Αποτύπωση κατολισθητικών φαινομένων προκαλούμενων από την καταιγίδα Daniel στη δυτική Θεσσαλία και συσχέτιση της χωρικής κατανομής τους με γεωλογικούς και γεωμορφολογικούς παράγοντες = Mapping of landslide phenomena caused by storm Daniel in western Thessaly and correlation of their spatial distribution with geological and geomorphological factors.

Δόμνα Νικόλαος Σαμαρά

Περίληψη


Η παρούσα πτυχιακή εργασία, εξετάζει τις κατολισθήσεις ως ένα σημαντικό γεωλογικό φαινόμενο που επιφέρει σοβαρές επιπτώσεις στο φυσικό και ανθρωπογενές περιβάλλον. Αναλύονται οι μηχανισμοί αστοχίας των κατολισθήσεων, καθώς και οι παράγοντες που επηρεάζουν την εκδήλωσή τους. Επίσης, εξετάζεται το φαινόμενο Daniel που έπληξε την Ελλάδα τον Σεπτέμβριο του 2023 και προκάλεσε εκτεταμένες κατολισθήσεις κυρίως λόγω των έντονων βροχοπτώσεων που το συνόδευσαν. Η χαρτογράφηση που πραγματοποιήθηκε με τη χρήση Γεωγραφικών Συστημάτων Πληροφοριών (GIS) εντόπισε ζώνες υψηλού διακινδύνευσης για κατολισθήσεις. Οι γεωλογικές και μορφολογικές συνθήκες όπως η κλίση του εδάφους και ο τύπος των γεωλογικών σχηματισμών θεωρούνται βασικοί παράγοντες που επηρεάζουν την ενεργοποίηση των κατολισθήσεων, ιδιαίτερα στην ΠΕ Τρικάλων (περιοχή έρευνας). Συνολικά, η χρήση GIS και άλλων εργαλείων χωρικής ανάλυσης συνέβαλε στη δημιουργία λεπτομερών χαρτών επιδεκτικότητας, οι οποίοι αποτελούν σημαντικά εργαλεία για τη διαχείριση και τον μετριασμό των επιπτώσεων των κατολισθητικών φαινομένων στην περιοχή έρευνας. Στην παρούσα μελέτη, η συσχέτιση της χωρικής κατανομής των κατολισθήσεων με γεωλογικούς και γεωμορφολογικούς παράγοντες παρείχε κρίσιμα αποτελέσματα για την κατανόηση και την αντιμετώπιση του φαινομένου. Τα δεδομένα που αναλύθηκαν αποκάλυψαν ότι οι περισσότερες κατολισθήσεις συνέβησαν σε περιοχές με κλίση εδάφους από 25ο έως 31ο, κυρίως σε γεωλογικούς σχηματισμούς φλύσχη?.

This thesis examines landslides as an important geological phenomenon that causes serious impacts on the natural and man-made environment. The failure mechanisms of landslides and the factors that influence their occurrence are analysed. The Daniel phenomenon that hit Greece in September 2023 and caused widespread landslides mainly due to the heavy rainfall that accompanied it is also examined. Mapping carried out using Geographic Information Systems (GIS) identified high risk areas for landslides. Geological and morphological conditions such as the slope of the ground and the type of geological formations are considered to be key factors influencing the activation of landslides, especially in the Trikala region (research area). Overall, the use of GIS and other spatial analysis tools contributed to the creation of detailed susceptibility maps, which are important tools for the management and mitigation of landslide impacts in the study area. In this study, the correlation of the spatial distribution of landslides with geological and geomorphological factors provided critical results for understanding and addressing the phenomenon. The analyzed data revealed that most landslides occurred in areas with ground slopes from 25o to 31o, mainly in geological formations of flysch.


Πλήρες Κείμενο:

PDF

Αναφορές


Adamopoulos, I., Frantzana, A. and Syrou, N. (2024). Climate crises associated with epidemiological, environmental, and ecosystem effects of a storm: Flooding, landslides, and damage to urban and rural areas (extreme weather events of Storm Daniel in Thessaly, Greece).

Alexakis, D., Gkiougkis, I., Pavlou, A., & Stamatis, G. (2012). Assessment of groundwater pollution in Trikala region, central Greece. Environmental Earth Sciences, 66(2), 537-548.

Angra, D., Sapountzaki K. (2019). CLIMATE CHANGE IMPACTS IN THREE REGIONS OF GREECE: INTERCONNECTIONS WITH REGIONAL PUBLIC PERCEPTIONS AND PLANNING POLICIES

Aubouin, J. (1959). Contribution a l’ etude geologique de la Grece Seprentrional: les confins de l’ Epire et de la Thessalie. These, Sciences, Univ., Paris, 1958 et Ann. Geol. Pays Hellen. 10: 1-525.

Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31. DOI: https://doi.org/10.1016/j.geomorph.2004.06.010

Brabb, E. E. (1984). Innovative Approaches to Landslide Hazard Mapping. Proceedings of 4th International Symposium on Landslides, 1, 307-324.

Burrough, P. A., & McDonnell, R. A. (1998). Principles of Geographical Information Systems. Oxford University Press, Oxford.

Caputo, R. (1990). Geological and structural study of the recent and active brittle deformation of the Neogene-Quaternary Basins of Thessaly (Central Greece). Ph. D. Thesis, Aristot. Univ. Thessaloniki.

Caputo, R., & Pavlides, S. B. (1993). Late Cainozoic geodynamic evolution of Thessaly and surroundings (central-northern Greece). Tectonophysics, 223: 339-362.

Carrara, A., Cardinali, M., Guzzetti, F., & Reichenbach, P. (1995). GIS technology in mapping landslide hazard. In Carrara, A., & Guzzetti, F. (Eds.), Geographical Information Systems in Assessing Natural Hazards (pp. 135-175). Springer. DOI: https://doi.org/10.1007/978-94-015-8404-3_8

Chatzipetros, A., Pavlides, S., Foumelis, M., Sboras, S., Galanakis, D., Pikridas, C., Bitharis, S., Kremastas, E., Chatziioannou, A., & Papaioannou, I. (2021). The northern Thessaly strong earthquakes of March 3 and 4, 2021, and their neotectonic setting. Bulletin of the Geological Society of Greece, 58, 222. DOI: https://doi.org/10.12681/BGSG.27225

Coates, D. (1977). Landslide perspectives. Geol. Soc. of Am., Revies in Eng. Geology, Vol. 3.

Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.P., Fotopoulou, S., et al. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of

Engineering Geology and the Environment, 73, 209-263. DOI: https://doi.org/10.1007/s10064-013-0538-8

Crozier, M. J. (1986). Landslides: Causes, Consequences and Environment. Croom Helm.

Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. In Turner, A.K. & Schuster, R.L. (Eds.), Landslides: Investigation and Mitigation (pp. 36-75). National Academy Press.

Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64(1), 65–87. DOI: https://doi.org/10.1016/S0013-7952(01)00093-X

Daskalaki, P., & Voudouris, K. (2008). Groundwater quality of porous aquifers in Greece: A synoptic review. Environmental Geology, 54(3), 505-513. DOI: https://doi.org/10.1007/s00254-007-0843-2

del Pozo, A. et al. (2019). Climate change impacts and adaptation strategies of agriculture in Mediterranean-Climate Regions (mcrs), MDPI. Available at: https://www.mdpi.com/2071-1050/11/10/2769 (Accessed: 06 September 2024). DOI: https://doi.org/10.3390/su11102769

Dimitriou, E., Efstratiadis, A., Zotou, I., Papadopoulos, A., Iliopoulou, T., Sakki, G. – K., Mazi, K., Rozos, E., Koukouvinos, A., Koussis, A. D., Mamassis, N., and Koutsoyiannis. D. (2024). Post-analysis of Daniel extreme flood event in Thessaly, Central Greece: Practical lessons and the value of state-of-the-art water monitoring networks, Water, 16 (7),

, DOI: https://doi.org/10.3390/w16070980

Dimitriou, E., & Zacharias, I. (2006). Groundwater vulnerability and risk mapping in a geologically complex area by using stable isotopes, remote sensing and GIS techniques. Environmental Geology, 51(2), 233-248. DOI: https://doi.org/10.1007/s00254-006-0328-8

Doutsos, T., Pe-Piper, G., Boronkay, K. & Koukouvelas, I. (1993). Kinematics of the Central Hellenides. Tectonics, 12/4: 936-953

Erskine C.F. 1973. Landslide in the vicinity of the Fort Randall reservoir.

European Climate Assessment & Dataset. (n.d.). Retrieved from https://www.ecad.eu/

Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102(3-4), 85-98. DOI: https://doi.org/10.1016/j.enggeo.2008.03.022

Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering

Geology, 102(3-4), 99-111. DOI: https://doi.org/10.1016/j.enggeo.2008.03.014

Fleury, J.J. (1980). "Les zones de Gavrovo- Tripolitza et du Pinde – Olonos. Evolution d’ une plate – forme et d’ un basin dans leur cadre alpin. Publ. Soc. Geol. Nord, 4, 648p.." Bulletin de la Société Géologique de France, 22(4), 557-566.

Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., & Reichenbach, P. (2008). Comparing landslide inventory maps. Geomorphology, 94(3–4), 268–289. DOI: https://doi.org/10.1016/J.GEOMORPH.2006.09.023

García-Rodríguez, M. J., Malpica, J. A., Benito, B., & Díaz, M. (2008). Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression.

Geomorphology, 95(3–4), 172–191. DOI: https://doi.org/10.1016/J.GEOMORPH.2007.06.001

Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., &

Glade, T., Anderson, M. G., & Crozier, M. J. (Eds.). (2005). Landslide Hazard and Risk. Wiley.

DOI: https://doi.org/10.1002/9780470012659

Goldsworthy, M., Jackson, J., & Haines, J. (2002). The continuity of active fault systems in Greece. Tectonophysics, 444(1-4), 109-146. DOI: 10.1046/j.1365-246X.2002.01609.x

Goodess, C. M. (2009). Climatic changes and associated impacts in the Mediterranean resulting from a 2°C global warming. Global and Planetary Change, 68(3), 209-224. DOI: https://doi.org/10.1016/j.gloplacha.2009.06.001

Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1-4), 272-299.

DOI: https://doi.org/10.1016/j.geomorph.2005.06.002

Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1-4), 181-216. DOI: https://doi.org/10.1016/S0169-555X(99)00078-1

Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1-2), 42-66. DOI: https://doi.org/10.1016/j.earscirev.2012.02.001.

Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides, 5(1), 3-17. DOI: https://doi.org/10.1007/s10346-007-0112-1

Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., & Galli, M. (2006). Estimating the quality of landslide susceptibility models. Geomorphology, 81(1–2), 166–184.

DOI: https://doi.org/10.1016/J.GEOMORPH.2006.04.007

Hatzfeld, D., Ziazia, M., Kementzetzidou, D., Hatzidimitriou, P., Panagiotopoulos, D., Makropoulos, K., Papadimitriou2, P., & Deschamps4, A. (1999). Microseismicity and focal

mechanisms at the western termination of the North Anatolian Fault and their implications for continental tectonics. Geophys. J. Int, 137, 891–908.

Hearn, G. J., & Griffiths, J. S. (2001). Landslide hazard mapping and risk assessment. Geological Society, London, Engineering Geology Special Publications, 18(1), 43–52. DOI: https://doi.org/10.1144/GSL.ENG.2001.018.01.07

He, Y., & Beighley, R. E. (2008). GIS-based regional landslide susceptibility mapping: A case study in southern California. Natural Hazards, 45(1), 53-72.

DOI: https://doi.org/10.1002/esp.1562

Hellenic National Meteorological Service. (n.d.). Retrieved from http://www.hnms.gr/hnms/english/index_html

Hewson, T., Ashoor, A., Boussetta, S., et al. (2024). Medicane Daniel: An extraordinary cyclone with devastating impacts, ECMWF. Available at: https://www.ecmwf.int/en/newsletter/179/earth-system-science/medicane-daniel-extraordinary-cyclone-devastating-impactsb

Hungr, O., Evans, S. G., Bovis, M. J., & Hutchinson, J. N. (2001). A review of the classification of landslides of the flow type. Environmental & Engineering Geoscience, 7(3), 221-238. DOI: https://doi.org/10.2113/gseegeosci.7.3.221.

Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11(2), 167-194.

DOI: https://doi.org/10.1007/s10346-013-0436-y

Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897-1910. DOI: https://doi.org/10.1029/2000WR900090

Jaeger, P. (1979). Geologie du massif du Koziakas et de la chaine du Pinde face a Mouzaki (Grece continentale). These 3eme Cycle, Univ. Paris, VI.

Karagiannids, A., Lagouvardos, K., Kotroni, V., Galanaki, E. (2023). Analysis of current and future heating and cooling degree days over Greece using observations and regional climate model simulations, MDPI. Available at: https://www.mdpi.com/2673-4931/26/1/149 (Accessed: 06 September 2024). DOI:

https://doi.org/10.3390/environsciproc2023026149

Keefer, D.K. and others (1987). Real-time landslide warning during heavy rainfall: Science, 238: 921-925.

Kleidonopoulos, G., 2002-2003. Varousi, our cultural identity. Calendar of Trikala.

Korup, O. (2005). Geomorphic imprint of landslides on alpine river systems, southwest New Zealand. Earth Surface Processes and Landforms, 30(7), 783–800. DOI: https://doi.org/10.1002/ESP.1171

Le Pichon, X., & Angelier, J. (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics, 60(1-2), 1-42.

Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33-41. DOI:

https://doi.org/10.1007/s10346-006-0047-y

Leivadiotis, E., Kohnová, S., & Psilovikos, A. (2024). Evaluating flood events caused by Medicane “Daniel” in the Thessaly District (Central Greece) using remote sensing data and

techniques. Acta Hydrologica Slovaca, 25(1), 115–126. DOI: https://doi.org/10.31577/AHS-2024-0025.01.0013

Lekkas E., Diakakis M., Mavroulis S., (2023). The early September 2023 Daniel storm in Thessaly Region (Central Greece). DOI: https://doi.org/10.13140/RG.2.2.22015.18089

Li, W. C., Lee, L. M., Cai, H., Li, H. J., Dai, F. C., Wang, M. L. (2013). Combined roles of saturated permeability and rainfall characteristics on surficial failure of homogeneous soil

slope. Engineering Geology, 153(8), 105–113. DOI: https://doi.org/10.1016/j.enggeo.2012.11.017

Lionello, P., Abrantes, F., Gacic, M., Planton, S., Trigo, R., & Ulbrich, U. (2014). The climate of the Mediterranean region: research progress and climate change impacts. Regional Environmental Change, 14(5), 1679–1684. DOI: https://doi.org/10.1007/S10113-014-0666-0/METRICS

Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbrich, U., & Xoplaki, E. (2006). The Mediterranean climate: An overview of the main characteristics and issues. Developments in Earth and Environmental Sciences, 4(C), 1–26. DOI: https://doi.org/10.1016/S1571-

(06)80003-0

Lionello, P., Emin Özsoy b, Serge Planton c, Giovanni Zanchetta (2017). Climate Variability and Change in the Mediterranean Region. Global and Planetary Change, 151, 1–3. DOI: https://doi.org/10.1016/j.gloplacha.2017.04.005

Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic Information Systems & Science. John Wiley & Sons.

Loukas, A., & Vasiliades, L. (2014). Climate change impacts on the hydrological response of a medium-sized catchment in Greece. Hydrological Processes, 28(16), 4509-4520.

Loukas, A., Vasiliades, L., Tzabiras J. (2007). Evaluation of Climate Change on Drought Impulses in Thessaly, Greece. European Water, 17, 17–28.

Massey C, Leith K. (2023). Cyclone Gabrielle landslide response and recovery - GNS Science | Te Pῡ Ao. From https://www.gns.cri.nz/news/cyclone-gabrielle-induced-landslide-mapping-project/

Matsakou, A., Papathanassiou, G., Marinos, V., Ganas, A., & Valkaniotis, S. (2021). Development of the coseismic landslide susceptibility map of the island of Lefkada, Greece. Environmental Earth Sciences, 80(13), 457. DOI: https://doi.org/10.1007/s12665-021-09741-0

Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29(6), 687-711. DOI: https://doi.org/10.1002/esp.1064

Mavroulis, S., Mavrouli, M., Lekkas, E., Tsakris, A. (2024). Impact of the September 2023 Storm Daniel and Subsequent Flooding in Thessaly (Greece) on the Natural and Built Environment and on Infectious Disease Emergence DOI: https://doi.org/10.3390/environments11080163

Mckenzie, D.P. (1972). Active tectonics of the Mediterranean Region. Geoph. J. R. astr. Soc., 30: 109 - 185.

Mersha, T., & Meten, M. (2020). GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia. Geoenvironmental Disasters, 7(1), 1–22. DOI: https://doi.org/10.1186/S40677-020-00155-X/FIGURES/11

Mercier, J. and Vergely, P. (1972). “Les melanges ophiolitiques de Macedoine (Greece):decrochements d’ age ante – Cretace superieur. Z. Deutsch. Geol. Ges.

Mercier, J.L., Sorel, D., Vergely, P. & Simeakis, K.(1989). Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Res., 2: 49-71.

Mountrakis, D. (2010). Tectonics and the Geological Evolution of the Hellenides. Geotectonic Review, 45(2), 145-161.

Nefeslioglu, H. A., Gokceoglu, C., & Sonmez, H. (2008). An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the

preparation of landslide susceptibility maps. Engineering Geology, 97(3–4), 171–191. DOI: https://doi.org/10.1016/J.ENGGEO.2008.01.004

Papaioannou, A., Plageras, P., Dovriki, E., et al. (2007). Groundwater quality and location of productive activities in the region of Thessaly (Greece) DOI: https://doi.org/10.1016/j.desal.2006.03.610

Papanikolaou, D. & Sideris, C. (1979). Sur la signification des zones “ultrapindique” et “beotienne” d’ epres la geologie de la region de karditsa: l’ unite de Thessalie Occidentale. Ecl. Geol. Helv. 72/1: 251-261.

Papathanassiou, G., Valkaniotis, S., & Ganas, A. (2021). Spatial patterns, controlling factors, and characteristics of landslides triggered by strike-slip faulting earthquakes: case study of Lefkada island, Greece. Bulletin of Engineering Geology and the Environment, 80(5), 3747–3765. DOI: https://doi.org/10.1007/s10064-021-02181-x

Papazachos, B. (1988). The seismic zones in the Aegean and surrounding area. Europ. Seism. Com., XXI Gen. Assem., Sofia, Bulgaria, August 23 - 27, 1 - 6.

Panebianco, S., and Schürmann, C. (2002). "The Egnatia Motorway–a chance for Northern Greece to catch up?." 42nd Congress of the European Regional Science Association. Vol. 2731.

Parise, M. (2001). Landslide mapping techniques and their use in the assessment of the landslide hazard. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 26(9), 697–703.

Philippson, A. (1898). "La tectonique de l’Egeide". Annales de Geographie Paris.

QGIS Documentation. (n.d.). Retrieved from https://www.qgis.org/en/docs/index.html

QGIS User Guide. (2022). Retrieved from https://docs.qgis.org/3.22/en/docs/user_manual/

Renz, C. (1930). Geologische Reisen im griechschen Pindosgebirge. Ecl. Geol., Helv., 23: 301-377.

Santangelo, M., Cardinali, M., Rossi, M., Mondini, A. C., & Guzzetti, F. (2010). Remote landslide mapping using a laser rangefinder binocular and GPS. Natural Hazards and Earth

System Sciences, 10(12), 2539-2546. DOI: https://doi.org/10.5194/nhess-10-2539-2010.

Santangelo, M., Gioia, D., Cardinali, M., Guzzetti, F., & Schiattarella, M. (2013). Interplay between mass movement and fluvial network organization: An example from southern Apennines, Italy. Geomorphology, 188, 54–67. DOI: https://doi.org/10.1016/J.GEOMORPH.2012.12.008

Shahri, A., Spross, J., Johansson, F., & Larsson, S. (2019). Landslide susceptibility hazard map in southwest Sweden using artificial neural network DOI: https://doi.org/10.1016/j.catena.2019.10422

Sharpe, D. R. (1939). The study of landslides. Geological Society of America Bulletin, 50(5), 859-880.

Skordas, K., Papastergios, G., Tziantziou, L., Neofitou, N., & Neofitou, C. (2013). Groundwater hydrogeochemistry of Trikala municipality, central Greece. Environmental Monitoring and Assessment, 185(1), 81–94. DOI: https://doi.org/10.1007/S10661-012-2535-Y/METRICS

Soeters, R. and van Westen, C.J. (1996). Slope Instability Recognition Analysis and Zonation. In: Turner K.T. and Schuster, R.L., Eds., Landslides: Investigation and Mitigation,

Special Report No. 247, Transportation Research Board National Research Council, Washington DC, 129-177

Taylor, S., Angelier, J., & Le Pichon, X. (2019). Geodynamic implications of the active fault pattern in Greece: Tectonic stress and crustal deformation. Tectonophysics.

Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2012). Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Computers and Geosciences, 45, 199–211. DOI: https://doi.org/10.1016/J.CAGEO.2011.10.031

Turner, A. K., & Schuster, R. L. (Eds.). (1996). Landslides: Investigation and Mitigation. Transportation Research Board Special Report 247.

National Research

National Academies of Sciences, Engineering, and Medicine. 1996. Landslides: Investigation and Mitigation. Washington, DC: The National Academies Press. DOI: https://doi.org/10.17226/11057.

UNESCO World Heritage Centre. "Meteora." UNESCO.

URL: https://whc.unesco.org/en/list/455

Valkaniotis, S., Taftsoglou, M., Papathanassioy, G., Samara, D., Zei, C., Chatzitheodosiou, T. (2024). Development of a medicane-induced landslide inventory; case study of 2023 cyclone Daniel, Central Greece.

Van Westen, C. J. (2000). The modelling of landslide hazards using GIS. Surveys in Geophysics, 21(2-3), 241-255. DOI: https://doi.org/10.1023/A:1006794127521

van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3–4), 112–131. DOI: https://doi.org/10.1016/J.ENGGEO.2008.03.010

Van Westen, C.J., Rengers, N., & Soeters, R. (2003). Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Natural Hazards, 15(2-3), 399-419.

DOI: https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e

Varnes, J.D. (1958). Landslide types and processes. In Landslides and Engineering Practice. (Eckel, E.B., ed.), H.R.B., Special Rept. 29, 20-47.

Varnes, J.D. (1978). Slope movement types and processes. In Landslides: Analysis and Control (Schuster and Krizec, eds.), National Academy of Sciences, Special Report. 176, 11-33, Washington, D.C.

Voudouris, K., Kazakis, N., Polemio, M., & Kareklas, K. (2000). Assessment of intrinsic vulnerability using the DRASTIC model and GIS in the Kiti aquifer, Cyprus. European water (2010).

Xu, C. (2015). Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies: Principles and case studies. Geoscience Frontiers, 6(6), 825–836. DOI: https://doi.org/10.1016/j.gsf.2014.03.004

Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. CATENA, 72(1), 1–12. DOI: https://doi.org/10.1016/J.CATENA.2007.01.003

Zaruba, Q. & Mencl, V. (1969). Landslides and their control. Developments in Geotechnical Engineering, Vol. 2, Elsevier, Amsterdam.

Zaruba, Q., & Mencl, V. (1976). Landslides and their control (2nd ed.). Elsevier Publishing Company.

Ελληνική Στατιστική Αρχή (2021). Απογραφή Πληθυσμού 2021. Αθήνα: ΕΛΣΤΑΤ.

Κούκης, Γ., Σαμπατακάκης, Ν. (2007). Γεωλογία Τεχνικών Έργων. Εκδόσεις Παπασωτηρίου. Αθήνα. 575 σελ.

Κούκης Γ., Ρόζος Δ. (1982). Γεωτεχνικές συνθήκες και κατολισθητικές κινήσεις στον ελληνικό χώρο σε σχέση με τη γεωλογική δομή και γεωτεκτονική εξέλιξη. Ορυκτός πλούτος, τ. 16.

Κυριακίδου, Α. Κ. (2019). Τεχνικογεωλογική αποτύπωση κατολίσθησης και έρευνα επί των συνθηκών ευστάθειας στην περιοχή Περιστέρι Μετσόβου. Μεταπτυχιακή Διπλωματική Εργασία, Τμήμα Γεωλογίας Α.Π.Θ., 104 σελ..

Λέκκας, Ε. (1988). Γεωλογική δομή και γεωδυναμική εξέλιξη της οροσειράς του Κόζιακα (Δυτική Θεσσαλία). Γεωλογικές μονογραφίες, Νο 1, Διδακτορική διατριβή, Εθνικό και

Καποδιστριακό Παν/μιο Αθηνών, Αθήνα.

Μούκιου, Κ. (2017). ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΔΕΚΤΙΚΟΤΗΤΑΣ ΣΤΟΥΣ ΝΕΟΓΕΝΕΙΣ ΣΧΗΜΑΤΙΣΜΟΥΣ ΤΗΣ ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ ΤΗΣ ΚΥΜΗΣ. Διπλωματική εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Μηχανικών Μεταλλείων – Μεταλλουργών, Τομέας Γεωτεχνολογίας. Αθήνα.

Μουντράκης, Δ. (1983). Η γεωλογική δομή της Βόρειας Πελαγινικής ζώνης και η γεωτεκτονική εξέλιξη των Εσωτερικών Ελληνίδων. Πραγματεία για Υφηγεσία, Πανεπ. Θεσσαλονίκης, 289 σελ.

Μπαθρέλλος, Γ. (2005). Γεωλογική, γεωμορφολογική και γεωγραφική μελέτη των αστικών περιοχών του νομού Τρικάλων - Δυτικής Θεσσαλίας. DOI: https://doi.org/10.12681/EADD/22373

Παπαζάχος, Β. & Παπαζάχου, Κ. (1989). Οι σεισμοί της Ελλάδας. Εκδ. Ζήτη, Θεσσαλονίκη, 356σελ.

Παπαθανασίου, Γ. (2022). Τεχνική Γεωλογία και Γεωλογικοί Κίνδυνοι [Προπτυχιακό εγχειρίδιο]. Κάλλιπος, Ανοικτές Ακαδημαϊκές Εκδόσεις. DOI: https://dx.doi.org/10.57713/kallipos-96

(PDF) Assessment of intrinsic vulnerability using DRASTIC model and GIS in Kiti aquifer, Cyprus. (n.d.). Retrieved July 19, 2024, from https://www.researchgate.net/publication/48329848_Assessment_of_intrinsic_vulnerability_using_DRASTIC_model_and_GIS_in_Kiti_aquifer_Cyprus

(PDF) Geological map of Western Thessaly - Trikala Prefecture. (n.d.). Retrieved May 29, 2024, from https://www.researchgate.net/publication/263215804_Geological_map_of_Western_Thessaly_-_Trikala_Prefecture

(PDF) Νεοτεκτονική δομη και εξέλιξη της Θεσσαλίας = Neotectonics and structural evolution of Thessaly. (n.d.). Retrieved May 29, 2024, from

https://www.researchgate.net/publication/27227142_Neotektonike_dome_kai_exelixe_tes_Thessalias_Neotectonics_and_structural_evolution_of_Thessaly


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.