Εξώφυλλο

Υποθαλάσσια ριπίδια: τύποι ροών και υπό-περιβάλλοντα ιζηματογένεσης = Submarine fans: flow types and depositional sub-environmants.

Παρασκευή Χρήστος Βασιλειάδου

Περίληψη


Η παρούσα διπλωματική εργασία παρουσιάζει μια βιβλιογραφική ανασκόπηση των διαφορετικών τύπων ροών που ευθύνονται για την απόθεση του ιζήματος στα βαθιά αποθετικά περιβάλλοντα, καθώς και μια ανασκόπηση των πιο συχνών υποπεριβαλλόντων ιζηματογένεσης που συναντώνται στα συστήματα των υποθαλάσσιων ριπιδίων. η ανασκόπηση περιγράφει και ερμηνεύει δέκα διαφορετικές ιζηματογενείς φάσεις (κροκαλοπαγή πλούσιο σε συνδετικό υλικό και κροκάλες, συμπαγή ψαμμίτη, ψαμμίτης με παράλληλη ελασμάτωση από ροές σύρσης, ψαμμίτης με παράλληλη ελασμάτωση, ψαμμίτης με αναρριχώμενη διασταυρούμενη ελασμάτωση, ψαμμίτης με ελικοειδής ελασμάτωση, συμπαγής ιλυόλιθος, ιλυόλιθος με διασταυρούμενη ελασμάτωση και ιλυόλιθος με παράλληλη ελασμάτωση). επιπλέον, η ανασκόπηση περιγράφει και ερμηνεύει οχτώ διαφορετικά υποπεριβαλλόντα ιζηματογένεσης (στον άξονα των λοβών, παραπλεύρως του άξονα των λοβών, στα περιθώρια των λοβών, στα απομακρυσμένα περιθώρια των λοβών,ενδότερων και εξώτερων εσωτερικών αναχωμάτων, ενδότερων και εξώτερων εξωτερικών αναχωμάτων).

This honours thesis offers a literature review on the most common flow types that are responsible for the sediment deposition in deep water settings, along with a review on the most common depositional sub-environments that occur in deep-water submarine fan deposits. the review describes and interprets ten different sedimentary facies (matrix- and clast-supported conglomerate, structureless sandstone, spaced planar-laminated sandstone, parallel-laminated sandstone, climbing ripple-cross laminated sandstone, convolute cross-laminated sandstone, sandstone, structureless mudstone, ripple cross-laminated mudstone and parallel laminated mudstone). further, the review describes and interprets eight depositional sub-environments (lobe axis, lobe off axis, 8 lobe fringe, distal lobe fringe, inner- and outer internal levee, inner and outer external levee).Η


Πλήρες Κείμενο:

PDF

Αναφορές


Allen, J. R. L. (1968). Current Ripples North- Holland (Vol. 433).

Allen, J. (1982). Sedimentary structures, their character and physical basis Volume 1. Elsevier.

ALLEN, J. R., & Leeder, M. R. (1980). Criteria for the instability of upper‐stage plane beds. Sedimentology, 27(2), 209-217.https://doi.org/10.1111/j.1365-3091.1980.tb01171.x

Anderton, R. (1995). Sequences, cycles and other nonsense: are submarine fan models any use in reservoir geology?. Geological Society, London, Special Publications, 94(1), 5-11. https://doi.org/10.1144/GSL.SP.1995.094.01.02

Baas, J. H. (2004). Conditions for formation of massive turbiditic sandstones by primary depositional processes. Sedimentary Geology, 166(3-4), 293-310.https://doi.org/10.1016/j.sedgeo.2004.01.011

Baas, J. H., Best, J. L., Peakall, J., & Wang, M. (2009). A phase diagram for turbulent, transitional, and laminar clay suspension flows. Journal of Sedimentary Research, 79(4), 162-183. https://doi.org/10.2110/jsr.2009.025

Baas, J. H., Van Dam, R. L., & Storms, J. E. A. (2000). Duration of deposition from decelerating high-density turbidity currents. Sedimentary Geology, 136(1-2), 71-

https://doi.org/10.1016/S0037-0738(00)00088-9

Botziolis, C., Maravelis, A. G., Pantopoulos, G., Kostopoulou, S., Catuneanu, O., & Zelilidis, A. (2021). Stratigraphic and paleogeographic development of a deep-marine foredeep: Central Pindos foreland basin, western Greece. Marine and Petroleum Geology, 128, 105012. https://doi.org/10.1016/j.marpetgeo.2021.105012

Botziolis, C., Maravelis, A. G., Catuneanu, O., & Zelilidis, A. (2024). Controls on sedimentation in a deep‐water foredeep: Central Pindos foreland basin, western Greece. Basin Research, 36(1), e12804. https://doi.org/10.1111/bre.12804

Bouma, A. H. (1962). Sedimentology of some flysch deposits. Agraphic approach to facies interpretation, 168.

Chen, C., Hiscott, R.N., 1999a. Statistical analysis of turbidite cycles in submarine fan associations: tests for short-term persistence. J. Sediment. Res. 69, 486–504.

Collinson, J. D., & Thompson, D. B. (1988). Sedimentary structures (2nd ed., p. 207). Unwin Hyman.

Deptuck, M. E. (2003). Post-rift geology of the Jeanne d'Arc Basin, with a focus on the architecture and evolution of early Paleogene submarine fans, and insights from modern deep-water systems.

Grundvåg, S. A., Johannessen, E. P., Helland‐Hansen, W., & Plink‐Björklund, P. (2014). Depositional architecture and evolution of progradationally stacked lobe complexes in the E ocene C entral B asin of S pitsbergen. Sedimentology, 61(2), 535-569. https://doi.org/10.1111/sed.12067

Harms, J., & Fahnestock, R. K. (1965). Stratification, bed forms, and flow phenomena (with an example from the Rio Grande).https://doi.org/10.2110/pec.65.08.0084

Haughton, P., Davis, C., McCaffrey, W., & Barker, S. (2009). Hybrid sediment gravity flow deposits–classification, origin and significance. Marine and Petroleum Geology, 26(10), 1900-1918. https://doi.org/10.1016/j.marpetgeo.2009.02.012

Hiscott, R. N. (1994). Loss of capacity, not competence, as the fundamental process governing deposition from turbidity currents. Journal of Sedimentary Research, 64(2a), 209-214. https://doi.org/10.2110/jsr.64.209

Hiscott, R. N., & Williams, H. (1995). Middle Ordovician clastic rocks (Humber zone and St. Lawrence platform). Williams, H., ed, 87-98.

Hiscott, R. N., & Middleton, G. V. (1979). Depositional mechanics of thick-bedded sandstones at the base of a submarine slope, Tourelle Formation (Lower Ordovician), Quebec, Canada. https://doi.org/10.2110/pec.79.27.0307

Hiscott, R. N., & Middleton, G. V. (1980). Fabric of coarse deep-water sandstones, Tourelle Formation, Quebec, Canada. Journal of Sedimentary Research, 50(3), 703-721. https://doi.org/10.1306/212F7AC7-2B24-11D7-8648000102C1865D

Hodgson, D. M. (2009). Distribution and origin of hybrid beds in sand-rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa. Marine and Petroleum Geology, 26(10), 1940-1956. https://doi.org/10.1016/j.marpetgeo.2009.02.011

Hodgson, D. M., Kane, I. A., Flint, S. S., Brunt, R. L., & Ortiz-Karpf, A. (2016). Time-transgressive confinement on the slope and the progradation of basin-floor fans: Implications for the sequence stratigraphy of deep-water deposits. Journal of Sedimentary Research, 86(1), 73-86. https://doi.org/10.2110/jsr.2016.3

Hubbard, S. M., de Ruig, M. J., & Graham, S. A. (2009). Confined channel-levee complex development in an elongate depo-center: deep-water Tertiary strata of the Austrian Molasse basin. Marine and Petroleum Geology, 26(1), 85-112. https://doi.org/10.1016/j.marpetgeo.2007.11.006

Jobe, Z. R., Lowe, D. R., & Morris, W. R. (2012). Climbing‐ripple successions in turbidite systems: depositional environments, sedimentation rates and accumulation times. Sedimentology, 59(3), 867-898. https://doi.org/10.1111/j.1365-3091.2011.01283.x

Kane, I.A., Kneller, B.C., Dykstra, M., Kassem, A., McCaffrey, W.D., 2007. Anatomy of a submarine channel-levee: an example from upper cretaceous slope sediments, rosario formation, baja California, Mexico. Mar. Petrol. Geol. 24, 540–563. https://doi.org/10.1016/j.marpetgeo.2007.01.003

Kane, I.A., Hodgson, D.M., 2011. Sedimentological criteria to differentiate submarine channel levee subenvironments: exhumed examples from the rosario Fm. (Upper cretaceous) of baja California, Mexico, and the fort Brown Fm. (Permian), Karoo Basin, S. Africa. Mar. Petrol. Geol. 28 (3), 807–823.https://doi.org/10.1016/j.marpetgeo.2010.05.009

Kneller, B. (1995). Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction. Geological Society, London, Special

Publications, 94(1), 31-49. https://doi.org/10.1144/GSL.SP.1995.094.01.04

Kneller, B. C., & Branney, M. J. (1995). Sustained high‐density turbidity currents and the deposition of thick massive sands. Sedimentology, 42(4), 607-616.

https://doi.org/10.1111/j.1365-3091.1995.tb00395.x

Kneller, B., & McCaffrey, W. (1999). Depositional effects of flow nonuniformity and stratification within turbidity currents approaching a bounding slope; deflection, reflection, and facies variation. Journal of Sedimentary Research, 69(5), 980-991. https://doi.org/10.2110/jsr.69.980

Kneller, B. (2003). The influence of flow parameters on turbidite slope channel architecture. Marine and Petroleum Geology, 20(6-8), 901-910. https://doi.org/10.1016/j.marpetgeo.2003.03.001

Komar, P. D. (1991). The hydraulic interpretation of turbidites from their grain sizes and sedimentary structures. Deep‐Water Turbidite Systems, 41-53. https://doi.org/10.1002/9781444304473.ch3

Kuenen, P. H., & Humbert, F. L. (1969). Grain size of turbidite ripples. Sedimentology, 13(3‐4), 253-261.

https://doi.org/10.1111/j.1365-3091.1969.tb00172.x

Leclair, S. F., & Arnott, R. W. C. (2005). Parallel lamination formed by high-density turbidity currents. Journal of Sedimentary Research, 75(1), 1-5. https://doi.org/10.2110/jsr.2005.001

Lowe, D. R. (1975). Water escape structures in coarse‐grained sediments. Sedimentology, 22(2), 157-204. https://doi.org/10.1111/j.1365-3091.1975.tb00290.x

Lowe, D. R. (1982). Sediment gravity flows; II, Depositional models with special reference to the deposits of high-density turbidity currents. Journal of sedimentary research, 52(1), 279-297. https://doi.org/10.1306/212F7F31-2B24-11D7-8648000102C1865D

Lowe, D. R. (1988). Suspended‐load fallout rate as an independent variable in the analysis of current structures. Sedimentology, 35(5), 765-776. https://doi.org/10.1111/j.1365-3091.1988.tb01250.x

Lowe, D. R., & Guy, M. (2000). Slurry‐flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem. Sedimentology, 47(1), 31-70. https://doi.org/10.1046/j.1365-3091.2000.00276.x

Mattern, F. (2002). Amalgamation surfaces, bed thicknesses, and dish structures in sand-rich submarine fans: numeric differences in channelized and unchannelized deposits and their diagnostic value. Sedimentary Geology, 150(3-4), 203-228. https://doi.org/10.1016/S0037-0738(01)00180-4

Mattern, F. (2005). Ancient sand-rich submarine fans: depositional systems, models, identification, and analysis. Earth-Science Reviews, 70(3-4), 167-202. https://doi.org/10.1016/j.earscirev.2004.12.001

McCaffrey, W., & Kneller, B. (2001). Process controls on the development of stratigraphic trap potential on the margins of confined turbidite systems and aids to reservoir evaluation. AAPG bulletin, 85(6), 971-988.https://doi.org/10.1306/8626ca41-173b- 11d7-8645000102c1865d.

McCave, I. N., & Jones, K. P. N. (1988). Deposition of ungraded muds from high-density non-turbulent turbidity currents. Nature, 333(6170), 250-252. https://doi.org/10.1038/333250a0.

Middleton, G. V. (1970). Experimental studies related to problems of flysh sedimentation. Geol. Assoc. Can. Spec. Paper, 7, 253-272.

Middleton, G. V. (1993). Sediment deposition from turbidity currents. Annual review of earth and planetary sciences, 21(1), 89-114. https://doi.org/10.1146/annurev.ea.21.050193.000513.

Morris, E. A., Hodgson, D. M., Brunt, R. L., & Flint, S. S. (2014). Origin, evolution and anatomy of silt‐prone submarine external levées. Sedimentology, 61(6), 1734-1763. https://doi.org/10.1111/sed.12114

Mulder, T., & Alexander, J. (2001). The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48(2), 269-299. https://doi.org/10.1046/j.1365-3091.2001.00360.x

Mutti, E. (1979). Turbidites et cones sous-marins profonds. Sédimentation détritique (fluviatile, littorale et marine), 1, 353-419.

Mutti, E., & Normark, W. R. (1987). Comparing examples of modern and ancient turbidite systems: problems and concepts. Marine clastic sedimentology: Concepts and case studies, 1-38.

Mutti, E., & Ricci Lucchi, F. (1978). Turbidites of the northern Apennines: introduction to facies analysis. International geology review, 20(2), 125-166. https://doi.org/10.1080/00206817809471524

Mutti, E., Tinterri, R., Benevelli, G., di Biase, D., & Cavanna, G. (2003). Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Marine and Petroleum Geology, 20(6-8), 733-755. https://doi.org/10.1016/j.marpetgeo.2003.09.001.

Nilsen, T.H., 1980. Modern and ancient submarine fans: discussion of papers by R.G. Walker and W.R. Normark. Am. Assoc. Pet. Geol. Bull. 64, 1094–1112.

Nilsen, T.H., 1984. Turbidite facies. Turbidite facies associations. Models of ancient turbidite deposits. In: Nelson, H., Nilsen, T.H. (Eds.), Modern and Ancient Deep-sea Fan Sedimentation. SEPM Short Course, vol. 14, pp. 170–325. Tulsa.

Normark, W.R., 1978. Fan valleys, channels, and depositional lobes on submarine fans: characters for recognition of sandy turbidite environments. Am. Assoc. Pet. Geol. Bull. 62, 912–931.

Pickering, K.T., Hiscott, R.N., Hein, F.J., 1989. Deep marine environments. Unwin Hyman, London, 416 pp.

Piper, D. J., Panagos, A. G., & Pe, G. G. (1978). Conglomeratic Miocene flysch, western Greece. Journal of Sedimentary Research, 48(1), 117-125. https://doi.org/10.1306/212F740A-2B24-11D7-8648000102C1865D.

Prélat, A., Hodgson, D. M., & Flint, S. S. (2009). Evolution, architecture and hierarchy of distributary deep‐water deposits: a high‐resolution outcrop investigation from the Permian

Karoo Basin, South Africa. Sedimentology, 56(7), 2132-2154. https://doi.org/10.1111/j.1365-3091.2009.01073.x.

Raudkivi, A. J. (1963). Study of sediment ripple formation. Journal of the Hydraulics Division, 89(6), 15-34. https://doi.org/10.1061/JYCEAJ.0000952.

Reading, H.G., Richards, M., 1994. Turbidite systems in deep-water basin margins classified by grain size and feeder system. Am. Assoc. Pet. Geol. Bull. 78, 792–822.

Southard, J. B. (1991). Experimental determination of bed-form stability. Annual Review of Earth and Planetary Sciences, 19(1), 423-455.

https://doi.org/10.1146/annurev.ea.19.050191.002231.

Spychala, Y. T., Hodgson, D. M., Stevenson, C. J., & Flint, S. S. (2017). Aggradational lobe fringes: The influence of subtle intrabasinal seabed topography on sediment gravity flow processes and lobe stacking patterns. Sedimentology, 64(2), 582-608. https://doi.org/10.1111/sed.12315.

Stow, D. A., & Bowen, A. J. (1978). Origin of lamination in deep sea, fine-grained sediments. Nature, 274(5669), 324-328. https://doi.org/10.1038/274324a0

Stow, D. A. V., & Piper, D. J. W. (1984). Deep-water fine-grained sediments: facies models. Geological Society, London, Special Publications, 15(1), 611-646. https://doi.org/10.1144/GSL.SP.1984.015.01.38.

Sumner, E. J., Amy, L. A., & Talling, P. J. (2008). Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78(8), 529-547. https://doi.org/10.2110/jsr.2008.062.

Sumner, E. J., Talling, P. J., Amy, L. A., Wynn, R. B., Stevenson, C. J., & Frenz, M. (2012). Facies architecture of individual basin‐plain turbidites: Comparison with existing models and implications for flow processes. Sedimentology, 59(6), 1850-1887. https://doi.org/10.1111/j.1365-3091.2012.01329.x.

Sylvester, Z., & Lowe, D. R. (2004). Textural trends in turbidites and slurry beds from the Oligocene flysch of the East Carpathians, Romania. Sedimentology, 51(5), 945-972. https://doi.org/10.1111/j.1365-3091.2004.00653.x.

Talling, P. J., Amy, L. A., & Wynn, R. B. (2007). New insight into the evolution of large‐volume turbidity currents: comparison of turbidite shape and previous modelling results. Sedimentology, 54(4), 737-769. https://doi.org/10.1111/j.1365-3091.2007.00858.x.

Talling, P. J., Malgesini, G., Sumner, E. J., Amy, L. A., Felletti, F., Blackbourn, G., ... & Akbari, S. (2012). Planform geometry, stacking pattern, and extrabasinal origin of low strength and intermediate strength cohesive debris flow deposits in the Marnoso-arenacea Formation, Italy. Geosphere, 8(6), 1207-1230. https://doi.org/10.1130/GES00734.1.

Talling, P. J., Malgesini, G., Sumner, E. J., Amy, L. A., Felletti, F., Blackbourn, G., ... & Akbari, S. (2012). Planform geometry, stacking pattern, and extrabasinal origin of low strength and intermediate strength cohesive debris flow deposits in the Marnoso-arenacea Formation, Italy. Geosphere, 8(6), 1207-1230. https://doi.org/10.1130/GES00734.1.

Talling, P. J., Masson, D. G., Sumner, E. J., & Malgesini, G. (2012). Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59(7), 1937-2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x.

Walker, R. G. (1965). The origin and significance of the internal sedimentary structures of turbidites. Proceedings of the Yorkshire Geological Society, 35(1), 1-32. https://doi.org/10.1144/pygs.35.1.1.

Walker, R. G. (1978). Deep-water sandstone facies and ancient submarine fans: models for exploration for stratigraphic traps. AAPG Bulletin, 62(6), 932-966. https://doi.org/10.1306/C1EA4F77-16C9-11D7-8645000102C1865D.

Walker, R. G. (1985). Mudstones and thin-bedded turbidites associated with the Upper Cretaceous Wheeler Gorge conglomerates, California; a possible channel-levee complex. Journal of Sedimentary Research, 55(2), 279-290. https://doi.org/10.1306/212F869D-2B24-11D7-8648000102C1865D.

Walker, T. R. (1967). Formation of red beds in modern and ancient deserts. Geological Society of America Bulletin, 78(3), 353-368. https://doi.org/10.1130/0016-7606(1967)78[353:FORBIM]2.0.CO;2.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.