Τεχνικογεωλογική αξιολόγηση και ταξινόμηση των σχηματισμών του αστικού περιβάλλοντος της Θεσσαλονίκης με τη χρήση γεωτεχνικής βάσης δεδομένων. Έρευνα επί της τεχνικής συμπεριφοράς και εφαρμογές στον σχεδιασμό τεχνικών έργων = Engineering geological assessment and classification of Thessaloniki’s urban area formations using a geotechnical database. Research on the technical behavior and applications in the design of engineering projects.
Περίληψη
Η διδακτορική διατριβή πραγματεύεται την τεχνικογεωλογική αξιολόγηση και ταξινόμηση των γεωλογικών σχηματισμών του αστικού περιβάλλοντος της Θεσσαλονίκης με τη δημιουργία και χρήση τεχνικογεωλογικής βάσης δεδομένων. Η έρευνα επικεντρώνεται στη λεπτομερή διερεύνηση της γεωλογικής σύστασης, των τεχνικογεωλογικών ιδιοτήτων και της υδρογεωλογικής συμπεριφοράς των τεχνητών επιχώσεων κι αποθέσεων Τεταρτογενούς και Νεογενούς ηλικίας, με σκοπό την αντιμετώπιση γεωλογικών και γεωτεχνικών προκλήσεων. Στην περίπτωση ενός αστικού περιβάλλοντος όπου συναντώνται κατά βάση εδαφικά γεωυλικά, η δημιουργία μιας τέτοιας βάσης δεδομένων με σκοπό τη διαχείριση μεγάλου πλήθους δεδομένων είναι επιτακτική, καθώς συνδράμει στην απομείωση της γεωλογικής αβεβαιότητας που σχετίζεται με: την έλλειψη ή/και περιορισμένη προσβασιμότητα σε γεωλογικά και τεχνικογεωλογικά δεδομένα, τη γεωλογική ετερογένεια του υπεδάφους, τη διακύμανση των γεωλογικών σχηματισμών στο χώρο και τις συνθήκες των υπόγειων υδάτων, τη διαφοροποίηση των τεχνικογεωλογικών συνθηκών ανά τεχνικογεωλογικές ενότητες, την ύπαρξη ζωνών και περιοχών γεωλογικής επικινδυνότητας, τις προκλήσεις που συναντώνται κατά το σχεδιασμό έργων υποδομής και την εκδήλωση γεωκινδύνων. Τα δεδομένα που εισήχθησαν κι επεξεργάστηκαν εντός της τεχνικογεωλογικής βάσης δεδομένων προέρχονται από περισσότερες από 600 γεωτρήσεις πλήθους γεωτεχνικών ερευνών και μελετών κι αφορούν σε αποτελέσματα εργαστηριακών κι επιτόπου δοκιμών που διενεργήθηκαν στους εξεταζόμενους γεωλογικούς σχηματισμούς της περιοχής έρευνας. Βασικός στόχος της βάσης δεδομένων, είναι να αναδείξει τον τρόπο με τον οποίο η γεωλογική και τεχνικογεωλογική γνώση μπορούν να διαχειριστούν σε μια καλά οργανωμένη πλατφόρμα. Η παρούσα διατριβή εστιάζει στη λεπτομερή ανάλυση και συσχέτιση των δεδομένων, ούτως ώστε να προκύψουν χρήσιμες πληροφορίες που σχετίζονται με τον ασφαλή σχεδιασμό τεχνικών έργων, τη διαχείριση έναντι γεωκινδύνων και την προστασία του γεωπεριβάλλοντος στη λεκάνη της Θεσσαλονίκης. Η έρευνα ενισχύεται περαιτέρω από τον συνδυασμό διαφορετικών λογισμικών, επιστημονικών εργαλείων, γεωστατιστικών και προγραμματιστικών τεχνικών με σκοπό την ανάλυση, συσχέτιση και παρουσίαση των δεδομένων. Συγκεκριμένα, παράγεται ένα μεγάλο πλήθος παραγόμενων αποτελεσμάτων, όπως: i. Θεματικοί χάρτες κατανομής πάχους και βάθους των τεχνητών επιχώσεων κι αποθέσεων Τεταρτογενούς και Νεογενούς ηλικίας, χάρτες κατανομής λεπτόκοκκων κι αδρόκοκκων υλικών για τις αποθέσεις Τεταρτογενούς και Νεογενούς ηλικίας για διάφορα βάθη και χωρικής κατανομής πλήθους τεχνικογεωλογικών φυσικών και μηχανικών παραμέτρων, ii. Στατιστικές κατανομές ποσοστιαίας συμμετοχής και διαγράμματα κατανομής των εξεταζόμενων φυσικών και μηχανικών ιδιοτήτων με το βάθος κι ανά κατηγορία γεωυλικού, iii. Δισδιάστατες τομές και τρισδιάστατα γεωλογικά και τεχνικογεωλογικά μοντέλα στα οποία προβάλλονται η χωρική κατανομή των σχηματισμών και η μεταβλητότητα των εξεταζόμενων φυσικών και μηχανικών παραμέτρων, iv. ο νέος επικαιροποιημένος τεχνικογεωλογικός χάρτης του λεκανοπεδίου της Θεσσαλονίκης με τον επαναπροσδιορισμό των γεωλογικών επαφών με βάση τα νέα διαθέσιμα δεδομένα, v. Λεπτομερή εύρη τιμών και στατιστικοί δείκτες για τις εξεταζόμενες φυσικές, μηχανικές και υδραυλικές ιδιότητες των γεωλογικών σχηματισμών και vi. Παραδείγματα συγκεκριμένων εφαρμογών-χρήσεων της βάσης, με έμφαση στη διερεύνηση κι εκτίμηση της τεχνικογεωλογικής αξιολόγησης βάσει επικινδυνότητας (εδώ ρευστοποίησης κι εκδήλωσης καθιζήσεων) και είδους τεχνικού έργου (διάνοιξη αστικών σηράγγων και κατασκευή σημαντικών θεμελιώσεων). Μέσω αυτής της διαδικασίας, επιτυγχάνεται ο μετασχηματισμός πλήθους πρωτογενών δεδομένων - μη διαθέσιμων έως σήμερα - σε χρήσιμες πληροφορίες που μπορούν να αξιοποιηθούν περαιτέρω τόσο σε ερευνητικό, όσο και τεχνικό επίπεδο, με σκοπό την ενίσχυση των διαδικασιών λήψης αποφάσεων που σχετίζονται με την ασφαλή αστική ανάπτυξη και την προστασία της Θεσσαλονίκης από γεωκινδύνους.
The doctoral thesis deals with the engineering geological assessment and classification of the geological formations of Thessaloniki’s urban area through the creation and use of a geotechnical database. The research focuses on the detailed investigation of the geological composition, engineering geological properties and hydrogeological behavior of fill deposits and sediments of Quaternary and Neogene age. In case of an urban environment where soil geomaterials are predominant, the creation of such a database for big data management is crucial as it assists in reducing the geological uncertainty related to: lack of and/or limited access to geological and engineering geological data, geological heterogeneity of the subsurface, spatially variation of geological formations and groundwater conditions, discrimination of engineering geological conditions per engineering geological units, existence of geological hazardous zones, challenges encountered in the early stages of designing infrastructure projects and the occurrence of geohazards. The data entered and processed within the engineering geological database originate from more than 600 boreholes of numerous geotechnical investigations and refer to the results of laboratory and field tests carried out in the geological formations of the research area. The research focuses on developing various correlations within the database in order to generate useful information related to the safe design of engineering projects, management against geohazards and protection of the geoenvironment in the Thessaloniki basin. The remarkable contribution of the research is enhanced by the detailed methodological approach followed, which combines different software, scientific tools, geostatistical and coding techniques in order to analyse, correlate and present the data. In particular, a large amount of produced outcomes is generated, categorized as follows: i. Thematic maps displaying thickness and depth distribution of fill deposits and sediments of Quaternary and Neogene age, distribution of fine and coarse-grained materials for sediments of Quaternary and Neogene age for various depths and spatial distribution of a significant number of engineering geological physical and mechanical parameters, ii. Statistical plots and relative frequency of the distributions on the physical and mechanical properties, by depth and geomaterial category, iii. Two-dimensional sections and three-dimensional geological and engineering geological models displaying the spatial distribution and variability of the geological formations investigated, as well as the physical and mechanical parameters by depth, iv. The new updated engineering geological map of Thessaloniki basin highlighting the redefinition of the geological contacts based on the new available data, v. Range of values and statistical indices for the physical, mechanical and hydraulic properties of the geological formations examined in detail and vi. Examples of specific applications-usages of the database, with emphasis on the investigation and assessment of the engineering geological evaluation based on geohazards (here, liquefaction and settlement) and type of engineering project (urban tunneling and construction of major foundations). Through this methodology, a large amount of primary data - not available until now - is transformed into useful information that can be further exploited both on research and technical level. Thus, a useful tool is created, in order to optimize decision-making process related to safe urban development and protection of Thessaloniki from geohazards.
Πλήρες Κείμενο:
PDFΑναφορές
Διεθνή Βιβλιογραφία
Abd El Aal, A. and Masoud, A. A. 2018. Geotechnical Mapping of Najran Soils for Safe Urban Expansion, Najran Region, Saudi Arabia. Geotech Geol Eng, 36, 2003–2020, https://doi.org/10.1007/s10706-017-0442-2
Adhikary, P.P. and Dash, C.J. 2017. Comparison of deterministic and stochastic methods to predict spatial variation of groundwater depth. Appl Water Sci, 7(1) :339–348, https://doi.org/10.1007/s13201-014-0249-8
Ahmed, C., Mohammed, A. and Tahir, A. 2020. Geostatistics of strength, modeling and GIS mapping of soil properties for residential purpose for Sulaimani City soils, Kurdistan Region, Iraq. Model. Earth Syst. Environ., 6, 879–893, https://doi.org/10.1007/s40808-020-00715-y
Akhter, K., Khan, A.J., Khan, Q. and Asim, M. 2014. Soil bearing capacity modelling a case study on Islamabad and Rawalpindi. Proceedings of Second International Conference on Modern Trends in Science Engineering and Technology, https://doi.org/10.13140/RG.2.1.3665.1925
Al-Ani, H., Eslami-Andargoli, L., Oh, E. and Chai, G. 2013. Categorising geotechnical properties of surfers Paradise soil using geographic information system (GIS). International Journal of GEOMATE, 5: 690–695.
Al-Mamoori, S.K., Al-Maliki, L.A., Al-Sulttani, A.H., El-Tawil, K. and Al-Ansari, N. 2021. Statistical analysis of the best GIS interpolation method for bearing capacity estimation in An-Najaf City, Iraq. Environ Earth Sci, 80, 683, https://doi.org/10.1007/s12665-021-09971-2
Al-Mamoori, S. K., Jasem Al-Maliki, L. A., Al-Sulttani, A. H., El-Tawil, K., Hussain, H. M. and Al-Ansari, N. 2020. Horizontal and Vertical Geotechnical Variations of Soils According to USCS Classification for the City of An-Najaf, Iraq Using GIS. Geotech Geol Eng, 38, 1919–1938, https://doi.org/10.1007/s10706-019-01139-x
Aldefae, A. H., Mohammed, J. and Saleem. H. D. 2020. Digital maps of mechanical geotechnical parameters using GIS, Cogent Engineering, 7: 1, https://doi.org/10.1080/23311916.2020.1779563
Aldiss, D.T., Black, M.G., Entwisle, D.C., Page, D.P. and Terrington, R.L. 2012. Benefits of a 3D geological model for major tunnelling works: an example from Farringdon, east-central London, UK. Quarterly Journal of Engineering Geology and Hydrogeology, 45, 405-414, https://doi.org/10.1144/qjegh2011-066
Ali, H. M. and Shakir, R. R. 2022a. Geotechnical map of Thi Qar governorate using geographical information systems (GIS). Materials Today Proceedings, 60:1286–1296. https://doi.org/10.1016/j.matpr.2021.09.138
Ali, H. M. and Shakir, R. R. 2022b. Applying a Python script to predict the geotechnical properties of the Nasiriyah soil. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p 12004
Amini, M.A., Torkan, G., Eslamian, S., Zareian, M.J. and Adamowski, J.F. 2019. Analysis of deterministic and geostatistical interpolation techniques for mapping meteorological variables at large watershed scales. Acta Geophys, 67(1) :191–203, https://doi.org/10.1007/s11600-018-0226-y
Anastasiadis, An., Raptakis, D. and Pitilakis, K. 2001. Thessaloniki’s Detailed Microzoning: Subsurface Structure as Basis for Site Response Analysis, Pure and Applied Geophysics, 158, 2597-2633.
Andronopoulos, V., Rozos, D. and Hatzinakos, I. 1990. Geotechnical study of ground settlement in the Kalochori area, Thessaloniki District. Report. Institute of Geology and Mineral Exploration, Athens, 45.
Andronopoulos, V., Rozos, D. and Hatzinakos, I. 1991. Subsidence phenomena in the industrial area of Thessaloniki, Greece. In: Johnson, A. (ed.) Land Subsidence. IAHS Publications, 200, 59–69.
Anonymous. 1979. Classification of rocks and soils for engineering geological mapping. Part I: Rock and soil materials. Bulletin International Association Engineering Geology, No. 19, 364-71
Anonymous. 2005. Closed-face tunneling machines and ground stability. British Tunneling Society (Closed-Face Working Group). In: Association with the Institution of Civil Engineers. Thomas Telford Publishing, London, p. 77.
Antoniou, A.A., Papadimitriou, A.G. and Tsiambaos, G. 2008. A geographical information system managing geotechnical data for Athens (Greece) and its use for automated seismic microzonation. Natural Hazards, 47, 369–395, https://doi.org/10.1007/s11069-008-9226-6
Apostolidis, P., Raptakis, D., Roumelioti, Z. and Pitilakis, K. 2004. Determination of S-wave velocity structure using microtremors and Spac method applied in Thessaloniki (Greece). Soil Dynamics and Earthquake Engineering, 24, 49-67.
Arseni, M., Voiculescu, V., Georgescu, L.P., Iticescu, C. and Rosu, A. 2019. Testing Different Interpolation Methods Based on Single Beam Echosounder River Surveying. Case Study: Siret River. ISPRS Int. J. Geo-Inf. 8(11), 507, https://doi.org/10.3390/ijgi8110507
Arshid, M.U., Shabbir, F., Hussain, J., Elahi. A, Ahmed, A. and Tahir, I.K. 2013. Assessment of variation in soil parameters, for design of lightly loaded structural foundations. Life Sci J, 12: 217–220
Association of Geotechnical and Geoenvironmental Specialists (AGS). 1999. Electronic Transfer of Geotechnical and Geoenvironmental Data, 3rd edition
Association of Geotechnical and Geoenvironmental Specialists (AGS). 2017. Electronic Transfer of Geotechnical and Geoenvironmental Data, 4.0.4 edition
ASTM STANDARDS. 1995. Vol. 04.08 Soil and Rock (I): D420-D4914. American Society for Testing and Materials, Philadelphia, PA
Babendererde, S., Hoek, E., Marinos, P. and Cardoso, A.S. 2004. Geological risk in the use of TBMs in heterogeneous rock masses – The case of “Metro do Porto” and the measures adopted. In: Paper for Conference in Aveiro, Portugal, DOI: 10.1201/9780203963586.ch3
Baker, V. R. 1975. Urban geology of boulder, Colorado: A progress report. Environmental Geology, 1, 75–88. https://doi.org/10.1007/BF02415534
Barnes. G. E. 1995. Soil Mechanics, Principles and Practice. Red Globe Press, London. https://doi.org/10.1007/978-1-349-13258-4
Baynes, F. J. and Parry, S. 2022. Guidelines for the development and application of engineering geological models on projects. International Association for Engineering Geology and the Environment (IAEG) Commission 25, Publication No. 1, 129 pp.
Becker C. 1995. Choice between EPB and Slurry shield, selection criteria by practical examples», (Proc. Rapid Excavation and Tunneling Conference, San Francisco, pp. 479-492
Bhunia, G.S., Shit, P.K. and Maiti, R. 2018. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). J Saudi Soc Agric Sci, 17(2): 114–126, https://doi.org/10.1016/j.jssas.2016.02.001
Bindi, D., Petrovic, B., Karapetrou, S., Manakou, M., Boxberger, T., Pitilakis, K.D. and Parolai, S. 2015. Seismic response of an 8-story RC-building from ambient vibration analysis. Bulletin of Earthquake Engineering, 13, 2095–2120, https://doi.org/10.1007/s10518-014-9713-y
Black, M.G., Withers, A.D. and Pontin, S. 2001. Data handling and storage. In: Burland JB, Standing JR, Jardine FM (eds) Building response to tunnelling, volume 1: prospects and methods. Thomas Telford, London, pp 301–310
Bond, C. E., Shipton, A. D., Gibbs, A. D. and Jones, S. 2008. Structural models: Optimizing risk analysis by understanding conceptual uncertainty. First Break, 26(6), 65-71, https://doi.org/10.3997/1365-2397.2008006
Boulanger, R.W. and Idriss, I.M. 2006. Liquefaction susceptibility criteria for silts and clays. Journal of Geotechnical and Geoenvironmental Engineering, 132 (11): 1413–1426
Boulanger, R. and Idriss, I. 2014. CPT and SPT based liquefaction triggering procedures. Report No UCD/CGM-14/01, Center for Geotechnical Modeling Department of Civil and Environmental Engineering University of California Davis, California
Boumpoulis, V., Depountis, N., Pelekis, P. and Sabatakakis, N. 2021. SPT and CPT application for liquefaction evaluation in Greece. Arabian Journal of Geosciences, 14: 1631, https://doi.org/10.1007/s12517-021-08103-1
Boumpoulis, V., Michalopoulou, M. and Depountis, N. 2023. Comparison between different spatial interpolation methods for the development of sediment distribution maps in coastal areas. Earth Sci Inform, 16, 2069–2087, https://doi.org/10.1007/s12145-023-01017-4
Bourenane, H., Bouhadad, Y. and Tas, M. 2018. Liquefaction hazard mapping in the city of Boumerdès, Northern Algeria. Bull Eng Geol Environ, 77: 1473–1489, https://doi.org/10.1007/s10064-017-1137-x
Bouygues, Bombardier and SNC-Lavalin. 1999. Thessaloniki Metro Construction Joint Venture «Thessaloniki Metro». Υπουργείο Περιβάλλοντος, Χωροταξίας και ∆ημοσίων Έργων, Γενική Γραμματεία ∆ημοσίων Έργων.
Bowman, D. 1998. Civil engineering data meets GIS. J. Comput. Civ. Eng., 12, 5–7, https://doi.org/10.1061/(ASCE)0887-3801(1998)12:1(5)
Bray, J.D. and Sancio, R.B. 2006. Assessment of the liquefaction susceptibility of fine-grained soils. Journal of Geotechnical and Geoenvironmental Engineering, 132 (9): 1165–1177
Burke, H.F., Mathers, S.J., Williamson, J.P., Thorpe, S., Ford, J. and Terrington, R.L. 2014. The London Basin superficial and bedrock LithoFrame 50 Model, Nottingham, UK. British Geological Survey, 27pp
Cabalar, A. F., Karabas, B., Mahmutluoglu, B. and Yildiz, O. 2021. An IDW-based GIS application for assessment of geotechnical characterization in Erzincan, Turkey. Arab J
Geosci, 14, 2129, https://doi.org/10.1007/s12517-021-08481-6
Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, C., Viseur, S. and Sausse, J. 2009. Surface-Based 3D Modeling of Geological Structures. Mathematical Geosciences, 41, 927–945, https://doi.org/10.1007/s11004-009-9244-2
Celik, F., Öztürk, M.Z., Şener, M.F., Arıöz, O. and Erbil, M. 2021. Mapping investigation based on engineering geology of a developing urban area (Niğde, Turkey). Arab J Geosci, 14, 1316, https://doi.org/10.1007/s12517-021-07699-8
Chander, P., Chauhan, R. and Kumar, R. 2018. Geotechnical data analysis using gis: a case study. Int J Interdiscip Res Innov, 6: 438–445
Chatzigogos, N.P.T., Makedon, T.K., Tsindaris, G.E., Tsotsos, S.C. and Christaras, B.C. 2017. Estimation of the Hydroconsolidation Susceptibility of the Anthropogenic Fill of the Historical Center of Thessaloniki, Greece. International Journal of Geoengineering Case histories, Vol. 4, Issue 1, 46-56. doi: 10.4417/IJGCH-04-01-04
Chávez-García, F.J., Pedotti, G., Hatzfeld, D. and Bard, P.Y. 1990. An experimental study of site effects near Thessaloniki (Northern Greece). Bulletin of the Seismological Society of America, 80(4), 784-806, https://doi.org/10.1785/BSSA0800040784
Childs, C. 2004. Interpolating Surfaces in ArcGIS Spatial Analyst. ESRI Education Services.
Chmelina, K., Rabensteiner, K. and Krusche, G. 2013. A tunnel information system for the management and utilization of geo-engineering data in Urban tunnel projects. Geotech.
Geol. Eng, 31, 845–859, https://doi.org/10.1016/j.enggeo.2013.07.012
Choi, Y., Yoon, S.Y. and Park, H.D. 2009. Tunnelling analyst: a 3D GIS extension for rock mass classification and fault zone analysis in tunnelling. Computers & Geosciences, 35(6), 1322–1333, https://doi.org/10.1016/j.cageo.2008.05.002
Chung, J. and Rogers, J. 2012. Estimating the position and variability of buried bedrock surfaces in the St. Louis metro area. Engineering Geology, 126, 37-45, https://doi.org/10.1016/j.enggeo.2011.12.007
Chung, J.W. and Rogers, J.D. 2010. GIS-based virtual geotechnical database for the St. Louis Metro Area. Environ Eng Geosci, 16:143–162, https://doi.org/10. 2113/gseegeosci.16.2.143
Committee on State of the Art and Practice in Earthquake Induced Soil Liquefaction Assessment. 2016. State of the Art and Practice in the Assessment of Earthquake-Induced Soil
Liquefaction and Its Consequences, https://doi.org/10.17226/23474
Cowan, J., Beatson, R., Ross, H.J., Fright, W.R., McLennan, T.J., Evans, T.R., Carr, J.C., Lane, R.G., Bright, D.V., Gillman, A.J., Oshurst, P.A. and Titley, M. 2003. Practical implicit geological modelling. 5th International Mining Geology Conference, Bendigo Victoria, Australia, AUS IMM, Carlton, Australia, pp 89–99
Culshaw, M.G. 2005. From concept towards reality: developing the attributed 3D geological model of the shallow subsurface. Quarterly Journal of Engineering Geology and Hydrogeology, 38 (8), 231–284, https://doi.org/10.1144/1470-9236/04-072
Culshaw, M.G., Jackson, I. and Giles, J.R.A. 2006. The provision of digital spatial data for engineering geologists. Bull Eng Geol Environ, 65(2): 185–194, https://doi.org/10.1007/s10064-005-0034-x
Dai, F.C., Lee, C.F. and Zang, X.H. 2001. GIS-based geo-environmental evaluation for urban land-use planning: a case study. Engineering Geology. 61, 257–271. https://doi.org/10.1016/S0013-7952(01)00028-X
Das, B. M. 2013. Advanced soil mechanics. CRC Press, Taylor & Francis Group, New York
Das, S., Ghosh, S. and Kayal, J. R. 2019. Liquefaction potential of Agartala City in Northeast India using a GIS platform. Bull Eng Geol Environ, 78, 2919–2931, https://doi.org/10.1007/s10064-018-1287-5
de Rienzo, F., Oreste, P. and Pelizza, S. 2008. Subsurface geological-geotechnical modelling to sustain underground civil planning. Engineering Geology, 96, 187–204,
https://doi.org/10.1016/j.enggeo.2007.11.002
de Rienzo, F., Oreste, P. and Pelizza, S. 2009. 3D GIS Supporting Underground Urbanisation in the City of Turin (Italy). Geotechnical and Geological Engineering, 27, 539-547, https://doi.org/10.1007/s10706-009-9255-2
Deligiannakis, G., Papanikolaou, I.D. and Roberts, G. 2018. Fault specific GIS based seismic hazard maps for the Attica region, Greece. Geomorphology, 306, 264–282, DOI: 10.1016/j.geomorph.2016.12.005
Dikau, R. 1989. The application of a digital relief model to landform analysis. In Raper, J. F. (ed.), Three dimensional application in Geographical Information Systems, Taylor & Francis, London, 51-77
Dong, M., Neukum, C., Hu, H. and Azzam, R. 2015. Real 3D geotechnical modeling in engineering geology: a case study from the inner city of Aachen, Germany. Bulletin of Engineering Geology and the Environment, 74, 281–300, https://doi.org/10.1007/s10064-014-0640-6
Donghee, K., Kyu-Sun, K., Seongkwon, K., Youngmin, C. and Woojin, L. 2012. Assessment of geotechnical variability of Songdo silty clay. Engineering Geology, 133, 1–8,
https://doi.org/10.1016/j.enggeo.2012.02.009
Dou, F., Li, X., Xing, H., Yuan, F. and Ge, W. 2021. 3D geological suitability evaluation for urban underground space development-A case study of Qianjiang Newtown in Hangzhou,
Eastern China. Tunnelling and Underground Space Technology, Vol. 115, 104052, https://doi.org/10.1016/j.tust.2021.104052
El May, M., Kacem, J. and Dlala, M. 2009. Liquefaction susceptibility mapping using geotechnical laboratory tests. Int. J. Environ. Sci. Technol, 6, 299–308. https://doi.org/10.1007/BF03327633
El May, M., Dlala, M. and Chenini, I. 2010. Urban Geological Mapping: Geotechnical Data Analysis for Rational Development Planning. Engineering Geology, 116, 129-138. https://doi.org/10.1016/j.enggeo.2010.08.002
Edbrooke, S.W., Mazengarb, C. and Stephenson, W. 2003. Geology and geological hazards of the Auckland urban area, New Zealand. Quaternary International, 103 (1): 3-21, https://doi.org/10.1016/S1040-6182(02)00129-5
Elumalai, V., Brindha, K., Sithole, B. and Lakshmanan, E. 2017. Spatial interpolation methods and geostatistics for mapping groundwater contamination in a coastal area. Environ Sci Pollut Res, 24: 11601–11617, https://doi.org/10.1007/s11356-017-8681-6
Ford, J.R., Burke, H.F., Royse, K.R. and Mathers, S.J. 2008. The 3D geology of London and the Thames Gateway: A modern approach to geological surveying and its relevance in the urban environment. In: Cities and their Underground Environment: 2nd European conference of International Association for Engineering Geology. Madrid, Spain, 15- 20
Foster, C., Pennington, C.V.L., Culshaw, M.G. and Lawrie, K. 2012. The national landslide database of Great Britain: development, evolution and applications. Environ. Earth Sci, 66, 941–953, https://doi.org/10.1007/s12665-011-1304-5
Fuchu, D., Yuhai, L. and Sijing, W. 1994. Urban geology: a case study of Tongchuan city, Shaanxi Province, China. Engineering Geology, 38, 165–175, https://doi.org/10.1016/0013-7952(94)90031-0
Gallerini, G. and De Donatis, M. 2009. 3D modeling using geognostic data: the case of the low valley of Foglia river (Italy). Computers & Geosciences, 35, 146-164, https://doi.org/10.1016/j.cageo.2007.09.012
Gao, C., Shirota, J., Kelly, R., Brunton, R. and Van Haaflen, S. 2006. Bedrock Topography and Overburden Thickness Mapping, Southern Ontario, Ontario Geological Survey, Miscellaneous Release - Data 207. DOI: 10.13140/RG.2.1.3347.0965
Geodata S.p.A. 1995. Review of alternative construction methods and feasibility of proposed methods for constructing Attiko Metro Extension of Line 3 to Egaleo.
Gilder, C.E.L., Pokhrel, R.M., Vardanega, P.J., De Luca, F., De Risi, R., Werner, M.J., Asimaki, D., Maskey, P.N. and Sextos, A., 2020. The SAFER geodatabase for the Kathmandu Valley: Geotechnical and geological variability. Earthquake Spectra, 36, 1549–1569, https://doi.org/10.1177/8755293019899952
Grafinger, H. and Zischinsky, R. 2005. Long-term data administration and flexible visualization of monitoring results. Fels-bau 23(4):31–35
Guarascio, M., Huybrechts, C.J. and David, M. 1976. Advanced geostatistics in the mining industry. In: Proceedings of the NATO Advanced Study Institute, Istituto di Geologia Applicata of the University of Rome, D. Reidel Publishing Co, Dordrecht, p. 24.
Guglielmetti V., Grasso P., Mahtab A., Xu S., 2008. Mechanized Tunnelling in Urban Areas. Design, Methodology and Construction Control. CRC Press, Taylor & Francis Group, London, UK
Gunninck, J.L., Maljers, D., van Gessel, S.F., Menkovic, A. and Hummelman, H.J. 2013. Digital Geological Model (DGM): a 3D raster model of the subsurface of the Netherlands. Netherlands Journal of Geosciences, 92, 33-46, https://doi.org/10.1017/ S0016774600000263
Hack, R., Orlic, B., Ozmutlu, S., Zhu,S. and Rengers, N. 2006. Three and more dimensional modelling in geo-engineering. Bulletin of Engineering Geology and the Environment, 65(2), 143–153, https://doi.org/10.1007/s10064-005-0021-2
Hassan, W., Raza, M.F., Alshameri, B., Shahzad, A., Khalid, M.H. and Nawaz, M.N. 2023. Statistical interpolation and spatial mapping of geotechnical soil parameters of District Sargodha, Pakistan. Bull Eng Geol Environ, 82, 37, https://doi.org/10.1007/s10064-022-03059-2
Hastie, T., Tibshirani, R. and Friedman, J. 2009. The Elements of Statistical Learning, Data Mining. Inference and Prediction, 2nd ed., Springer New York, NY, https://doi.org/10.1007/978-0-387-84858-7
Hatzigogos, T., Tsotsos S., Pitilakis K. 1983, A preliminary study of liquefaction potential at Thessaloniki area. The Thessaloniki, northern Greece, earthquake of June 1978 and its seismic sequence, TEE, Thessaloniki.
Hatzinakos, I., Rozos, D. and Apostolidis, E. 1990. Engineering geological mapping and related geotechnical problems in the wider industrial area of Thessaloniki, Greece. In: Price, D. (ed.) Proceedings of Sixth International IAEG Congress. Balkema, Rotterdam, 127–134
Haworth, R. 2003. The shaping of Sydney by its urban geology. Quaternary International, 103 (1): 41–55, DOI: 10.1016/S1040-6182(02)00140-4
He, H., He, J., Xiao, J., Zhou, Y., Liu, Y. and Li, C. 2020. 3D geological modeling and engineering properties of shallow superficial deposits: A case study in Beijing, China. Tunnelling and Underground Space Technology, 100, 103390, https://doi.org/10.1016/j.tust.2020.103390
He, H., Xiao, J., He, J., Wei, B., Ma, X., Huang, F., Cai, X., Zhou, Y., Bi, J., Zhao, Y., Wang, C. and Wei, J. 2023. Three-Dimensional Geological Modeling of the Shallow Subsurface and Its Application: A Case Study in Tongzhou District, Beijing, China. Applied Sciences, 13(3), 1932, https://doi.org/10.3390/app13031932
Hickin, A. and Kerr, B. 2005. Bedrock Topography Mapping and Shallow Gas in Northeastern BC in Summary of Activities. BC Ministry of Industry and Mines, pp. 69-75.
Hillier, M.J., Schetselaar, E.M., de Kemp, E.A. and Perron, G. 2014. Three-dimensional modelling of geological surfaces using generalized interpolation with radial basis functions. Mathematical Geosciences, 46, 931-953, https://doi.org/10.1007/s11004-014-9540-3
Holtz, D.R and Kovacs, D.W. 1981. An introduction to Geotechnical Engineering. Prenctice Hall, Inc., New Jersey, p. 733
Hothorn, T. and Everitt, B.S. 2014. A Handbook of Statistical Analyses Using R. Chapman and Hall/CRC press.
Hou, W., Yang, L., Deng, D., Ye, J., Clarke, K., Yang, Z., Zhuang, W., Liu, J. and Huang, J. 2016. Assessing quality of urban underground spaces by coupling 3D geological models: The case study of Foshan city, South China. Computers & Geosciences, 89, 1-11, https://doi.org/10.1016/j.cageo.2015.07.016
Høyer, A.S., Klint, K.E.S., Fiandaca, G., Maurya, P.K., Christiansen, A.V., Balbarini, N., Bjerg, P.L., Hansen, T.B. and Møller, I. 2019. Development of a high-resolution 3D geological model for landfill leachate risk assessment. Engineering Geology, 249, 45-59, https://doi.org/10.1016/j.enggeo.2018.12.015
Hutchinson, M.F. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J. Hydrol, 106, 211–232.
Hutchinson, M.F. 2000. Optimising the degree of data smoothing for locally adaptive finite element bivariate smoothing splines. The ANZIAM J, 42, https://doi.org/10.21914/anziamj.v42i0.621
Hutchinson, M.F., Xu, T. and Stein, J.A., 2011. Recent Progress in the ANUDEM Elevation Gridding Procedure (Geomorphometry).
Idriss, I. M. and Boulanger, R. W. 2008. Soil liquefaction during earthquakes. Monograph MNO-12, Earthquake Engineering Research Institute, Oakland, CA, https://www.eeri.org/
Ijaz, Z., Zhao, C., Ijaz, N., Rehman Z.u and Ijaz, A. 2021. Spatial mapping of geotechnical soil properties at multiple depths in Sialkot region, Pakistan. Environmental Earth Sciences, 80, 787, https://doi.org/10.1007/s12665-021-10084-z
Ijaz, Z., Zhao, C., Ijaz, N., Rehman Z.u and Ijaz, A. 2023. Statistical evaluation of multiple interpolation techniques for spatial mapping of highly variable geotechnical facets of soil in natural deposition. Earth Sci Inform, 16, 105–129, https://doi.org/10.1007/s12145-022-00924-2
Isaaks, E.H. and Srivastava, R.M. 1990. An Introduction to Applied Geostatistics. Oxford University Press, New York, 561 p
Iwasaki, T., Arakawa, T. and Tokida, K. 1982. Simplified procedures for assessing soil liquefaction during earthquakes. Proceedings of the Conference on Soil Dynamics and Earthquake Engineering, Southampton, UK, pp. 925– 939
Iwasaki, T., Tokida, K., Tatsuko, F. and Yasuda, S. 1978. A practical method for assessing soil liquefaction potential based on case studies at various site in Japan. Proceeding of the 2nd International Conference on Microzonation, San Francisco, CA, pp. 885–896
James, G., Witten, D., Hastie, T. and Tibshirani, R. 2013. An Introduction to Statistical Learning. With Applications in R, Springer New York, NY, https://doi.org/10.1007/978-1-4614-7138-7
Jardaneh, I. 2007. Geotechnical map for the city of Nablus - Palestine. An-Naja Univ J Res Sci 21:201–219
Jørgensen, F., Høyer, A.S., Sandersen, P. B. E., He, X. and Foged, N. 2015. Combining 3D geological modelling techniques to address variations in geology, data type and density-An example from Southern Denmark. Computers & Geosciences, 81, 53-63, https://doi.org/10.1016/j.cageo.2015.04.010
Juang, C.H., Yuan, H., Lee, D.H. and Lin, P.S. 2003. A simplified CPT-based method for evaluating liquefaction potential of soils. Journal of Geotechnical and Geoenvironmental Engineering, 129 (1), 66– 80, https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(66)
Juang, C.H., Liu, C.N., Chen, C.H., Hwang, J.H. and Lu, C.C. 2008. Calibration of liquefaction potential index: A re-visit focusing on a new CPTU model, Engineering Geology, 102, 1–2, 19-30, https://doi.org/10.1016/j.enggeo.2008.06.005
Kalaitzis, P., Foumelis, M., Vasilakos, C., Mouratidis, A., and Soulakellis N. 2023. Interactive Web Mapping Applications for 2D and 3D Geo-Visualization of Persistent Scatterer Interferometry SAR Data. ISPRS International Journal of Geo-Information, 12, 54, https://doi.org/10.3390/ijgi12020054
Kang, G.C., Chung, J.W. and Rogers, J.D. 2014. Re-calibrating the thresholds for the classification of liquefaction potential index based on the 2004 Niigata-ken Chuetsu earthquake. Engineering Geology, 169, 30-40, https://doi.org/10.1016/j.enggeo.2013.11.012
Karapetrou, S., Manakou, M., Lamprou, D., Kotsiri, S. and Pitilakis, K. 2014. “Real-time” seismic vulnerability assessment of a high rise RC building using field monitoring data. In: Second European conference on earthquake engineering and seismology, Istanbul
Kearsey, T.I., Whitbread, K., Arkley, S.L.B., Finlayson, A., Monaghan, A.A., McLean, W.S., Terrington, R.L., Callaghan, E.A., Millward, D. and Campbell, S.D.G. 2018. Creation and delivery of a complex 3D geological survey for the Glasgow area and its application to urban geology. Earth and Environmental Science Transactions of The Royal Society of
Edinburgh, 108, 123-140, https://doi.org/10.1017/S1755691018000270
Kessler, H., Mathers, S. and Sobisch, H.G. 2009. The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and
methodology. Computers & Geosciences, 35, 1311–1321, https://doi.org/ 10.1016/j.cageo.2008.04.005
Kilias, A. 2021. The Hellenides: A Multiphase Deformed Orogenic Belt, its Structural Architecture, Kinematics and Geotectonic Setting during the Alpine Orogeny: Compression vs Extension the Dynamic Peer for the Orogen Making. A Synthesis. Journal of Geology and Geoscience, 5(1), 001-056.
Kimmance, J.P., Bradshaw, M.P. and Seetoh, H.H. 1999. Geographical Information System (GIS) application to construction and geotechnical data management on MRT construction projects in Singapore. Tunn Undergr Space Technol, 14(4):469–479, https://doi.org/10.1016/S0886-7798(00)00009-2
King, R.D., Orhobor, O.I. and Taylor, C.C. 2021. Cross-validation is safe to use. Nat Mach Intell, 3, 276, https://doi.org/10.1038/s42256-021-00332-z
Kiratzi, A., Roumelioti, Z., Benetatos, Ch., Theodulidis, N., Savvaidis, A., Panou, A., Tziavos I. N., Savvaidis, P., Hatzigogos, Th., Koutoupes, S. and Karantonis, G. 2004. Seisimpact-Thes: A scenario earthquake affecting the built environment of the prefecture of Thessaloniki. Δελτίον της Ελληνικής Γεωλογικής Εταιρίας, Πρακτικά 10ου Διεθνούς Συνεδρίου,
Τόμος XXXVI, Θεσσαλονίκη.
Knudsen, H. and Kim, Y.C. 1978. Application of Geostatistics to Roll Front Type Uranium Deposits. Society of Mining Engineers of AIME, Denver. CO, pp. 78–94.
Koçkar, M. K. and Akgün, H. 2008. Development of a geotechnical and geophysical database for seismic zonation of the Ankara Basin, Turkey. Environmental Geology, 55:165–176. https://doi.org/10.1007/s00254-007-0973-6
Kockel, F., Antoniades, P., Ioannides, K., Lalechos, N. 1978a. Geological map of Greece, Thessaloniki sheet, scale 1:50.000. Institute of Geology and Mineral Exploration (I.G.M.E.), Athens, Greece.
Kockel, F., Mollat, H., Antoniades, P., Papadopoulos, P. 1978b. Geological map of Greece, Thermi sheet, scale 1:50.000. Institute of Geology and Mineral Exploration (I.G.M.E.), Athens, Greece.
Kokkala, A. and Marinos, V., 2018. Assessment on the engineering geological conditions of the Eastern Urban Area of Thessaloniki Basin, in Northern Greece, using a geotechnical database. In: IAEG/AEG Annual Meeting Proceedings, San Francisco, California, Advances in Engineering Geology: Education, Soil and Rock Properties, Modeling, 6, pp. 108–116, https://doi.org/10.1007/978-3-319-93142-5_15
Kokkala, Α. and Marinos, V. 2022. An engineering geological database for managing, planning and protecting intelligent cities: The case of Thessaloniki city in Northern Greece. Engineering Geology, 301, 106617, https://doi.org/10.1016/j.enggeo.2022.106617
Kolat, Ç., Doyuran, V., Ayday, C. and Lütfi Süzen, M. 2006. Preparation of a geotechnical microzonation model using Geographical Information Systems based on Multicriteria Decision Analysis. Engineering Geology, 87:241–255, https://doi.org/10.1016/j.enggeo.2006.07.005
Kolat, C., Ulusay, R. and Lutfi Suzen, M. 2012. Development of geotechnical microzonation model for Yenisehir (Bursa, Turkey) located at a seismically active region. Engineering Geology, 127, 36–53, https://doi.org/10.1016/j.enggeo.2011.12.014
Kopper, A., Karkare, R., Paffenroth, R. and Apelian, D. 2020. Model selection and evaluation for machine learning: Deep learning in materials processing. Integrating Materials and Manufacturing Innovation, 9, pp. 287-300, https://doi.org/10.1007/s40192-020-00185-1
Koukis, G., Sabatakakis, N., Tsiambaos, G. and Katrivesis, N. 2005. Engineering geological approach to the evaluation of seismic risk in metropolitan regions: Case study of Patras, Greece. Bulletin of Engineering Geology and the Environment, 64 (3): 219-235, https://doi.org/10.1007/s10064-005-0273-x
Kunapo, J., Dasari, G.R., Phoon, K.K. and Tan, T.S. 2005. Development of a Web-GIS based geotechnical information system. J Comput Civ Eng, 19: 323–327, https://doi.org/10.1061/(ASCE)0887-3801(2005)19:3(323)
Lachet, C., Hatzfeld, D., Bard, P.-Y., Theodulidis, N., Papaioannou, C. and Savvaidis, A. 1996. Site effects and microzonation in the city of Thessaloniki (Greece) comparison of different approaches. Bulletin of the Seismological Society of America, 86 (6): 1692–1703, https://doi.org/10.1785/BSSA0860061692
Langmaack, L. 2002. Soil conditioning for TBM-Chances and limits: Journées d’études internationales de Toulouse-Underground works: Living structures, AFTES
Lee, D.H., Ku, C.S. and Yuan, H. 2004. A study of the liquefaction risk potential at Yuanlin, Taiwan. Eng. Geol, 71, 97–117, https://doi.org/10.1016/S0013-7952(03)00128-5
Lin, J., and C. Smerzini. 2022. Variability of physics-based simulated ground motions in Thessaloniki urban area and its implications for seismic risk assessment. Frontiers in Earth Science, 10: 951781. https://doi.org/10.3389/feart.2022.951781
Lively, R., Bauer, E. and Chandler, V. 2006. Maps of Gridded Bedrock Elevation and Depth-to-bedrock in Minnesota. Minnesota Geological Survey, Open File Report OFR2006-02, 4 p.
Loupasakis, C. and Rozos, D. 2009. Finite-element simulation of land subsidence induced by water pumping in Kalochori village, Greece. Quarterly Journal of Engineering Geology and Hydrogeology, 42, 369–382, https://doi.org/10.1144/1470-9236/08-022
Lunne, T. 2012. The Fourth James K. Mitchell Lecture: The CPT in offshore soil investigations - a historic perspective. Geomechanics and Geoengineering, 75-101
Makedon, T., Chatzigogos, N. P. and Spandos, S. 2009. Engineering geological parameters affecting the response of Τhessaloniki's urban fill to a major seismic event. Engineering
Geology, 104, 167-180, https://doi.org/10.1016/j.enggeo.2008.10.002
Marinos, P., Novack, M., Benissi, M., Panteliadou, M., Papouli, D., Stoumpos, G., Marinos, V. and Korkaris, K. 2008. Ground Information and selection of TBM for the Thessaloniki Metro in Greece. Environ. Eng. Geosci., 14, 17-30, https://doi.org/ 10.2113/gseegeosci.14.1.17.
Marinos, P.G., Novack, M., Benissi, M., Stoumpos, G., Papouli, D., Panteliadou, M., Marinos, V., Boronkay, K. and Korkaris, K. 2009. Assessment of ground conditions with respect to mechanized tunnelling for the construction of the extension of the Athens Metro to the city of Piraeus. Bull. Eng. Geol. Environ, 68, 17–26, https://doi.org/10.1007/s10064-008-0183-9
Marinos, V., Prountzopoulos, G., Fortsakis, P., Koumoutsakos, D., Korkaris, K. and Papouli, D. 2013. Tunnel information and analysis system: a geotechnical database for tunnels. Geotech. Geol. Eng, 31, 891–910, https://doi.org/10.1007/s10706-012-9570-x
Martin, R. and Boisvert, J. B. 2017. Iterative refinement of implicit boundary models for improved geological feature reproduction. Computers & Geosciences, 109, 1-15, https://doi.org/10.1016/j.cageo.2017.07.003
Matsakou, A., Papathanassiou, G., Marinos, V., Ganas, A. and Valkaniotis, S. 2021. Development of the coseismic landslide susceptibility map of the island of Lefkada, Greece. Environ Earth Sci, 80, 457, https://doi.org/10.1007/s12665-021-09741-0
Mathers, S.J., Burke, H.F., Terrington, R.L., Thorpe, S., Dearden, R.A., Williamson, J.P. and Ford, J.R. 2014. A geological model of London and the Thames Valley, southeast England. Proceedings of the Geologists' Association, Vol.125, Iss.4, 373-382, https://doi.org/10.1016/j.pgeola.2014.09.001
Maurer, B.W. Green, R.A., Cubrinovski, M. and Bradley, B.A. 2014. Evaluation of the liquefaction potential index for assessing liquefaction hazard in Christchurch, New Zealand. J. Geotech. Geoenviron., 140 (7) https://doi.org/10.1061/(ASCE)GT.1943-5606.0001117
McCoy, J., Johnston, K., Kopp, S., Borup, B., Willison, J. and Payne, B. 2001. ArcGIS® 9 Spatial Analyst. ESRI Education Services.
Meng, Q., Zhang, L., Sun, Z., Meng, F., Wang, L. and Sun, Y. 2018. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: a 12-year case study in Beijing, China. Remote Sens Environ, 204: 826–837, https://doi.org/10.1016/j.rse.2017.09.019
Mohammadi, S.D., Firuzi, M. and Asghari Kaljahi, E. 2016. Geological–geotechnical risk in the use of EPB-TBM, case study: Tabriz Metro, Iran. Bull. Eng. Geol. Environ, 75, 1571–1583, https://doi.org/10.1007/s10064-015-0797-7
Mountrakis, D., Sapountzis, E., Kilias, A., Eleftheriadis, G. and Christofides, G. 1983. Paleogeographic conditions in the western Pelagonian margin in Greece during the initial rifting of the continental area. Canadian Journal of Ear. Sc., 20, 1673-1681.
Mercier, J. 1966. Étude géologique des zones internes des Hellénides en Macedoine centrale. Contribution à l'étude du métamorphisme et de l'évolution magmatique des zones internes des Hellénides. Ann. Geol. Pays. Hell., 20, 1-753.
Mercier, J.L., Sorel, D., Vergely, P. and Simeakis, K. 1989. Extensional tectonic regimes in the Aegean basins during the Cenozoic, Basin Research, Vol.2, Iss.1, 49-71.
Mohammed, A. H., Yahya, A. Y. and Ahmed, B. A. 2012. Database for Baghdad soil using GIS techniques. J Eng, 18:1307–1324.
Nas, B. and Berktay, A. 2010. Groundwater quality mapping in urban groundwater using GIS. Environ Monit Assess, 160, 215–227, https://doi.org/10.1007/s10661-008-0689-4
Nott, J. 2003. The urban geology of Darwin, Australia. Quaternary International, 103: 83–90, DOI: 10.1016/S1040-6182(02)00143-X
Olsen, R.S. 1997. Cyclic liquefaction based on the cone penetration test. In: Youd, T.L., Idriss, I.M. (Eds.), Proceedings of the NCEER Workshop of Evaluation of Liquefaction
Resistance of Soils, Technical report NCEER-97-0022. National Center for Earthquake Engineering Research, State University of New York at Buffalo, Buffalo, NY, pp. 225–276
Orense, R.P., Hickman, N.A., Hill, B.T. and Pender, M.J. 2014. Spatial evaluation of liquefaction potential in Christchurch following the 2010/2011 Canterbury earthquakes. Int. J. Geotech. Eng., 8 (4). pp. 420-425, https://doi.org/10.1179/1939787913Y.0000000028
Orhan, A. and Tosun, H. 2010. Visualization of geotechnical data by means of geographic information system: a case study in Eskisehir city (NW Turkey). Environmental Earth Sciences, 61, 455-465, https://doi.org/10.1007/s12665-009-0357-1
Orhan, A., Turkoz, M. and Tosun, H. 2013. Preliminary hazard assessment and site characterization of Meşelik campus area, Eskişehir-Turkey. Nat. Hazards Earth Syst. Sci., 13, 75–84, https://doi.org/10.5194/nhess-13-75-2013, 2013
Osswald, K. 1983. Geologische Geschishte von Griechische-Nordmakedonien. Υπόμνημα Γεωλογικής Υπηρεσίας Ελλάδος, 3.
Panou, A. A., Theodulidis, N., Hatzidimitriou, P., Stylianidis, K., and Papazachos, C. B. 2005. Ambient noise horizontal-to-vertical spectral ratio in site effects estimation and correlation with seismic damage distribution in urban environment: The case of the city of Thessaloniki (Northern Greece). Soil Dynamics and Earthquake Engineering, 25(4), 261–274, https://doi.org/10.1016/j.soildyn.2005.02.004
Papathanassiou, G. 2008. LPI-based approach for calibrating the severity of liquefaction-induced failures and for assessing the probability of liquefaction surface evidence. Engineering Geology, 96, pp. 94–104, https://doi.org/10.1016/j.enggeo.2007.10.005
Papathanassiou, G. and Marinos, V. 2018. Liquefaction Susceptibility Map of the Broader Thessaloniki Urban Area. IAEG/AEG Annual Meeting Proceedings, San Francisco, California, Springer, Vol. 5, https://doi.org/10.1007/978-3-319-93136-4_3
Papathanassiou, G., Papazachos, C., Valkaniotis, S., Stimaratzis, Th., Xanthopoulou, K. and Kkallas, Ch. 2020. Developing a Liquefaction-Related Protocol for the FEED Design Phase of a Pipeline RoW Corridor. Geotech Geol Eng, 38, 5979–5997, https://doi.org/10.1007/s10706-020-01408-0
Papazachos, B.C., Mountrakis, D., Psilovikos, A. and Leventakis, G. 1979. Surface fault traces and fault plane solutions of the May - June 1978 major shocks in the Thessaloniki area, Tectonophysics, 53, 171-183, https://doi.org/10.1016/0040-1951(79)90061-1
Papouli, D. and Marinos, V. 2023. Fundamental TBM selection criteria in urban environment based on engineering geological and geotechnical conditions. Expanding Underground. Knowledge and Passion to Make a Positive Impact on the World, CRC Press, Taylor & Francis Group, DOI: 10.1201/9781003348030-1631372
Paradisopoulou, P.M., Karakostas, V.G., Papadimitriou, E.E., Tranos, M.D., Papazachos, C.B. and Karakaisis G.F. 2004. Microearthquake study of the broader Thessaloniki area, 5th Int. Symp. On Eastern Mediterranean Geology, Vol.2, 623-626, Thessaloniki.
Parsons, R.L. and Frost, J.D. 2000. Interactive analysis of spatial subsurface data using GIS-based tool. J. Comput. Civ. Eng., 14, 215–222, https://doi.org/10.1061/(ASCE)0887-3801(2000)14:4(215)
Paul, J.D. 2016. High-resolution geological maps of central London, UK: Comparisons with the London Underground. Geoscience Frontiers, 7 (2), 273-286, https://doi.org/10.1016/j.gsf.2015.05.004
Pavlides, S.B., Kondopoulou, D.P., Kilias, A.A. and Westphal, M. 1988. Complex rotational deformations in the Serbo-Macedonian massif (north Greece): structural and paleomagnetic evidence, Tectonophysics, 145, 329-335.
Pavlidis, S. and Soulakelis, N. 1990. Multifractured seismogenic area of Thessaloniki 1978 earthquake (Northern Greece), IESCA Proceedings, Vol. II.
Pavlopoulos, K., Antoniadis, K., Lionis, M. and Stournaras, G. 2001. Geological and geotechnical investigations along the crude oil pipeline route from Thessaloniki (Greece) to Skopje (FYROM). 9th International Congress of the Geological Society of Greece with emphasis on the contribution of Geosciences to Development, 5, 1697–1706.
Pellerin, J., Lévy, B., Caumon, G. and Botella, A. 2014. Automatic surface remeshing of 3D structural models at specified resolution: a method based on Voronoi diagrams. Computers & Geosciences, 62, 103–116, https://doi.org/10.1016/j.cageo.2013.09.008
Petrone, P., Allocca, V., Fusco, F., Incontri, P. and De Vita, P. 2023. Engineering geological 3D modeling and geotechnical characterization in the framework of technical rules for geotechnical design: the case study of the Nola’s logistic plant (southern Italy). Bulletin of Engineering Geology and the Environment, 82, 12, https://doi.org/10.1007/s10064-022-03017-y
Pitilakis, K., Karapetrou, S., Bindi, D., Petrovic, B., Roumelioti, Z., Boxberger, T. and Parolai, S. 2016. Structural monitoring and earthquake early warning systems for the AHEPA hospital in Thessaloniki. Bull Earthquake Eng 14, 2543–2563, https://doi.org/10.1007/s10518-016-9916-5
Price, S.J., Terrington, R.L., Busby, J., Bricker, S. and Berry, T. 2018. 3D ground-use optimisation for sustainable urban development planning: A case-study from Earls Court, London, UK. Tunnelling and Underground Space Technology, 81, 144-164, https://doi.org/10.1016/j.tust.2018.06.025
Prins, L. T. and Andersen, K. J. 2021. A geotechnical stratigraphy for the shallow subsurface in the Southern Central Graben, North Sea. Engineering Geology, 286, 106089, https://doi.org/10.1016/j.enggeo.2021.106089
Psimoulis, P., Ghilardi, M., Fouache, E. and Stiros, S. 2007. Subsidence and evolution of the Thessaloniki Plain, Greece, based on historical leveling and GPS data. Engineering Geology, 90, 55–70, https://doi.org/10.1016/j.enggeo.2006.12.001
R Core Team. 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/
Raptakis, D. and Makra, K. 2010. Shear wave velocity structure in western Thessaloniki (Greece) using mainly alternative SPAC method. Soil Dynamics and Earthquake Engineering,Vol. 30, Issue 4, 202-214, https://doi.org/10.1016/j.soildyn.2009.10.006
Raptakis, D., Makra, K., Anastasiadis, A. and Pitilakis, K. 2004. Complex Site Effects in Thessaloniki (Greece): I. Soil Structure and Comparison of Observations with 1D Analysis. Bull Earthquake Eng 2, 271–290, https://doi.org/10.1007/s10518-004-3799-6
Raptakis, D., Slavis, G., Makra, K. and Manakou, M. 2023. Determination of soil structure and seismic response characteristics using earthquake and noise recordings at coastal zone of Eastern Thessaloniki. 9th Hellenic Conference in Geotechnical Engineering, Athens, Greece
Rashidian, V. and Gillins, D.T. 2018. Modification of the liquefaction potential index to consider the topography in Christchurch, New Zealand. Engineering Geology, 232, 68–81, https://doi.org/10.1016/j.enggeo.2017.11.010
Raspini, F., Loupasakis, C., Rozos, D., Adam, N. and Moretti, S. 2014. Ground subsidence phenomena in the Delta municipality region (Northern Greece): Geotechnical modeling and validation with Persistent Scatterer Interferometry. International Journal of Applied Earth Observation and Geoinformation, 28, 78–89, http://dx.doi.org/10.1016/j.jag.2013.11.010
Refaeilzadeh, P., Tang, L. and Liu, H. 2009. In: LIU, L., ÖZSU, M.T. (eds) Encyclopedia of Database Systems. Springer, Boston, MA, pp. 532-538, https://doi.org/10.1007/978-0-387-39940-9_565
Robertson, P.K. 2009. Performance based earthquake design using the CPT. Proceedings of the International Conference on Performance-Based Design in Earthquake, DOI: 10.1201/NOE0415556149.ch1
Robertson, P.K. and Wride, C.E. 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35 (3): 442–459
Robinson, T. and Metternicht, G. 2006. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput Electron Agr, 50(2): 97–108, https://doi.org/10.1016/j.compag. 2005.07.003
Roumelioti, Z., Karapetrou, S., Manakou, M., Pitilakis, K., Raptakis, D., Bindi, D. and Boxberger, T. 2015. The contribution of EUROSEISTEST and building monitoring arrays in earthquake early warning and rapid damage assessment in Thessaloniki. In: Proceedings of 6th ICEGE, Christchurch, New Zealand
Royse, K.R. 2010. Combining numerical and cognitive 3D modelling approaches in order to determine the structure of the Chalk in the London Basin. Computers & Geosciences, 36, 500-511, https://doi.org/10.1016/j.cageo.2009.10.001
Royse, K.R., Rutter, H.K. and Entwisle, D.C. 2009. Property attribution of 3D geological models in the Thames Gateway, London: new ways of visualising geoscientific information. Bulletin of Engineering Geology and the Environment, 68, 1-16, https://doi.org/10.1007/s10064-008-0171-0
Rozos, D., Apostolidis, E. and Hatzinakos, I. 2004. Engineering-geological map of the wider Thessaloniki area, Greece. Bulletin of Engineering Geology and the Environment, 63, 103–108, https://doi.org/10.1007/s10064-004-0237-6
Rytter, J. and Schonhowd, I. 2015. Monitoring, Mitigation, Management. The Groundwater Project - Safeguarding the World Heritage Site of Bryggen in Bergen. Riksantikvaren, Oslo.
Salih, N. and Mohammed, A. 2017. Characterization and modeling of longterm stress–strain behavior of water confined pre-saturated gypsum rock in Kurdistan Region, Iraq. J Rock Mech Geotech Eng, 9: 741–748, https://doi.org/10.1016/j.jrmge.2017.03.009
Sanglerat, G., Nhim, T. V., Sejourne, M., and Andina, R. 1974. Direct soil classification by static penetrometer with special friction sleeve. Proceedings of the First European Symposium on Penetration Testing, ESOPT-1, Vol. 2.2, 337 - 344, Stockholm
Sauti, N.S., Daud, M.E., Kaamin, M. and Sahat, S. 2021. GIS spatial modelling for seismic risk assessment based on exposure, resilience, and capacity indicators to seismic hazard: a case study of Pahang, Malaysia. Geomatics, Natural hazards and Risk, 12(1), 1948–1972, https://doi.org/10.1080/19475705.2021.1947903
Schneider, B. and Martinoni, D. 2001. A distributed geoprocessing concept for enhancing terrain analysis for enviromental modeling. Trans GIS, 5: 165–178, https://doi.org/10.1111/1467-9671.00074
Schloeder, C.A., Zimmerman, N.E. and Jacobs, M.J. 2001. Comparison of Methods for Interpolating Soil Properties Using Limited Data. Soil Science Society of America Journal, 65, 470-479, http://dx.doi.org/10.2136/sssaj2001.652470x
Schokker, J., Sandersen, P., de Beer, H., Eriksson, I., Kallio, H., Kearsey, T., Pfleiderer, S. and Seither, A. 2017. 3D urban subsurface modelling and visualization. A review of good practices and techniques to ensure optimal use of geological information in urban planning. Report number: TU1206 COST Sub-Urban Report, TU1206-WG2.3-004. COST European Cooperation in Science and Technology
Seed, H.B. and Idriss, I.M. 1982. Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research Institute, Berkeley, California
Seed, R B, Cetin, K.O., Moss, R.E.S., Kammerer, A.M., Wu, J., Pestana, J.M., Riemer, M.F., Sancio, R.B., Bray, J.D., Kayen, R.E. and Faris, A. 2003. Recent advances in soil liquefaction engineering : a unified and consistent framework, REPORT NO. EERC 2003-06 COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA, BERKELEY
Self, S., Entwisle, D. and Northmore, K. 2012. The structure and operation of the BGS National Geotechnical Properties Database. In: Version 2. British Geological Survey, IR/12/056. http://nora.nerc.ac.uk/id/eprint/20815/
Setianto, A., and Triandini, T. 2013. Comparison of kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis. J SE Asian Appl Geol, 5(1): 21–29, https://repository.ugm.ac.id/id/eprint/136178
Shahat Osman, A.M. and Elragal, A. 2021. Smart cities and big data analytics: a data-driven decision-making use case. Smart Cities, 4, 286–313, https://doi.org/10.3390/smartcities4010018
Shangguan, W., Hengl, T., Mendes de Jesus, Yuan, H., and Dai, Y. 2017. Mapping the global depth-to-bedrock for land surface modeling, Journal of Advances in Modeling Earth Systems, 9, 65-88, https://doi.org/10.1002/2016MS000686
Sherif, M. A. 1973. Microzonation of the Thessaloniki using the Sherif-Bostrom (U.S.A) Method. Prepared for UNDP/UNESCO Survey of the Seismicity of the Balkan Region, Seattle, Washington, USA.
Smerzini, C., Pitilakis, K. and Hashemi, K. 2016. Evaluation of earthquake ground motion and site effects in the Thessaloniki urban area by 3D finite-fault numerical simulations. Bull Earthquake Eng 15, 787–812, https://doi.org/10.1007/s10518-016-9977-5
Sonmez, H. 2003. Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol, Turkey). Environ. Geol, 44 (7), 862–871, https://doi.org/10.1007/s00254-003-0831-0
Stafleu, J., Maljers, D., Gunnink, J.L., Menkovic, A. and Busschers, F.S. 2011. 3D modelling of the shallow subsurface of Zeeland, the Netherlands. Netherlands Journal of Geosciences, 90, 293-310, https://doi.org/10.1017/S0016774600000597
Stalin, V. K. and Murugan, R. B. A. 2015. Geographic information system for the development of soil suitability map in south Chennai, India. Arab J Geosci, 8, 1415–1437, https://doi.org/10.1007/s12517-014-1323-0
Stiros, S. 2001. Rapid subsidence of the Thessaloniki (Northern Greece) coastal plain, 1960–1999. Engineering Geology, 61, 243–256.
Suwansawat, S. 2002. Earth Pressure Balance (EPB) shield tunneling in Bangkok: ground response and prediction of surface settlements using artificial neural networks, (Phd thesis, Massachusetts Institute of Technology)
Suwanwiwattana, P., Chantawarangul, K., Mairaing, W. and Apaphant, P. 2001. The development of geotechnical database of Bangkok subsoil using GRASS-GIS. In: 22nd Asian Conference on Remote Sensing, Singapore. pp 5–9
Svigkas, N., Papoutsis, I., Loupasakis, C., Kontoes, C. and Kiratzi, A. 2015. Geo-Hazard monitoring in northern Greece using InSAR techniques: the case study of Thessaloniki, Proceedings of ‘Fringe 2015 Workshop’, Vol. 731, Frascati, Italy, doi: 10.5270/Fringe2015.pp33
Svigkas, N., Papoutsis, I., Loupasakis, C., Tsangaratos, P., Kiratzi, A. and Kontoes, C. 2016. Land subsidence rebound detected viamulti-temporal InSAR and ground truth data in Kalochori and Sindos regions, Northern Greece, Engineering Geology, 209, 175-186, http://dx.doi.org/10.1016/j.enggeo.2016.05.017
Svigkas, N., Loupasakis, C., Papoutsis, I., Kontoes C., Alatza, S., Tzampoglo, P., Tolomei, C. and Spachos, T. 2020. InSAR Campaign Reveals Ongoing Displacement Trends at High Impact Sites of Thessaloniki and Chalkidiki, Greece, Remote Sens, 12 (15), 2396. https://doi.org/10.3390/rs12152396
Tame, C., Cundy, A.B., Royse, K.R., Smith, M. and Moles, N.R. 2013. Three-dimensional geological modelling of anthropogenic deposits at small urban sites: A case study from
Sheepcote Valley, Brighton, UK. Journal of Environmental Management, Vol. 129, 2013, 628-634, https://doi.org/10.1016/j.jenvman.2013.08.030
Tavoularis, N., Papathanassiou, G., Ganas, A. and Argyrakis, P. 2021. Development of the Landslide Susceptibility Map of Attica Region, Greece, Based on the Method of Rock
Engineering System. Land, 10(2):148, https://doi.org/10.3390/land10020148
Taylor, Κ.Ε. 2001. Summarizing multiple aspects of model performance in a single diagram, Journal of Geophysical Research, 106(D7), 7183–7192
Terzaghi, K. and Peck, R.B. 1967. Soil Mechanics in engineering practice. John Wiley and Sons Inc., New York.
Teves-Costa, P., Almeida, I. M., Rodrigues I., Matildes, R. and Pinto, C. 2014. Geotechnical characterization and seismic response of shallow geological formations in downtown Lisbon. Ann Geophys, 57, 4, https://doi.org/10.4401/ag-6390
Thewes, M. and Burger, W. 2004. Clogging risks for TBM drives in clay. Tunnels & Tunnelling International, 36 (6), Publisher: Progressive Media Markets, Ltd
Thierry, P., Prunier-Leparmentier A.M., Lembezat, C., Vanoudheusden, E. and Vernoux J.F. 2009. 3D geological modeling at urban scale and mapping of ground movement susceptibility from gypsum dissolution: The Paris example (France). Engineering Geology, 105, 51–64, https://doi.org/10.1016/j.enggeo.2008.12.010
Todo, H., Yamamoto, K., Mimura, M. and Yasuda, S. 2013. Japan’s nation-wide electronic geotechnical database systems by Japanese geotechnical society. Geotech. Geol. Eng, 31, 941–963, https://doi.org/10.1007/s10706-012-9562-x
Touch, S., Likitlersuang, S. and Pipatpongsa, T. 2014. 3D geological modelling and geotechnical characteristics of Phnom Penh subsoils in Cambodia. Engineering Geology, 178, 58-69, https://doi.org/10.1016/j.enggeo.2014.06.010
Tranos, M.D., Papadimitriou, E.E. and Kilias, A.A. 2003. Thessaloniki-Gerakarou fault zone (TGFZ): the western extension of the 1978 Thessaloniki earthquake fault (northern Greece) and seismic hazard assessment, Journal of Structural Geology, 25, 2109-2123.
Tranos, M.D., Meladiotis, I.D. and Tsolakopoulos E.P. 2004. Geometrical characteristics, scaling properties and seismic behavior of the faulting of the Chortiatis region and Anthemountas basin (Northern Greece), 5th Int. Symp. On Eastern Mediterranean Geology, Vol.2, 888-891, Thessaloniki.
Triantafyllidis, P., Suhadolc, P., Hatzidimitriou, P.M., Anastasiadis, A. and Teodulidis, N. 2004. PART I: Theoretical Site Response Estimation for Microzoning Purposes. Pure and appied geophysics, 161, 1185–1203. https://doi.org/10.1007/s00024-003-2493-y
Tsangaratos, P., Loupasakis, C., Nikolakopoulos, K. Angelitsa, V. and Ilia, I. 2018. Developing a landslide susceptibility map based on remote sensing, fuzzy logic and expert knowledge of the Island of Lefkada, Greece. Environ. Earth. Sci., 77, 363, https://doi.org/10.1007/s12665-018-7548-6
Tsotsos, S., Hatzigogos, Th., Manou-Andreadis, N., Theoharidou, K. and Xanthos, V. 1988. Geotechnical problems of the foundations of Byzantine and post Byzantine monuments in Thessaloniki, Greece. Engineering Geology of Ancient Works, Monuments and Historical Sites, 1, 487- 494.
Tukey, J. W. 1977. Exploratory data analysis. Addison-Wesley Publishing Company, Pennsylvania.
Ullah, H., Imtiaz, K., Jahanzaib, R. and Zhang, G. 2022. Geotechnical characterization and statistical evaluation of alluvial soils of Lahore. Arab J Geosci, 15: 1–12.
https://doi.org/10.1007/s12517-022-10154-x
van Hinsbergen, D.J.J., Torsvik, T.H., Schmid, S.M., Matenco, L.C., Maffione, M., Vissers, R.L.M., Gürer, D., and Spakman, W. 2020. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic, Gondwana Research, 81, 79-229, doi: 10.1016/j.gr.2019.07.009
Veeger, A.I., Murray, D.P., Don Hermes, O., Boothroyd, J.C. and Hamidzada, N.A. 2004. Harnessing the power of relational databases for managing subsurface geotechnical and geologic data. Environ. Eng. Geosci, 10, 339–346, https://doi.org/10.2113/10.4.339
Wang, W.S. 1979. Some findings in soil liquefaction. Water Conservancy and Hydroelectric Power Scientific Research Institute, Beijing, China
Wang, Z.G., Qu, H.G., Wu, Z.X., Yang, H.J. and Du, Q.L.,2016. Formal representation of 3D structural geological models. Computers & Geosciences, 90, 10–23, https://doi.org/10.1016/j.cageo.2016.02.007
Watson, C., Jensen, N.P., Ryżyński, G., Majer, K. and Hansen, M. 2017. Data Acquisition & Management. TU1206 COST Sub-Urban WG2 Report. http://nora.nerc.ac.uk/id/epri nt/530753
Wellmann, J., Horowitz, F., Schill, E. and Regenauer-Lieb, K. 2010. Towards incorporating uncertainty of structural data in 3D geological inversion. Tectonophysics, 490: 141-151, https://doi.org/10.1016/j.tecto.2010.04.022
Wesley, L.D. and Dobie M.J.D. 2022. Early development of the Dutch cone penetrometer test. Proceedings of the Institution of Civil Engineers–Engineering History and Heritage, 175(4): 145152, https://doi.org/10.1680/jenhh.22.00001
Whitlow, R. 2001. Basic soil mechanics. Pearson Education Limited, 4th ed.
Willey, E. 2003. Urban geology of the Toowoomba conurbation, SE Queensland, Australia. Quaternary International, 103: 57-74, DOI: 10.1016/S1040-6182(02)00141-6
Woodward, J. 2005. An introduction to geotechnical processes. Taylor & Francis e-Library, CRC Press, London, https://doi.org/10.1201/9781482265187
Wu, J., Amaratunga, K. and Chitradon, R. 2002. Design of distributed interactive online geographic information system viewer using wavelets. J. Comput. Civ. Eng, 16, 115–123. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:2(115)
Yadav, S. and Shukla, S. 2016. Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification. In 2016 IEEE 6th International Conference on Advanced Computing, pp. 78–83, https://doi.org/10.1109/IACC.2016.25
Yan, F., Shangguan, W., Zhang, J. and Hu, B. 2020. Depth-to-bedrock map of China at a spatial resolution of 100 meters. Scientific Data, 7, 2, https://doi.org/10.1038/s41597-019-0345-6
Yang, X., Xie, X., Liu, D.L., Ji, F. and Wang, L., 2015. Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over Greater Sydney Region. Advances in Meteorology, https://doi.org/10.1155/2015/563629
Ye, S., Luo, Y., Wu, J., Yan, X., Wang, H., Jiao, X. and Teatini, P. 2016. Three-dimensional numerical modeling of land subsidence in Shanghai. China. Hydrogeology Journal, 24, 695-709, https://doi.org/10.1007/s10040-016-1382-2
Youd, T. L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F.,
Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. and Stokoe, K.H. 2001. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils, Journal of Geotechnical and Geoenvironmental Engineering, 127 (4), 297-313
Zhang, G., Robertson, P.K. and Brachman, R. 2002. Estimating Liquefaction Induced Ground Settlements from the CPT. Canadian Geotechnical Journal, 39, 1168-1180, https://doi.org/10.1139/t02-047
Zhang, G., Robertson, P.K. and Brachman, R.. 2004. Estimating Liquefaction Induced Lateral Displacements using the SPT and CPT. ASCE, Journal of Geotechnical & Geoenvironmental Engineering, 130 (8), 861-871, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(861)
Zhu, L.F., Li, M.J., Li, C.L., Shang, J.G., Chen, G.L., Zhang, B. and Wang, X.F. 2013. Coupled modeling between geological structure fields and property parameter fields in 3D engineering geological space. Engineering Geology, 167, 105–116, https://doi.org/10.1016/j.enggeo.2013.10.016
Ελληνική Βιβλιογραφία
Ανθυμίδης Μ. 2020. Συμβολή στη μελέτη της επίδρασης των τοπικών εδαφικών συνθηκών στη σεισμική κίνηση με τη χρήση δεδομένων μικροθορύβου και σεισμικών καταγραφών. Διδακτορική διατριβή, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Θεσσαλονίκη.
Αστάρας, Θ. και Οικονομίδης, ∆. 2002. Η χρήση των δορυφορικών εικόνων LANDSAT-TM, IRS- 1C/PAN και των Γεωγραφικών Συστημάτων Πληροφοριών (G.I.S), στον ακριβέστερο
εντοπισμό των υδρογραφικών συστημάτων. Ένα παράδειγμα από τον ∆ενδροπόταμο Θεσσαλονίκης. Πρακτικά 6ου Πανελλήνιου Γεωγραφικού Συνεδρίου της Ελληνικής Γεωγραφικής Εταιρείας, τόμος ΙΙ, σελ. 47-54.
Βαλαλάς, ∆., ∆ερμών, ∆., Τέγος, Γ., Ζάχος, Κ., Μαραγκός, Χ., Παπαχαρίσης, Ν. και Πιτιλάκης, Κ. 1985. Γεωτεχνική Μελέτη περιοχής Θεσσαλονίκης. Ερευνητικό Πρόγραμμα Τομέα Γεωτεχνικής Μηχανικής, Τμήμα Πολιτικών Μηχανικών, Α.Π.Θ.
Βαλαλάς, ∆., Παπαχαρίσης, Ν. και Θεοδοσιάδης, ∆. 1992. Προμελέτη Ελαφρού Μετρό Θεσσαλονίκης, Εδαφοτεχνική μελέτη. Υπουργείο Περιβάλλοντος, Χωροταξίας και ∆ημοσίων Έργων, Γενική Γραμματεία ∆ημοσίων Έργων.
Ελευθερίου, Α. 1972. Έκθεσης γεωτεχνικής αναγνωρίσεως εις τας περιοχάς Ευαγγελιστρίας, Σαράντα Εκκλησιών και Συκεών Θεσσαλονίκης. Ι.Γ.Μ.Ε. Θεσσαλονίκης.
Ζερβοπούλου, Α. 2010. Νεοτεκτονικά ρήγματα της ευρύτερης περιοχής της Θεσσαλονίκης σε σχέση με τα εδάφη θεμελίωσης. ∆ιδακτορική διατριβή, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Θεσσαλονίκη.
Ζερβοπούλου, Α. και Παυλίδης, Σ. 2005. Μορφοτεκτονική μελέτη της ευρύτερης περιοχής Θεσσαλονίκης για την χαρτογράφηση νεοτεκτονικών ρηγμάτων, 1η Συνάντηση Επιτροπής Γεωμορφολογίας Ε.Γ.Ε., Δελτίο ΕΓΕ, Τομ. ΧΧΧVIII, σελ. 30-41.
Ζερβοπούλου, Α. και Παυλίδης, Σ. 2008. Νεοτεκτονικά ρήγματα πολεοδομικού συγκροτήματός Θεσσαλονίκης, 3o Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής και Τεχνικής Σεισμολογίας, Άρθρο 1865.
Καραμήτρου, Α., Ρουμελιώτη, Ζ. και Κυρατζή, Α. 2008. Στοχαστική προσομοίωση της ισχυρής σεισμικής κίνησης από ενεργές τεκτονικές δομές κοντά στην πόλη της Θεσσαλονίκης. 3ο Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής και Τεχνικής Σεισμολογίας. 5-7 Νοεμβρίου 2008. Άρθρο 2082.
Κούκης, Γ. και Σαμπατακάκης, Ν. 2002. Τεχνική Γεωλογία, Εκδόσεις Παπασωτηρίου, σελ. 448
Κούκης, Γ. και Σαμπατακάκης, Ν. 2007. Γεωλογία τεχνικών έργων, Εκδόσεις Παπασωτηρίου, σελ. 23
Κουτουπές, Σ., Καραντώνης, Γ., Σωτηριάδης, Α., Κυρατζή, Α., Βαλαδάκη, Α., Σαββαϊδης, Α. και Θεοδουλίδης, Ν. 2004. Seisimpact-Thes: σχεδιασμός, ανάπτυξη και εφαρμογή ενός πληροφοριακού συστήματος για την εκτίμηση της τρωτότητας από σεισμικό κίνδυνο για το δομημένο περιβάλλον της περιφέρειας Θεσσαλονίκης.
Μανάκος, Α. 2002α. Γεωλογική-Υδρογεωλογική μελέτη ∆ήμου Συκεών. Μελέτη και έργα εξοικονόμησης νερού ύδρευσης στους δήμους του πολεοδομικού συγκροτήματος Θεσσαλονίκης και ευρύτερης περιοχής. Ι.Γ.Μ.Ε. Αθηνών.
Μανάκος, Α. 2002β. Γεωλογική-Υδρογεωλογική μελέτη ∆ήμου Εύοσμου. Μελέτη και έργα εξοικονόμησης νερού ύδρευσης στους δήμους του πολεοδομικού συγκροτήματος Θεσσαλονίκης και ευρύτερης περιοχής. Ι.Γ.Μ.Ε. Αθηνών.
Μανάκος, Α. 2002γ. Γεωλογική-Υδρογεωλογική κοινότητας Πευκών. Μελέτη και έργα εξοικονόμησης νερού ύδρευσης στους δήμους του πολεοδομικού συγκροτήματος Θεσσαλονίκης και ευρύτερης περιοχής. Ι.Γ.Μ.Ε. Αθηνών.
Μανάκος, Α. 2002δ. Γεωλογική-Υδρογεωλογική μελέτη Δήμου Αμπελοκήπων. Μελέτη και έργα εξοικονόμησης νερού ύδρευσης στους δήμους του πολεοδομικού συγκροτήματος Θεσσαλονίκης και ευρύτερης περιοχής. Ι.Γ.Μ.Ε. Αθηνών.
Μανάκου, Μ., Αποστολίδης, Π., Ραπτάκης, Δ. και Πιτιλάκης, Κ., 2008. Προσδιορισμός της εδαφικής δομής σε περιοχές του ευρύτερου Πολεοδομικού Συγκροτήματος Θεσσαλονίκης, 3o Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.