Εξώφυλλο

Εκτίμηση επικινδυνότητας βραχοκαταπτώσεων στον αρχαιολογικό χώρο Δελφών = Rockfall hazard assessment in the archaeological site of Delphi.

Κυριακή Δημήτριος Δεβλιώτη

Περίληψη


Οι Μνημειακοί Χώροι, ιδίως κοντά σε μεγάλους ορεινούς όγκους, έρχονται αντιμέτωποι με φαινόμενα βραχοκαταπτώσεων. Ανάλογη περίπτωση αποτελεί και η περιοχή έρευνας. Στην παρούσα διδακτορική διατριβή αναπτύσσεται και εφαρμόζεται μεθοδολογία εκτίμησης και ανάλυσης της επικινδυνότητας (Hazard) στον Αρχαιολογικό Χώρο των Δελφών, η οποία πραγματοποιήθηκε μέσα από τρισδιάστατη (3D) τροχομετρική ανάλυση, βασισμένη στην τεχνολογία μη επανδρωμένων εναέριων οχημάτων (ΣΜηΕΑ) (UAV). Τα στάδια της μεθοδολογίας, τα οποία αναπτύχθηκαν είναι τα ακόλουθα: α) καταγραφή της περιοχής έρευνας, με λήψη δεδομένων από πτήση με UAV, β) επεξεργασία των πρωτογενών τρισδιάστατων (3D) νεφών σημείων, δημιουργία πολύ υψηλής ανάλυσης δεδομένων και τρισδιάστατων μοντέλων (ορθοφωτογραφία, ψηφιακό μοντέλο εδάφους) και εξαγωγή των στοιχείων προσανατολισμού των ασυνεχειών (γωνία κλίσης, διεύθυνση κλίσης) και της απόστασης μεταξύ των επιφανειών των ασυνεχειών των ίδιων οικογενειών (spacing), σε εμμένουσα, και μη, κατάσταση, γ) χαρτογράφηση της συνολικής έκτασης του ασβεστολιθικού πρανούς, ανάντη του Μνημειακού Χώρου και εκτίμηση της επιδεκτικότητας (susceptibility) των βραχοκαταπτώσεων, με τη χρήση του ενιαίου τρισδιάστατου μοντέλου νέφους σημείων (3D point cloud) της περιοχής έρευνας, από τη λήψη πολλαπλών αεροφωτογραφιών με UAV. Συγκεκριμένα πραγματοποιήθηκε χαρτογράφηση και υπολογισμός του όγκου (m3) των κενών (scars) των βραχωδών τεμαχών, στην επιφάνεια του βραχώδους πρανούς, από προηγούμενα φαινόμενα αστοχίας. Συνολικά αναγνωρίστηκαν 119 μπλοκ (scars) επάνω στην επιφάνεια του ασβεστολιθικού πρανούς, με μέση τιμή αποκολλημένου βραχώδους υλικού 22,2 m3. Παράλληλα μετρήθηκαν οι όγκοι (m3) των μπλοκ που έχουν αστοχήσει, με μέση τιμή όγκου 7,6 m3, λαμβάνοντας υπόψη το φαινόμενο του κερματισμού (fragmentation), από τη στιγμή της αποκόλλησής τους από το πρανές, μέχρι την τελική θέση απόθεσή τους, δ) εκτίμηση της επικινδυνότητας (Hazard) βραχοκαταπτώσεων, με πραγματοποίηση τρισδιάστατων τροχομετρικών αναλύσεων με το λογισμικό RocPro3D v.6.1, με σεισμικές συνθήκες (σεισμική ακολουθία του 1870) και υπολογισμό της μέγιστης ταχύτητας εδαφικής κίνησής PGV (m/s) ίση με 0,41 m/sec. Στη συνέχεια πραγματοποιήθηκαν τροχιακές αναλύσεις προσομοίωσης, από τέσσερις θέσεις-ζώνες εκκίνησης πιθανής βραχοκατάπτωσης, οι οποίες καλύπτουν το σύνολο του Αρχαιολογικού Χώρου. Δημιουργήθηκαν, επομένως, τα εξής σενάρια: 1) σεισμικές (PGV=0,41m/sec) και 2) ασεισμικές (PGV=0 m/sec) συνθήκες και 1) διάμετρο (d) βραχωδών τεμαχών 1m και 2) διάμετρο (d) 1,3m, 1,5m, 1,3m και 1,5m, για κάθε θέση και τα αποτελέσματα αποτυπώθηκαν σε τρισδιάστατους φακέλους και χάρτες. Παράλληλα, αξιολογήθηκαν οι μεταβολές των τιμών της έντασης (kJ), με τη χρήση του λογισμικού RocPro3D v.6.1, σε τρισδιάστατο περιβάλλον (3D) και του λογισμικού Rocfall (Rocscience Inc.), σε δισδιάστατο περιβάλλον (2D), και για τις τέσσερις επιλεγμένες θέσεις. παρουσιάζοντας παρόμοια εικόνα διακύμανσης τιμών ε) ποιοτική αξιολόγηση του βαθμού διακινδύνευσης (Risk), με παράλληλη αξιολόγηση της πιθανότητας διάδοσης (Ppropag) και τα σημεία τερματισμού τους μέσα στον Μνημειακό Χώρο (stop points). Η παραπάνω αξιολόγηση επιτεύχθηκε με τη δημιουργία πινάκων (Risk matrix) και χαρτών χωρικής κατανομής, σε περιβάλλον ArcGIS, τόσο για τις Άμεσες Υλικές, όσο και για τις Άμεσες Άυλες απώλειες. Η παρούσα διδακτορική διατριβή στοχεύει στην ανάπτυξη μιας λεπτομερούς μεθοδολογίας εκτίμησης της επικινδυνότητας (Hazard) και ποιοτικής αξιολόγησης της διακινδύνευσης (Risk) στον Αρχαιολογικό Χώρο των Δελφών, τα αποτελέσματα της οποίας θα αξιοποιηθούν για την πρόταση ορθών παρεμβάσεων για την αντιμετώπιση των καταπτώσεων βράχων στον Μνημειακό Χώρο.

Monumental sites, especially near steep mountainous areas, are often facing rockfall phenomena. In this PhD thesis, a methodology for assessing, evaluating and analyzing Rockfall Hazard were developed and applied in the Archaeological Site of Delphi, in Greece. Specifically, rockfall Hazard assessment was carried out through a three-dimensional (3D) trajectometric analysis based on UAV technology (Unmanned Aerial Vehicles). The developed stages of the methodology are the following: a) recording of the study area, by receiving UAV data b) processing of the raw three-dimensional (3D) point clouds, generation of accurate and high resolution data and three-dimensional models (orthophotograph, digital terrain model) and extraction of discontinuity orientation data (dip angle, dip direction) and the distance between the surfaces of the discontinuities belonging in the same discontinuity sets (spacing), in a persistent and non-persistent state, using specialized software packages, c) mapping of the rocky cliff, upwards the Archaeological Site of Delphi and rockfall susceptibility assessment, using the united 3D point cloud of the study area, created from multiple UAV aerial photographs. At this stage mapping and calculation of the rocky blocks (scars) volume (m3), originated from previous rockfall phenomena, was carried out. A total of 119 blocks (scars) were identified and measured on the limestone surface, with an average detached rock block value equal to 22.2 m3. At the same time, fallen rock blocks volume (m3) inside the Monumental Area were identified and also measured, with an average volume value equal to 7.6 m3, taking into account the fragmentation degree, from the detachment till their final deposition in the Archaeological Site, d) rockfall (Hazard) assessment and analysis through three-dimensional trajectometric analyses within RocPro3D v.6.1 software with earthquake triggering factor. In particular, the data of the catastrophic seismic sequence of 1870 were used and the initial PGV velocity (m/s) was calculated equal to 0.41 m/sec. After that, trajectometric simulation analyses from four likely rockfall positions-zones was carried out. So, the following scenarios were created: 1) seismic (PGV=0.41 m/sec) and 2) non-seismic (PGV=0 m/sec) conditions and 1) block diameter (d) equal to 1m and 2) block diameter (d) equal to 1.3 m, 1.5 m, 1.3 m and 1.5 m. The results were depicted on 3D maps and envelopes. In order to observe the changes of the intensity (kJ) spatial variation, RocPro3D v.6.1software, in a three-dimensional environment (3D), as well as Rocfall software (Rocscience Inc.), in a two-dimensional (2D) environment were used, with a similar value variation, e) qualitative Rockfall Risk assessment, considering the probability of propagation (Ppropag) variation and rock blocks approach at the elements of risk of the Site and their stopping points within the Monumental Area. The above Rockfall Risk assessment was achieved by creating tables (Risk matrix) and spatial distribution maps, in ArcGIS environment, for both Direct Material and Direct Intangible losses. Aim of this PhD thesis was the development of a detailed rockfall hazard assessment and a rockfall qualitative risk assessment methodology, the results of which can be used in proposing the appropriate rockfall interventions in the study Area.


Πλήρες Κείμενο:

PDF

Αναφορές


Abbruzzese J., M., Sauthier C., Labiouse V. 2009, Considerations on Swiss methodologies for rock fall hazard mapping based on trajectory modelling, Natural Hazardsand Earth System Sciences, vol. 9, 095–1109.

Alvioli, M., Santangelo, M, Fiorucci, F., Cardinali, M., Marchesini, I., Reichenbach, P., Rossi, M., Guzzetti, F., Peruccacci, S. 2021. Rockfall susceptibility and network-ranked susceptibility along the Italian railway. Engineering Geology. Elsevier. 293.

Ambraseys, N. and Pantelopoulos, P. 1989. The Fokis earthquake of 1 August 1870. J. Europ. Earthq. Eng., 3, 10-18.

Andrianopoulos, A., Saroglou, H. and Tsiambaos, G. 2013. Rockfall Hazard and Risk Assessment of road slopes. Bulletin of the Geological Society of Greece, vol. XLVII, Proceedings of the 13th International Congress, Chania.

Ayala-Carcedo, F.J., Cubillo-Nielsen, S., Alvarez, A., Domínguez, M.J., Laín, L., Laín, R., Ortiz, G., 2003. Large Scale Rockfall Reach Susceptibility Maps in La Cabrera Sierra (Madrid) performed with GIS and Dynamic Analysis at 1:5,000. Natural Hazards 30, 325–340. https://doi.org/10.1023/B:NHAZ.0000007095.12516.90.

Barton, N.R, 1978. International Society for Rock Mechanics Commission on Standardization of Laboratory and Field Tests - Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses. Int. J. Rock Mech. Min. Sci. and Geomech. 15, 319–368.

Bathrellos, G. D., Kalivas, D. P., Skilodimou, H. D. 2017. Landslide Susceptibility Assessment Mapping: A Case Study in Central Greece. In Remote Sensing of Hydrometeorological Hazards, Petropoulos, G.P., Islam, T., Ends CRC Press, Taylor & Francis Group: London, UK, 2017, 493-512, ISBN-13:978-1498777582.

Botev, Z. I., Grotowski, J. F., D. P. Kroese. 2010. Kernel Density Estimation Via Diffusion. http://www.imstat.org/aos/. 38 (5), 2916–2957, http://dx.doi.org/10.1214/10-AOS799.

Brabb, E.E. Innovative approaches to landslide hazard mapping. In Proceedings of the 4th International Symposium on Landslides, Toronto, ON, Canada, 23–31 August 1985, 307–323.

Brodu, N., Lague, D. 2012. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS Journal of Photogrammetry and Remote Sensing 68:121-134, DOI: 10.1016/j.isprsjprs.2012.01.006.

Budetta, P., 2004. Assessment of Rockfall Risk Along Roads. Natural Hazards and Earth System Sciences, 4. 71–81.

Cancelli, A., Crosta, G. B.1993. Hazard and risk assessment in rockfallprone areas. In: Telford T (ed) Risk reliability in groundengineering, 177–190.

Christaras, B., &Vouvalidis, K. 2010. Rockfalls in the archaeological site of Delphi, Greece. In: Proceedings of the IAEG 2010 International Congress, Auckland, New Zealand, pp. 5-10.

Cignetti, M., Godone, D., Bertolo, D., Paganone, M., Thuegaz, P., Giordan, D. 2021. Rockfall susceptibility along the regional road network of Aosta Valley Region (northwestern Italy). J. Maps.17, 54–64.

Scavia, C., Barbero, M., Castelli, M., Marchelli, M., Peila, D., TorselloG. and Vallero, G. 2020. Evaluating Rockfall Risk: Some Critical Aspects, Geosciences, 10(3), 98; https://doi.org/10.3390/geosciences10030098.

Constantinidis, C. V., Christodoulias, J., & Sofianos, A. I. 1988. Weathering processes leading to rockfalls at Delphi archaeological site. In: Proceedings of International symposium on engineering geology of ancient works, monuments and historical sites: preservation and protection, Balkema, Rotterdam, Brookfield, 201-205.

Copons, R., Vilaplana, J.M., 2008. Rockfall susceptibility zoning at a large scale: From geomorphological inventory to preliminary land use planning. Engineering Geology 102, 142–151. https://doi.org/10.1016/j.enggeo.2008.03.020.

Corominas, J., Mavrouli, O. 2011. Rockfall quantitative risk assessment. In: Lambert S, Nicot F (eds) Rockfall engineering. John Wiley & Sons, Hoboken, 255–296.

Corominas, J., Mavrouli, O., Santana, D., Moya, J. 2012. Simplified approach for obtaining the block volume distribution of fragmental rockfalls. In: Eberhardt E et al (eds) Proceedings of the 11 International Symposium on Landslides, Banff, Canada, 2. CRCPress/Balkema, Leiden, 1159–1164.

Corominas, V., Mavrouli, O. andCarullaR., 2017. «RockfallOccurrenceandFragmentation», 4thWorld Landslide Forum LJUBLJANA,SLOVENIA, EU.

Crosta, G. B., Agliardi, F., Frattini, P., Lari, S. 2014. Key issues in rock fall modeling, hazard and risk assessment for rockfall protection. In: 12th International IAEG Congress, 43-58, Torino, Italy, DOI: 10.1007/978-3-319-09057-3_4.

Crosta, G. B., Frattini, P., Sterlacchini, S. 2001.Valutazione e gestionedelrischio da frana: principi e metodi. RegioneLombardiaPublication, Milano 169.

Crosta, G. B., Locatelli, C. 1999.Approccioallavalutazione del rischiodafrane per crollo. In: Proceedings Studi geografici e geologiciinonore di Severino Belloni. Glauco Brigatti Publisher, Genoa, 259–286.

Crosta, G.B., Agliardi, F., 2003. A methodology for physically based rockfall hazard assessment. Nat. Hazards Earth Syst. Sci. 3, 407–422. https://doi.org/10.5194/nhess-3-407-2003.

Cruden, D. M., Varnes, D. J. 1996. Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. National Research Council, Transportation Research Board, Special Report 247, 36–75.

Cruden, D.M.; Varnes, D.J. 1996. Landslide types and processes. In Landslides Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Transportation research board, US National Research Council: Washington, DC, USA, 247, 36–75.

Dai FC, Lee CF, Ngai YY. 2002. Landslide risk assessment and management: an overview. Eng Geol 64:65–87.

DevliotiK.,Christaras B., Marinos V., Vouvalidis K., Giannakopoulos, N. 2019. "Kinematic analysis of rock instability in the archaeological site of Delphi using Innovative Techniques", Communications in Computer and Information Science, Springer, 407-418, 2019.

Devlioti, K.,Christaras, B., Marinos, V., Vouvalidis, V., Fais, S. 2021. ''Structural analysis of Rock slopes, using UAV & LiDAR, in the Archaeological site of Delphi, Greece'', Proceedings of 3rd European Regional Conference of IAEG, Athens, Greece, 6-10 October 2021.

Hantz, D., Dussauge-Peisser, C., Jeannin, M., Vengeon, J. M. 2003.Rock fall hazard assessment: from qualitative to quantitative failure probability. Int. Conf. on Fast Slope Movements, Prediction and Prevention for Risk Mitigation, May 2003, Naples, Italy. 263-267. hal-00337780.

Dussauge, C., Carine, J.R., Helmstetter, A. 2007. Statistical analysis of rockfall volume distributions: Implications for rockfall dynamics. J. Geophys. Res. Sol. Ea., 108, 2286.

Einstein, H.H., 1988. Landslides: proceedings of the fifth International symposium on landslides, 10-15 July 1988, Lausanne. A. A. Balkema, Rotterdam Brookfield.

Evans, S. G., Hungr, O, 1993. The assessment of rock fall hazard at the base of talus slopes. Can Geotech J 30, 620–636.

Fell, R. 1994. Landslide risk assessment and acceptable risk. CanGeotech J 31(2):261–272.

Fell, R., Hartford, D. 1997. Landslide risk management. Cruden andFell. Landslide risk assessment, Balkema, Rotterdam, 51–109.

Ferrari, F., Giacomini, A., Thoeni, K. 2016. Qualitative rockfall hazard assessment: a comprehensive review of current practices. Rock Mech RockEng 49:2865–2922. https:// doi. org/ 10. 1007/ s00603- 016- 0918-z.

Ferrari, F., Giacomini, A., Thoeni, K. and Lambert, C. 2017. Qualitative evolving rockfall hazard assessment for highwalls, International Journal of Rock Mechanics and Mining Sciences, Elsevier, vol. 98, pp. 88-101.

Ferrari, F., Giacomini, A., Thoeni, K. 2016. Qualitative Rockfall Hazard Assessment: A Comprehensive Review of Current Practices, Rock Mechanics and Rock Engineering volume 49, pages2865–2922.

Giani, G.P., Giacomini, A., Migliazza, M., Segalini, A., 2004. Experimental and Theoretical Studies to Improve Rock Fall Analysis and Protection Work Design. RockMechanics and RockEngineering 37, 369–389. https://doi.org/10.1007/s00603-004-0027-2.

Glenn, N. F., Streutker, D. R., Chadwick, D. J., Thackray, G. D., Dorsch, S. J., 2006. Analysis of LiDAR – derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73 (1), 131-148.

Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31:181–216.

Guzzetti, F. Landslide Hazard and Risk Assessment. Ph.D. Thesis, Mathematisch–NaturwissenschaftlichenFakultät der Rheinischen Friedrich-Wilhelms–Universität, University of Bonn, Bonn, Germany, 2006; 389p.

Hoek, E. 2000. Analysis of rockfall hazards. In: Hoek E (ed) Practicalrock engineering, pp 117–136.

https://whc.unesco.org/en/list/393/

Hungr, O, Evans, S.1988. Engineering evaluation of fragmental rockfall hazards. Int Symp Landslides 5:685–690.

Hungr, O., Evans, S. G., Hazzard, J. 1999. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Can Geotech J 36:224–238. https://doi.org/10.1139/t98-106.

Hungr O, Leroueil S, Picarelli L. 2014.The Varnes classification of landslides types, an update. Landslides 11:167–194.

Jaboyedoff M, Oppikofer T, Abellan A, Derron M-H, Loye A, Metzger R, Pedrazzini A. 2012. Use of LIDAR in landslide investigations: A review. Natural Hazards 61(1):5-28, DOI: 10.1007/s11069-010-9634-2.

Jaboyedoff, M., Dudt, J. P.andLabiouse V. An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree. 2005. Natural Hazards and Earth System Sciences. 5, 621–632.

Jon Ander Clemente, Jesus A. Uriante, Daniele Spizzichino, Francesco Faccini, Tomás Morales, 2023.Engineering Geology, Elsevier, 314.

Karantanellis E., 2021. – Landslide Detection and Characterisation Using OBIA Methodology and UAV Photogrammetry. Ph.D. Thesis, School of Geology, Aristotle University

of Thessaloniki, Annex Number of Scientific Annals of the School of Geology No XXX, 177.

Koroniotis, K. S., Collios, A. A., &Basdekis, A. P. 1988.Stabilisation of the rock slopes at the region of Kastalia spring at Delphi. In: International symposium on engineering geology of ancient works, monuments and historical sites: preservation and protection, Balkema, Rotterdam, Brookfield, 207-211.

Lateltin, O., Haemmig, C., Raetzo, H., Bonnard, C., 2005. Landslide risk management in Switzerland. Landslides 2, 313–320. https://doi.org/10.1007/s10346-005-0018-8.

Li HB, Yang XG, Sun HL, Qi SC, Zhou JE. 2019a.Monitoring of displacement evolution during the pre-failure stage of a rock block using ground-based radar interferometry.

Landslides 16(9):1721-1730, DOI: 10.1007/s10346-019-01228-1.

Lukovic M., Ziegler M., Aaron J., Perras M. 2021. Rockfall susceptibility and runout in the Valley of the Kings. Natural Hazards. Springer. . vol. 110, pp. 451-485.

M. Jaboyedoff, J. P. Dudt, V. Labiouse, 2005, An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree, Natural Hazards

and Earth System Sciences, 5, 621–632.

Marinos, P., &Rondoyanni, T. (2005) The archaeological site of Delphi, Greece: a site vulnerable to earth-quakes, rockfalls and landslides, Landslides, Springer, Berlin, Heidelberg, 225-230.

Mavrouli, O., & Corominas, J. 2020. Evaluation of maximum rockfall dimensions based on probabilistic as-sessment of the penetration of the sliding planes into the slope. Rock Mechanics and Rock Engineer-ing, 53(5), 2301-2312.

Michoud, C., Derron, M.-H., Horton, P., Jaboyedoff, M., Baillifard, F.-J., Loye, A., Nicolet, P., Pedrazzini, A., Queyrel, A. 2012. Rockfall hazard and risk assessments along roads at a regional scale: example in Swiss Alps. Nat. Hazards Earth Syst. Sci. 12, 615–629. https://doi.org/10.5194/nhess-12-615-2012.

Nex, F. And Remondino, F. 2004. UAV for 3D mapping applications: a review. Applied Geomatics, 6 (1), 1-15. doi: 10.1007/s12518-013-0120-x.

NGA-West2 -- Shallow Crustal Earthquakes in Active Tectonic Regimes (https://ngawest2.berkeley.edu/).

NOAFaultsv5.01 (DatabaseofactivefaultsinGreece, InstituteofGeodynamics).

Pantelidis L. 2009. Rock slope stability assessment through rock mass classification systems, International Journal of Rock Mechanics & Mining Sciences, 46, 315–325.

Pitilakis K., Fotopoulou S. 2011. SafeLand Deliverable D2.5: physical vulnerability of elements at risk to landslides: methodology for evaluation, fragility curves and damage states for buildings and lifelines.

Pix4D. 2021. “Pix4D.”

Raetzo, H. ,Lateltin, Ζ O. Bollinger, Ζ D., Tripet, Ζ J.P. 2002. Hazard assessment in Switzerland –Codes of Practice for massmovements. Springer. vol. 61. pp. 63–268.

Riquelme, AJ., Abellan, A., and Tomas, R., 2015. Discontinuity spacing analysis in rock masses using 3D point clouds. Engineering Geology, 195. 185–195.

Riquelme, AJ., Abellan, A., Tomas, R., &Jaboyedoff, M., 2014. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers and Geosciences, 68. 38–52.

Robotham, M. E. and Wang, H., and Walton, G. 1995." ""Assessment of risk from rockfall from active and abandoned quarry slopes."" Institution of mining and Metallurgy", Section A.104(Jan-April), A25-A33. @ Limestonequarry in England.

Rocfall (Rocscience Inc.).

Rochet, L. 1987. Application des modelesnumeriques de propagation a l’etude des eboulementsrocheux. Bull Liaison Pont Chaussée, 150/151, 84–95.

Rockfall modelling and risk zoning: a case study in the french alps usung geomatics, airborne laser scanning, 2d & 3d runout models , Nicolas Clouet1, Frédéric Berger2 and Jerome Liévois3, 12th Congress INTERPRAEVENT 2012 – Grenoble / France Conference Proceedings www.interpraevent.at.

RocPro3Dsoftwarehttp://www.rocpro3d.com/rocpro3d_en.php. 2018.Google Scholar.

Rosser, N., Lim, M., Petley, D., Dumming, S., Allison, R. 2007. Patterns of precursory rockfall prior to slope failure. J Geophys Res 112:F04014.

Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A.C.,Peruccacci, S. 2010. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology, 114, 129–142.

Ruiz-Carulla, R., Corominas, J. 2020. Analysis of rockfalls by means of a fractal fragmentation model. Rock Mech Rock Eng 53:1433–1455. https://doi.org/10.1007/s00603-019-01987-2.

Sabatakakis, N., G. Koukis, E. Vassiliades, and S. Lainas. 2013. “Landslide Susceptibility Zonation in Greece.” NaturalHazards65(1):523–43. doi: 10.1007/s11069-012-0381-4.

Salvini, R., Francioni, M., Riccucci, S., Bonciani, F., Callegari, I. Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola–Iselle railway, the Italian Alps. Geomorphology 2013, 185, 110–122.

Saroglou, H., Marinos, V., Marinos, P. andTsiambaos, G. 2012. Rockfallhazardandrisk assessment: an example from a high promontoryatthehistoricalsiteofMonemvasia,Greece. Natural Hazards and Earth System Sciences, 12, 1823–1836,doi:10.5194/nhess-12-1823-2012.

Scaloni, M.,Longoni, L., Melillo, V. and Papini, M. 2014. “Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives.” Remote Sensing 6(7):5909–37.

Scavia, C., Barbero, M., Castelli, M., Marchelli, M., Peila, D., Torsello, G. and Vallero, G. 2020. Evaluating Rockfall Risk: Some Critical Aspects. Innovative Strategies for

Sustainable Mitigation of Landslide Risk. Geosciences. https://doi.org/10.3390/geosciences10030098.

Schmidt, J. 1879. StudienueberErdbeben, ed. Georgi, A. (Leipzig), 352.

Simone, M., 2020. Comparing rockfall hazard and risk assessment procedures along roads for different planning purposes. Journal of Mountain Science 17(3). https://doi.org/10.1007/s11629-019-5766-3.

Stanley, Thomas, and Dalia B. Kirschbaum. 2017. “A Heuristic Approach to Global Landslide Susceptibility Mapping.” NaturalHazards87(1):145–64. doi: 10.1007/s11069-017-2757-y.

Eeckhaut, V. D., Miet, Kerle, N., Poesen, J. andHervás, J. 2012. “Object-Oriented Identification of Forested Landslides with Derivatives of Single Pulse LiDAR Data.” Geomorphology173–174:30–42. doi: 10.1016/j.geomorph.2012.05.024.

Varnes, D. J. 1978. Slope movement types and processes. In: SchusterRL, Krizek RJ (eds) Landslide analysis and control. Transporta-tion Research Board, Special report

National AcademySciences, Washington, DC, 11–33.

Varnes, D. J., IAEG—International Association Engineering Geology, Commission on Landslides and other Mass-Movements Landslide 1984. Hazard zonation: a review of principles and practice, the UNESCO Press, Paris.

Wang, X. L., Liu, H. Y., Sun, J.J. A new approach for identification of potential rockfall source areas controlled by rock mass strength at a regional scale. RemoteSens. 2021, 13, 938.

Ελληνική Βιβλιογραφία

Αργυρούδης, Σ. 2017. Σημειώσεις διαλέξεων μαθήματος «Εκτίμηση επικινδυνότητας και διακινδύνευσης στην εκδήλωση φυσικών και ανθρωπογενών καταστροφών». ΜΠΣ Τμήμα Γεωλογίας ΑΠΘ.

Κωνσταντινίδης Ι. Κ., 2021. Εκτίμηση της Επικινδυνότητας Εκδήλωσης Βραχοκαταπτώσεων στη περιοχή της Μονής Κηπίνας στους Καλαρρύτες Ηπείρου, με τη Χρήση UAV. Μεταπτυχιακή Διπλωματική Εργασία, Τμήμα Γεωλογίας Α.Π.Θ., 106 σελ.

Λέκκας, Ε. &Γουλιώτης, Λ. 2010. «ΔΕΛΦΟΙ: ΕΝΑ ΜΟΝΑΔΙΚΟ ΜΝΗΜΕΙΟ ΣΕ ΕΝΑ ΕΝΕΡΓΟ ΓΕΩΔΥΝΑΜΙΚΟ ΠΕΡΙΒΑΛΛΟΝ». Council of Europe European Center on Prevention and Forecasting of Earthquakes (E.C.P.F.E.), Training Course Seismic Risk Assessment in Specific Areas with Monumental Structures, Αθήνα.

Μαριολάκος, Η. &ΜπαντέκαςΙ. 2010. ΤΟΜΑΝΤΕΙΟΤΩΝΔΕΛΦΩΝ: ΜΙΑΓΕΩΔΥΝΑΜΙΚΗΚΑΙΓΕΩΜΥΘΟΛΟΓΙΚΗΠΡΟΣΕΓΓΙΣΗ.

Μουντράκης, Δ. 2010. Γεωλογία Ελλάδος.

Μουντράκης, Δ. 2010. ΓεωλογίακαιΓεωτεκτονικήΕξέλιξητηςΕλλάδας.

Παπαθανασίου, Γ. 2022. Τεχνική Γεωλογία και Γεωλογικοί Κίνδυνοι [Προπτυχιακό εγχειρίδιο]. Κάλλιπος, Ανοικτές Ακαδημαϊκές Εκδόσεις http://dx.doi.org/10.57713/kallipos-96.

Παπανικολάου, Δ. Ι. 2015. Γεωλογία της Ελλάδας: τεκτονική και παλαιογεωγραφική – γεωδυναμική εξέλιξη.

Διαδικτυακές Πηγές

Ι’ Εφορεία Προϊστορικών και Κλασσικών Αρχαιοτήτων, Υπουργείο Πολιτισμού. http://odysseus.culture.gr/h/3/gh30.jsp.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.