Εξώφυλλο

Μεταλλογένεση κοιτασμάτων πορφυριτικού τύπου = Metallogenesis of porphyry type ore deposits

Χριστίνα Βασίλειος Μαυρέα

Περίληψη


Η διπλωματική αυτή εργασία εξετάζει τη μεταλλογένεση πορφυριτικών κοιτασμάτων, τα οποία αποτελούν σημαντικές πηγές χαλκού, χρυσού και μολυβδαινίου παγκοσμίως. Τα πορφυριτικά κοιτάσματα σχηματίζονται μέσω υδροθερμικών διεργασιών που λαμβάνουν χώρα σε περιοχές με έντονη μαγματική δραστηριότητα, συνήθως σε συνθήκες σύγκλισης τεκτονικών πλακών. Η εργασία αναλύει τη δομή των κοιτασμάτων, η οποία επηρεάζεται από τη θερμοκρασία και τη σύσταση των υδροθερμικών ρευστών, και εξετάζει τις κύριες ζώνες υδροθερμικής εξαλλοίωσης: ποτασσική, προπυλιτική, σερικιτική και αργιλική. Επίσης, αναλύεται η κατανομή των μετάλλων σε αυτές τις ζώνες και η σημασία τους για την εξορυκτική δραστηριότητα. Επιπλέον, η εργασία παρουσιάζει τα κυριότερα παγκόσμια πορφυριτικά κοιτάσματα, καθώς και τα σημαντικότερα ελληνικά κοιτάσματα και εμφανίσεις, όπως των Σκουριών και της Μαρώνειας. Ιδιαίτερη έμφαση δίνεται στην περιβαλλοντική διάσταση της εξόρυξης, καθώς και στην κοινωνική αποδοχή των εξορυκτικών δραστηριοτήτων. Η κατανόηση του μηχανισμού σχηματισμού αυτών των κοιτασμάτων και η βιώσιμη διαχείριση των πόρων τους είναι ζωτικής σημασίας για την οικονομία και το περιβάλλον.

This thesis examines the metallogenesis of porphyry ore deposits, which are significant sources of copper, gold, and molybdenum worldwide. Porphyry deposits form through hydrothermal processes occurring in areas with intense magmatic activity, typically in tectonic plate convergence zones. The thesis analyzes the zonation of these deposits, influenced by temperature and the composition of hydrothermal fluids, and explores the main hydrothermal alteration zones: potassic, propylitic, sericitic, and argillic. The distribution of metals within these zones and their importance for mining activities are also discussed. Additionally, the thesis presents major global porphyry deposits as well as significant Greek deposits, such as Skouries and Maronia. Special emphasis is placed on the environmental impact of mining, along with the social impact of the mining activities. Understanding the formation mechanisms of these deposits and the sustainable management of their resources is crucial for both the economy and the environment.


Πλήρες Κείμενο:

PDF

Αναφορές


Berger, B. R., Ayuso, R. A., Wynn, J. C., & Seal, R. R., II. (2008). Preliminary model of porphyry copper deposits (No. 2008-1321). U.S. Geological Survey

Falkenberg, J. J., Keith, M., Melfos, V., Hohl, M., Haase, K. M., Voudouris, P., Höss, A., Wenske, J., Klemd, R., Beier, C., Kutzschbach, M., & Strauss, H. (2024). Insights into fluid evolution and Re enrichment by mineral micro-analysis and fluid inclusion constraints: Evidence from the Maronia Cu-Mo±Re±Au porphyry system in NE Greece. Mineralium Deposita, 1-25.

Guilbert, J. M., & Park, C. F., Jr. (2007). The geology of ore deposits. Waveland Press.

Hedenquist, J. W., & Richards, J. P. (1998). The influence of geochemical techniques on the development of genetic models for porphyry copper deposits. Society of Economic Geologists Newsletter, 33, 1-16.

Hervé, M., Sillitoe, R. H., Wong, C., Fernández, P., Crignola, F., Ipinza, M., & Urzúa, F. (2012). Geologic overview of the Escondida porphyry copper district, northern Chile. Economic Geology, 107(5), 815-838.

Institution of Mining and Metallurgy, De Beer, L. J., & Dick, L. A. (1994). Development of the Collahuasi copper deposits—a world-class copper project in the Andes of northern

Chile. In Proceedings of the Institution of Mining and Metallurgy (pp. 181-195). Springer Netherlands.

Klein, C., & Philpotts, A. R. (2013). Earth materials: Introduction to mineralogy and petrology. Cambridge University Press.

McFall, K. A., Naden, J., Roberts, S., Baker, T., Spratt, J., & McDonald, I. (2018). Platinum-group minerals in the Skouries Cu-Au (Pd, Pt, Te) porphyry deposit. Ore Geology

Reviews, 99, 344-364.

Melfos, V., Vavelidis, M., Christofides, G., & Seidel, E. (2002). Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece. Mineralium Deposita, 37(7), 648-668.

Melfos, V., & Voudouris, P. (2017). Cenozoic metallogeny of Greece and potential for precious, critical and rare metals exploration. Ore Geology Reviews, 89, 1030-1057.

Melfos, V., Voudouris, P., Melfou, M., Sánchez, M. G., Papadopoulou, L., Filippidis, A., Spry, P. G., Schaarschmidt, A., Klemd, R., Haase, K. M., Tarantola, A., & Mavrogonatos, C. (2020). Mineralogical constraints on the potassic and sodic-calcic hydrothermal alteration and vein-type mineralization of the Maronia porphyry Cu-Mo±Re±Au deposit in NE Greece. Minerals, 10(2), 182.

Mernagh, T. P., Leys, C., & Henley, R. W. (2020). Fluid inclusion systematics in porphyry copper deposits: The super-giant Grasberg deposit, Indonesia, as a case study. Ore Geology Reviews, 123, 103570.

Moon, C. J., Whateley, M. K. G., & Evans, A. M. (2006). Introduction to mineral exploration (2nd ed.). Blackwell Publishing.

Murad, F., Ghaffar, A., Ullah, I., Mastoi, A. S., & Zaman, M. T. (2021). The alteration and mineralization characteristics of Miocene porphyry Cu-Au deposits of Chagai Magmatic Belt, District Chagai, Balochistan, Pakistan. International Journal of Economic and Environmental Geology, 12(1), 1-8.

Seedorff, E., Dilles, J. H., Proffett, J. M., Einaudi, M. T., Zurcher, L., Stavast, W. J., & Barton, M. D. (2005). Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology 100th Anniversary Volume, 251-298.

Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105(1), 3-41.

Sinclair, W. D. (2007). Porphyry deposits. In W. D. Goodfellow (Ed.), Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods (pp. 223-243). Geological Association of Canada, Mineral Deposits Division.

Siron, C. R., Rhys, D., Thompson, J. F., Baker, T., Veligrakis, T., Camacho, A., & Dalampiras, L. (2018). Structural controls on porphyry Au-Cu and Au-rich polymetallic carbonate-hosted replacement deposits of the Kassandra mining district, northern Greece. Economic Geology, 113(2), 309-345

Stergiou, C. L., Melfos, V., Voudouris, P., Spry, P. G., Papadopoulou, L., Chatzipetros, A., & Filippidis, A. (2021). The geology, geochemistry, and origin of the porphyry Cu-Au-(Mo) system at Vathi, Serbo-Macedonian Massif, Greece. Applied Sciences, 11(2), 479.

Sun, W., Huang, R. F., Li, H., Hu, Y. B., Zhang, C. C., Sun, S. J., & Ling, M. X. (2015). Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65, 97–131. https://doi.org/10.1016/j.oregeorev.2015.05.004

Voudouris, P., Melfos, V., Spry, P. G., Bindi, L., Moritz, R., Ortelli, M., & Kartal, T. (2013). Extremely Re-rich molybdenite from porphyry Cu-Mo-Au prospects in northeastern Greece: Mode of occurrence, causes of enrichment, and implications for gold exploration. Minerals, 3(2), 165-191.

Voudouris, P., Mavrogonatos, C., Spry, P. G., Baker, T., Melfos, V., Klemd, R., Haase, K. M., & Melfou, M. (2019). Porphyry and epithermal deposits in Greece: An overview, new discoveries, and mineralogical constraints on their genesis. Ore Geology Reviews, 107, 654-691.

Wilkinson, J. J. (2013). Triggers for the formation of porphyry ore deposits in magmatic arcs. Nature Geoscience, 6(11), 917-925.

Wills, B. A., & Finch, J. (2015). Wills' mineral processing technology: An introduction to the practical aspects of ore treatment and mineral recovery (8th ed.). Butterworth-Heinemann.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.