Τα μέταλλα που χρησιμοποιούνται στις επαναφορτιζόμενες μπαταρίες και τα κοιτάσματά τους = Metals used in researchable batteriew and their deposits.
Περίληψη
Η διπλωματική εργασία εξετάζει τα κύρια μέταλλα που χρησιμοποιούνται στις επαναφορτιζόμενες μπαταρίες, συγκεκριμένα το λίθιο, το νικέλιο και το κοβάλτιο, καθώς και τα κοιτάσματά τους παγκοσμίως. Η εργασία εστιάζει στη σημασία αυτών των μετάλλων για την ενεργειακή αποθήκευση και τη μελλοντική ανάπτυξη της ηλεκτροκίνησης,λαμβάνοντας υπόψη τη σπανιότητα και τη στρατηγική τους σημασία για την παγκόσμια αγορά. Αναλύεται η εξόρυξη και η διάθεση των συγκεκριμένων μετάλλων, ενώ δίνεται έμφαση στην ανακύκλωση των επαναφορτιζόμενων μπαταριών ως μέσο για τη μείωση της εξάρτησης από τα πρωτογενή κοιτάσματα και τη βιωσιμότητα του κλάδου. Η εργασία καταλήγει ότι η αυξανόμενη ζήτηση για μπαταρίες θα απαιτήσει νέες στρατηγικές για τη διαχείριση των πόρων και την ανακύκλωση, προκειμένου να επιτευχθούν οι στόχοι της
βιώσιμης ανάπτυξης.
This thesis examines the main metals used in rechargeable batteries, specifically lithium, nickel, and cobalt, and their major global deposits. It highlights the importance of these metals for energy storage and the increasing demand from the electric vehicle industry, because of their limited availability and strategic importance. The study discusses the mining methods and the supply of these metals, emphasizing the role of recycling as a key solution to reduce reliance on raw materials and support sustainability. In conclusion, the growing demand for batteries calls for improved resource management strategies and increased recycling efforts to ensure sustainable development and minimize environmental impact.
Πλήρες Κείμενο:
PDFΑναφορές
British Geological Service, 2016
Carlito Baltazar Tabelin, Jessica Dallas, Sophia Casanova, Timothy Pelech, Ghislain Bournival, Serkan Saydam, Ismet Canbulat, 2021, Azevedo et al. 2018.
Davenport, W.G., 2011. Extractive metallurgy of nickel, cobalt, and platinum group materials.
Davidson, V., 2006. Nickel market overview-the supply response. World.
Demirbas, A., 2009. Global Renewable Energy Projections. Energy Sources, Part B: Economics, Planning, and Policy 4 (2), 212–224. 10.1080/15567240701620499.
European Commission, 2010; 2014; 2017.
Elias, M., 2002. Nickel laterite deposits – geological overview, resources and exploitation. Giant Ore Deposits: Characteristics, genesis and exploration.
Farjana, S.H., Huda, N., Mahmud, M.P., 2019. Life cycle assessment of cobalt extraction process.
Flexer et al (2018) Lithium recovery from brines.
Grosjean, C., Miranda, P.H., Perrin, M., Poggi, P., 2012. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renewable and Sustainable Energy Reviews 16 (3), 1735–1744. 10.1016/j.rser.2011.11.023.
Habashi, 1997; Barbosa et al., 2014; Hien-Dinh et al., 2015; Lee, 2015; Meshram et al., 2014.
Harper, E.M., Kavlak, G., Graedel, T.E., 2012. Tracking the metal of the goblins: cobalt's cycle of use. Environmental science & technology 46 (2), 1079–1086. 10.1021/es201874e.
Hawkins, M., 2001. Why we need cobalt. Applied Earth Science 110 (2), 66–70. 10.1179/aes.2001.110.2.66.
https://nickelinstitute.org/en/nickel-applications/#firstuse.
Kapusta, J.P.T., 2006. Cobalt production and markets: A brief overview. JOM 58 (10), 33–36. 10.1007/s11837-006-0198-2.
Kesler et al., 2012; Vikström et al., 2013; Kunasz, 2006; U.S. Geological Survey, 2018; Munk et al., 2016).
Kesler et al (2012) Global lithium resources.
Konstantinos Gounaris, 2019. Applicability of digital tools for the assessment of the global mining industry of battery raw materials. Faculty of Geosciences, Geotechnics and
Mining Sustainable Mining and Remediation Management.
Kuck, P.H., 2010b. Nickel: Mineral commodity summaries, 108–109.
Market Research Report, 2020, Battery Metals Market by Metals Type and Application: Global Opportunity Analysis and Industry Forecast, 2020-2027.
Martin, G., Rentsch, L., Höck, M., Bertau, M., 2017. Lithium market research – global supply, future demand and price development. Energy Storage Materials 6, 171–179. 10.1016/j.ensm.2016.11.004.
Metalary, 2019. Lithium. https://www.metalary.com/lithium-price/.
Mohammadi, F (Ed.), 2018. Electric Vehicle Battery Market Analysis: Lithium-ion.
Mudd, G.M., 2010. Global trends and environmental issues in nickel mining: Sulfides versus laterites.
Mudd, G.M., Weng, Z., Jowitt, S.M., Turnbull, I.D., Graedel, T.E., 2013. Quantifying the recoverable resources of by-product metals: The case of cobalt. Ore Geology Reviews 55, 87–98. 10.1016/j.oregeorev.2013.04.010.
Narins, T.P., 2017. The battery business: Lithium availability and the growth of the global electric car industry.
Nakajima, K., Nansai, K., Matsubae, K., Tomita, M., Takayanagi, W., Nagasaka, T., 2017. Global land-use change hidden behind nickel consumption.
Nazri, G., Pistoia, G., 2008. Lithium batteries: science and technology. Springer Science & Business Media.
N.Paraskevopoulou, School of Geology, Department of Mineralogy, Petrology, Economic Geology, 2022 All rights reserved. Geopolitcs of metal batteries.
NewsCenterMaine.http://www.newscentermaine.com/article/news/special-reports/maines-changing-climate/electric-vehicle-ev-cobalt-mining-lithium-ion-battery-ethics/97-fb4c9993-6d5d-4809-a192-414faa12fecf
Nicholson, P., Evans, 1998. Evaluating new directions for the lithium market. JOM 50 (5), 27–29. 10.1007/s11837-998-0028-9.
Olivetti, E.A., Ceder, G., Gaustad, G.G., Fu, X., 2017. Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals.
Olivetti et al (2017) Battery metals.
Plourde, A., Watkins, G.C., 1998. Crude oil prices between 1985 and 1994: how volatile in relation to other commodities? Resource and Energy Economics 20 (3), 245–262. 10.1016/S0928- 7655(97)00027-4.
Swain, 2017; Talens Peiró et al., 2013; Zhang et al., 2012; Choubey et al., 2016; Border and Sawyer, 2014; An et al., 2012).
Statista. https://www.statista.com.
Sonoc, A., Jeswiet, J., 2014. A Review of Lithium Supply and Demand and a Preliminary Investigation of a Room Temperature Method to Recycle Lithium Ion Batteries to Recover
Lithium and Other Materials. Procedia CIRP 15, 289–293. 10.1016/j.procir.2014.06.006.
Tabelin, C. B., Dallas, J., Casanova, S., Pelech, T., Bournival, G., Saydam, S., &Canbulat, I (2021). Towards a low-carbon society: A review of lithium resource availability,
challenges and innovations in mining, extraction and recycling, and future perspectives. Minerals Engineering, 163, 106743.
Taylor and McLennan, 1985 Relationships between the trace element composition of sedimentary rocks and upper continental crust.
Titirici (2021) Sustainable Batteries.
United States Geological Survey, USGS, https://www.usgs.gov/.
Ευρωπαϊκή Επιτροπή, 2010-2014-2017.
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.