία πραγματοποιείται μια γενική επισκόπηση της αρχής λειτουργίας των μασταριών, ως μέσων αποθήκευσης ηλεκτρικής ενέργειας, με έμφαση στις μπαταρίες: Νικελίου Καδμίου, Νικελίου Υδριδίων μετάλλων και Νατρίου - Χλωριούχου Νικελίου. Ενώ περιγράφονται κοιτάσματα νικελίου σε τρεις από τις χώρες με τα μεγαλύτερα αποθέματα.
Α) Ινδονησία: σε λατερίτες από τα νησιά Sulawesi και Halmahera.
Β) Καναδά: σε θειούχα μαγματικά κοιτάσματα από την περιοχή Sudbury, Οντάριο.
Γ) Ρωσική Ομοσπονδία: σε θειούχα μαγματικά κοιτάσματα από τις περιοχές Norilsk (Σιβηρία) και στη Χερσόνησο Kola (στα βόρεια σύνορα με Φιλανδία)

Global warming results in the research for alternative energy solutions as an alternative of fossil fuels. This results in both cars and industry as well as in domestic use switching to renewable energy such as solar and wind. In this case, the produced energy cannot be regulated according to consumption requirements since it depends on availability of sun and wind. This results in the search for ways to store produced power, at times when demand is low and its performance when there is an increase in consumption. Batteries play a very important role in this cycle (production - storage - consumption).
A battery is a device that can convert, through redox processes, chemical energy into electrical energy (discharge), while rechargeable batteries can convert electrical energy into chemical (charge) and store it for future use. For their construction, a series of metals are used that must fulfill basic requirements such as light weight and low cost and be as environmentally friendly as possible by reducing CO2 emissions at all stages (extraction, use, recycling).
Among the metals that find industrial application in the production of batteries is nickel (Ni). The first Ni / Fe battery was manufactured by the Swede Jungner in 1897 and in 1901 he replaced iron (Fe) with cadmium (Cd), while the mass use of NiCd batteries appeared from the middle of the 20th century. Nickel is found in mafic and ultramafic rocks and is extracted from laterites and sulfides.
In this paper, description on batteries construction and operation is presented a general, especially in batteries: Nickel Cadmium, Nickel Metal Hydride and Sodium - Nickel Chloride. Furthermore, nickel deposits are described in three of the countries with the largest reserves:
A) Indonesia: in laterites from Sulawesi and Halmahera islands.
B) Canada: in sulfide magmatic deposits from the Sudbury area, Ontario.
C) Russian Federation: in sulfide magmatic deposits from Norilsk (Siberia) and the Kola Peninsula (on the northern border with Finland).


Πλήρες Κείμενο:

PDF

Αναφορές


Agarwal, D. C. (2004). Nickel and nickel alloys. Handbook of Advanced Materials: Enabling New Designs, 217-270.

Akbar, F. F. (2022). Long-term Indonesia’s Nickel Supply Chain Strategy for Lithium-Ion Battery as Energy Storage System. International Journal of Business and Technology Management, 4(3), 281-291.

Akinyele, D., Belikov, J., & Levron, Y. (2017). Battery storage technologies for electrical applications: Impact in stand-alone photovoltaic systems. Energies, 10(11), 1760.

Auclair, M., Gauthier, M., Trottier, J., Jebrak, M., & Chartrand, F. (1993). Mineralogy, geochemistry, and paragenesis of the Eastern Metals serpentinite-associated Ni-Cu-Zn deposit, Quebec Appalachians. Economic Geology, 88(1), 123-138.

Barnes, S. J., & Francis, D. (1995). The distribution of platinum-group elements, nickel, copper, and gold in the Muskox layered intrusion, Northwest Territories, Canada. Economic Geology, 90(1), 135-154.

Barnes, S. J., Melezhik, V. A., & Sokolov, S. V. (2001). The composition and mode of formation of the Pechenga nickel deposits, Kola Peninsula, northwestern Russia. The Canadian Mineralogist, 39(2), 447-471.

Bekker, A., Grokhovskaya, T. L., Hiebert, R., Sharkov, E. V., Bui, T. H., Stadnek, K. R.,... & Wing, B. A. (2016). Multiple sulfur isotope and mineralogical constraints on the genesis of Ni-Cu-PGE magmatic sulfide mineralization of the Monchegorsk Igneous Complex, Kola Peninsula, Russia. Mineralium Deposita, 51, 1035-1053.

Bertin, F. C. H., Espinosa, D. C. R., & Tenório, J. A. S. (2015). Ch. 10: Batteries. Electronic Waste, 129.

Bide, T., Hetherington, L., & Gunn, G. (2008). Nickel.

Böhm, H., & Beyermann, G. (1999). ZEBRA batteries, enhanced power by doping. journal of power sources, 84(2), 270-274.

Borah, R., Hughson, F. R., Johnston, J., & Nann, T. (2020). On battery materials and methods. Materials Today Advances, 6, 100046.

Bortnikov, N. S., Volkov, A. V., Galyamov, A. L., Vykentiev, I. V., Lalomov, A. V., & Murashov, K. Y. (2022). Fundamental problems of development of the mineral-resource base of high-tech industry and energy of Russia. Geology of Ore Deposits, 64(6), 313-328.

Bose, B. K. (2010). Global warming: Energy, environmental pollution, and the impact of power electronics. IEEE Industrial Electronics Magazine, 4(1), 6-17.

Brown, T. J., Bide, T., Walters, A. S., Idoine, N. E., Shaw, R. A., Hannis, S. D.,... & MacKenzie, A. C. (2011). World mineral production 2005-09. British Geological Survey.

Cairns, E. J. (2004). Batteries, overview. Encyclopedia of Energy, 1, 117-126.

Choi, Y., Lee, I., & Moon, I. (2021). Geochemical and mineralogical characteristics of garnierite from the Morowali Ni-Laterite deposit in Sulawesi, Indonesia. Frontiers in Earth Science, 9, 761748.

Cock, G. C., & Lynch, J. E. (1999). Discovery and evaluation of the Weda Bay nickel/cobalt deposits, central Halmahera, Indonesia. Australasian Institute of Mining and Metallurgy Publication Series 4/99, 197-206.

Dalvi, A. D., Bacon, W. G., & Osborne, R. C. (2004, March). The past and the future of nickel laterites. In PDAC 2004 International Convention, Trade Show & Investors

Exchange (pp. 1-27). The prospectors and Developers Association of Canada Toronto.

Damm, A., Köberl, J., Prettenthaler, F., Rogler, N., & Töglhofer, C. (2017). Impacts of + 2 C global warming on electricity demand in Europe. Climate Services, 7, 12-30.

Davis, H. W. (1943). Nickel. Skillings” Mining Review, 31(42), 2.

Decker, F. (2005). Volta and the pile. Electrochemistry Encyclopedia.

Dehghani-Sanij, A. R., Tharumalingam, E., Dusseault, M. B., & Fraser, R. (2019). Study of energy storage systems and environmental challenges of batteries. Renewable and Sustainable Energy Reviews, 104, 192-208.

Diakov, S., West, R., Schissel, D., Krivtsov, A., Kochnev-Pervoukhov, V., & Migachev, I. (2002). Recent advances in the Noril'sk model and its application for exploration of Ni-Cu-PGE sulfide deposits.

Dickin, A. P., Richardson, J. M., Crocket, J. H., McNutt, R. H., & Peredery, W. V. (1992). Osmium isotope evidence for a crustal origin of platinum group elements in the

Sudbury nickel ore, Ontario, Canada. Geochimica et Cosmochimica Acta, 56(9), 3531-3537.

Duda-Chodak, A., & Blaszczyk, U. (2008). The impact of nickel on human health. Journal of Elementology, 13(4), 685-693.

Dustmann, C. H. (2004). Advances in ZEBRA batteries. Journal of power sources, 127(1-2), 85-92.

Eckstrand, O. R., & Hulbert, L. J. (2007). Magmatic nickel-copper-platinum group element deposits. Mineral deposits of canada: a synthesis of major deposit types, district

metallogeny, the evolution of geological provinces, and exploration methods: geological association of Canada, mineral deposits division, Special Publication, 5, 205-222.

Elias, M. (2002). Nickel laterite deposits-geological overview, resources and exploitation. Giant ore deposits: Characteristics, genesis and exploration. CODES Special Publication, 4, 205-220.

Elliott, T., & Steele, R. C. (2017). The isotope geochemistry of Ni. Reviews in Mineralogy and Geochemistry, 82(1), 511-542.

Faessler, B. (2021). Stationary, second use battery energy storage systems and their applications: A research review. Energies, 14(8), 2335.

Farrokhpay, S., Cathelineau, M., Blancher, S. B., Laugier, O., & Filippov, L. (2019). Characterization of Weda Bay nickel laterite ore from Indonesia. Journal of Geochemical Exploration, 196, 270-281.

Fetcenko, M. A., Ovshinsky, S. R., Reichman, B., Young, K., Fierro, C., Koch, J.,... & Ouchi, T. (2007). Recent advances in NiMH battery technology. Journal of Power Sources, 165(2), 544-551.

Fu, W., Yang, J., Yang, M., Pang, B., Liu, X., Niu, H., & Huang, X. (2014). Mineralogical and geochemical characteristics of a serpentinite-derived laterite profile from East Sulawesi, Indonesia: Implications for the lateritization process and Ni supergene enrichment in the tropical rainforest. Journal of Asian Earth Sciences, 93, 74-88.

Gale, G. H. (1969). The primary dispersion of Cu, Zn, Ni, Co, Mn and Na adjacent to sulfite deposits, Springdale Peninsula, Newfoundland (Doctoral dissertation, Memorial University of Newfoundland).

Gall, L., Williams, H. M., Halliday, A. N., & Kerr, A. C. (2017). Nickel isotopic composition of the mantle. Geochimica et Cosmochimica Acta, 199, 196-209.

Ghosh, S. K., & Ghosh, B. K. (2020). Fossil fuel consumption trend and global warming scenario: Energy overview. Glob J Eng Sci, 5(2), 2641-2039.

Gleeson, S. A., Butt, C. R. M., & Elias, M. (2003). Nickel laterites: a review. SEG Newsletter, (54), 1-18.

Good, D., Mealin, C., & Walford, P. (2009). Geology of the Ore Fault Ni-Cu Deposit, Bird River Sill Complex, Manitoba. Exploration and Mining Geology, 18(1-4), 41-57.

Goudsblom, J. (2012). Energy and civilization. International Review of Sociology, 22(3), 405-411.

Gramlich, J. W., Beary, E. S., Machlan, L. A., & Barnes, I. L. (1989). The absolute isotopic composition and atomic weight of terrestrial nickel. Journal of research of the National Institute of Standards and Technology, 94(6), 357.

Gritsenko, Y. D., Kondrikova, A. P., Gilbricht, S., Schoneveld, L., Barnes, S. J., Godel, B. M.,... & Yudovskaya, M. A. (2022). Quantitative assessment of the relative roles of sulfide liquid collection, magmatic degassing and fluid-mediated concentration of PGE in low-sulfide ores of the Norilsk intrusions. Ore Geology Reviews, 148, 105042.

Gu, M., Belharouak, I., Genc, A., Wang, Z., Wang, D., Amine, K., & Wang, C. (2012). Conflicting roles of nickel in controlling cathode performance in lithium ion batteries. Nano letters, 12(10), 5186-5191.

Habeck M (2013) Eco-USA toxic chemicals. Available on http://www.eco-usa.net/toxics/ index.shtml. Accessed 12 Mar 2013

Hall, R. (1987). Plate boundary evolution in the Halmahera region, Indonesia. Tectonophysics, 144(4), 337-352.

Hall, R., & Wilson, M. E. J. (2000). Neogene sutures in eastern Indonesia. Journal of Asian Earth Sciences, 18(6), 781-808.

Harman, C. G., & King, B. W. (1952). Applications of nickel compounds in ceramics. Industrial & Engineering Chemistry, 44(5), 1015-1017.

Heth, C. L. (2019). Energy on demand: A brief history of the development of the battery. Substantia, 3(2), 77-86.

Hoatson, D. M., Jaireth, S., & Jaques, A. L. (2006). Nickel sulfide deposits in Australia: Characteristics, resources, and potential. Ore Geology Reviews, 29(3-4), 177-241.

Holm, D., Medaris Jr, L. G., McDannell, K. T., Schneider, D. A., Schulz, K., Singer, B. S., & Jicha, B. R. (2020). Growth, overprinting, and stabilization of Proterozoic Provinces in

the southern Lake Superior region. Precambrian Research, 339, 105587.

Jeyaseelan, C., Jain, A., Khurana, P., Kumar, D., & Thatai, S. (2020). Ni‐Cd Batteries. Rechargeable Batteries: History, Progress, and Applications, 177-194.

Keays, R. R., & Lightfoot, P. C. (2004). Formation of Ni-Cu-platinum group element sulfide mineralization in the Sudbury impact melt sheet. Mineralogy and Petrology, 82, 217-258.

Keim, W. (1990). Nickel: an element with wide application in industrial homogeneous catalysis. Angewandte Chemie International Edition in English, 29(3), 235-244.

Kluiters, E. C., Schmal, D., ter Veen, W. R., & Posthumus, K. J. (1999). Testing of a sodium/nickel chloride (ZEBRA) battery for electric propulsion of ships and vehicles. Journal of power sources, 80(1-2), 261-264.

Kopera, J. J., & Orion, M. I. (2005). Considerations for the utilization of NiMH battery technology in stationary applications. White paper COBASYS, 1-10.

Krepelková, M. (2017). Evolution of batteries: From experiments to everyday usage. In 21th International Student Conference on Electrical Engineering.

Krivolutskaya, N. A., Latyshev, A. V., Dolgal, A. S., Gongalsky, B. I., Makarieva, E. M., Makariev, A. A.,... & Asavin, A. M. (2019). Unique PGE-Cu-Ni Noril’sk deposits, Siberian

trap province: magmatic and tectonic factors in their origin. Minerals, 9(1), 66.

Krivolutskaya, N., Bychkova, Y., Gongalsky, B., Kubrakova, I., Tyutyunnik, O., Dekunova, E., & Taskaev, V. (2020). New geochemical and mineralogical data on rocks and ores of the ne flank of the oktyabr’skoe deposit (Norilsk area) and a view on their origin. Minerals, 11(1), 44.

Kurzweil, P. (2010). Gaston Planté and his invention of the lead-acid battery—The genesis of the first practical rechargeable battery. Journal of Power Sources, 195(14), 4424-4434.

Levine, R. M., & Wallace, G. J (2007). THE MINERAL INDUSTRIES OF ARMENIA, AZERBAIJAN, BELARUS, GEORGIA, KAZAKHSTAN, KYRGYZSTAN, MOLDOVA, RUSSIA,

TAJIKISTAN, TURKMENISTAN, UKRAINE, AND UZBEKISTAN. In “U.S. GEOLOGICAL SURVEY MINERALS YEARBOOK—2005” (Dec. 2007).

Li, G., Lu, X., Kim, J. Y., Meinhardt, K. D., Chang, H. J., Canfield, N. L., & Sprenkle, V. L. (2016). Advanced intermediate temperature sodium-nickel chloride batteries with

ultra-high energy density. Nature communications, 7(1), 10683.

Li, H., Wang, Y., Na, H., Liu, H., & Zhou, H. (2009). Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. Journal of the American Chemical Society, 131(42), 15098-15099.

Lightfoot, P. C., & Zotov, I. A. (2005). Geology and geochemistry of the Sudbury Igneous Complex, Ontario, Canada: Origin of nickel sulfide mineralization associated with an impact-generated melt sheet. Geology οf Ore Deposits C/C οf Geologiia Rudnykh Mestorozhdenii, 47(5), 349.

Lightfoot, N. E., Pacey, M. A., & Darling, S. (2010). Gold, nickel and copper mining and processing. Health Promotion and Chronic Disease Prevention in Canada, 29.

Long, D. G. (2004). The tectonostatigraphic evolution of the Huronian basement and the subsequent basin fill: geological constraints on impact models of the Sudbury

event. Precambrian Research, 129(3-4), 203-223.

Manzoni, R., Metzger, M., & Crugnola, G. (2008). ZEBRA electric energy storage system: From R&D to market. Present. HTE Hi. Tech. Expo-Milan, 25th-28th November, 25, 28.

Marston, R. J., Groves, D. I., Hudson, D. R., & Ross, J. R. (1981). Nickel sulfide deposits in Western Australia; a review. Economic Geology, 76(6), 1330-1363.

Mcclelland, M. (1955). Nickel in Canada. Department of Mines and Technical Survey Mem, (130).

Meng, Y. S., Srinivasan, V., & Xu, K. (2022). Designing better electrolytes. Science, 378 (6624), eabq3750.

Mudd, G. M. (2009, August). Nickel sulfide versus laterite: the hard sustainability challenge remains. In Proceedings of the 48th Conference of Metallurgists (pp. 23-26).

Mudd, G. M. (2010). Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geology Reviews, 38(1-2), 9-26.

Muslimin, S., Nawawi, Z., Suprapto, B. Y., & Dewi, T. (2022, February). Comparison of batteries used in electrical vehicles. In 5th FIRST T1 T2 2021 International Conference (FIRST-T1-T2 2021) (pp. 421-425). Atlantis Press.

Naryono, E. (2023). Nickel Mine Exploitation In Indonesia, Between A Blessing And A Disaster Of Environmental Damage (No. y58qe). Center for Open Science.

Nikolaidis, P., & Poullikkas, A. (2017). A comparative review of electrical energy storage systems for better sustainability. Journal of power technologies, 97(3), 220-245.

Nogueira, C. A., & Margarido, F. (2007). Chemical and physical characterization of electrode materials of spent sealed Ni-Cd batteries. Waste Management, 27(11), 1570-1579.

Notten, P. H. (2000). Nickel-metal hydride batteries: from concept to characteristics. Hemijska industrija, 54(3), 102-115.

Ogunniyi, E. O., & Pienaar, H. C. V. Z. (2017, April). Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications. In 2017

International Conference on the Domestic Use of Energy (DUE) (pp. 233-239). IEEE.

Oliveira, L., Messagie, M., Mertens, J., Laget, H., Coosemans, T., & Van Mierlo, J. (2015). Environmental performance of electricity storage systems for grid applications, a life

cycle approach. Energy conversion and management, 101, 326-335.

Omer, A. M. (2012). The energy crisis, the role of renewable and global warming. Greener Journal of Environment Management and Public Safety, 1(1), 038-07.

Oxley, A., Smith, M. E., & Caceres, O. (2016). Why heap leach nickel laterites?. Minerals Engineering, 88, 53-60.

Pandyaswargo, A. H., Wibowo, A. D., Maghfiroh, M. F. N., Rezqita, A., & Onoda, H. (2021). The emerging electric vehicle and battery industry in Indonesia: Actions around the

nickel ore export ban and a SWOT analysis. Batteries, 7(4), 80.

Paquet, H., Clauer, N., & Trescases, J. J. (1997). The lateritic nickel-ore deposits. Soils and sediments: mineralogy and geochemistry, 125-138.

Pop, V., Bergveld, H. J., Notten, P. H. L., & Regtien, P. P. (2005). State-of-the-art of battery state-of-charge determination. Measurement science and technology, 16(12), R93.

Rafianto, R., Attong, F., Matano, A., & Noor, M. E. S. (2012). The serpentine-related nickel sulphide occurrences from Latao SE Sulawesi; a new frontier of nickel exploration in

Indonesia. Majalah Geologi Indonesia, 27, 87-107.

Ripley, E. M., Lightfoot, P. C., Stifter, E. C., Underwood, B., Taranovic, V., Dunlop III, M., & Donoghue, K. A. (2015). Heterogeneity of S isotope compositions recorded in the

Sudbury Igneous Complex, Canada: Significance to formation of Ni-Cu sulfide ores and the host rocks. Economic Geology, 110(4), 1125-1135.

Scheppe, F., Sahm, P. R., Hermann, W., Paul, U., & Preuhs, J. (2002). Nickel aluminides: a step toward industrial application. Materials Science and Engineering: A, 329, 596-601.

Scherson, D., & Palencsár, A. (2006). Batteries and electrochemical capacitors. The Electrochemical Society Interface, 15(1), 17.

Seabrook, C. L., Prichard, H. M., & Fisher, P. C. (2004). Platinum-group minerals in the Raglan Ni-Cu-(PGE) sulfide deposit, Cape Smith, Quebec, Canada. The Canadian Mineralogist, 42(2), 485-497.

Sereda, E., Belyatsky, B., & Krivolutskaya, N. (2020). Geochemistry and geochronology of southern Norilsk intrusions, SW Siberian traps. Minerals, 10(2), 165.

Siburian, R., Paiman, S., Hutagalung, F., Simatupang, L., Goei, R., & Rusop, M. M. (2022). Developing Nickel/Graphene Nano Sheets as an alternative primary battery anode. Ceramics International, 48(9), 12897-12905.

Sigit, S. (1973). Large scale mineral exploration and new mining development prospects in Indonesia.

Šimić, Z., Topić, D., Knežević, G., & Pelin, D. (2021). Battery energy storage technologies overview. International journal of electrical and computer engineering systems, 12(1), 53-65.

Sluzhenikin, S. F., Krivolutskaya, N. A., Rad'ko, V. A., Malitch, K. N., Distler, V. V., & Fedorenko, V. A. (2014). Ultramafic-mafic intrusions, volcanic rocks and PGE-Cu-Ni sulfide

deposits of the Noril'sk Province, Polar Siberia.

SQGHH, P., & Provisional, S. Q. G. E. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (2015).

Stanković, S., Stopić, S., Sokić, M., Marković, B., & Friedrich, B. (2020). Review of the past, present, and future of the hydrometallurgical production of nickel and cobalt from

lateritic ores. Metallurgical & Materials Engineering, 26(2), 199-208.

Starostin, V. I., & Sorokhtin, O. G. (2011). A new interpretation for the origin of the Norilsk type PGE-Cu-Ni sulfide deposits. Geoscience Frontiers, 2(4), 583-591.

Statista. Nickel Production Top Countries 2020|Statista. In Nickel Production Top Countries 2020; Statista: New York, NY, USA, 2020; Available online:

https://www.statista.com/statistics/264642/nickel-mine-production-by-country/

Sufyan, M., Rahim, N. A., Aman, M. M., Tan, C. K., & Raihan, S. R. S. (2019). Sizing and applications of battery energy storage technologies in smart grid system: A

review. Journal of Renewable and Sustainable Energy, 11(1).

Sudworth, J. L. (2001). The sodium/nickel chloride (ZEBRA) battery. Journal of power sources, 100(1-2), 149-163.

Syahrir, R., Wall, F., & Diallo, P. (2020). Socio-economic impacts and sustainability of mining, a case study of the historical tin mining in Singkep Island-Indonesia. The Extractive Industries and Society, 7(4), 1525-1533.

Szydło, Z.A. (2021). Chemical electricity. Chemistry-Didactics-Ecology-Metrology, 26 (1-2), 5-29.

Thirnbeck, M. R. (2001, June). The Sentani and Siduarsi nickel-cobalt laterite deposits, northeast Irian Jaya, Indonesia. In Proc. PNG Geology, Exploration and Mining

Conference (eds. G. Hancock) Australasian Inst. Mining Metall., Melbourne.

Van der Ent, A. J. M. M. J., Baker, A. J. M., Van Balgooy, M. M. J., & Tjoa, A. M. M. J. (2013). Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. Journal of Geochemical Exploration, 128, 72-79.

Van Ruijven, B. J., De Cian, E., & Sue Wing, I. (2019). Amplification of future energy demand growth due to climate change. Nature communications, 10(1), 2762.

Whittingham, M. S. (2012). History, evolution, and future status of energy storage. Proceedings of the IEEE, 100(Special Centennial Issue), 1518-1534.

Widiatmoko, H. C., Mirnanda, E., & Kurnio, H. (2020). Nickel in Buli Coastal Area, East Halmahera. Bulletin of the Marine Geology, 35(1).

Xu, J., Lin, F., Doeff, M. M., & Tong, W. (2017). A review of Ni-based layered oxides for rechargeable Li-ion batteries. Journal of Materials Chemistry A, 5(3), 874-901.

Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., & Zhang, J. (2015). A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 44(21), 7484-7539.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.