H γεωπολιτική του λιθίου = The geopolitics of lithium.
Περίληψη
Η παρούσα διπλωματική εργασία αφορά την επιρροή που έχει το λίθιο, ως κρίσιμη ορυκτή πρώτη ύλη, στην παγκόσμια οικονομία. Η γεωπολιτική είναι μια προσέγγιση ανάλυσης της εξωτερικής πολιτικής, με σκοπό την κατανόηση, την ερμηνεία και τελικά την πρόβλεψη της συμπεριφοράς των διεθνών πολιτικών παραγόντων, με βάση γεωγραφικές παραμέτρους. Αυτές οι παράμετροι περιλαμβάνουν το κλίμα, τον πολιτισμό, την τοπογραφία, την δημογραφία, τους φυσικούς πόρους και τις εφαρμοσμένες επιστήμες της εξεταζόμενης περιοχής. Ο λόγος που το λίθιο έχει τόσο μεγάλο ενδιαφέρον και σχετίζεται με την γεωπολιτική οφείλεται στο γεγονός ό,τι είναι βασικός παράγοντας στην ύπαρξη επαναφορτιζόμενων μπαταριών, γεγονός που σχετίζεται με την ηλεκτροκίνηση και γενικότερα χαράζει τον δρόμο για την συνεχή ανάπτυξη και υλοποίηση της πράσινης ενέργειας. Λόγω της υπερθέρμανσης του πλανήτη και τις αμέτρητες πηγές ρύπανσης, έχουν υπογραφεί συνθήκες μεταξύ των χωρών της Ε.Ε και του Ο.Η.Ε για ένα καλύτερο μέλλον, το οποίο βασίζεται στην ηλεκτροκίνηση, στην μείωση του διοξειδίου του άνθρακα και στην βελτιστοποίηση των μοντέλων ανακύκλωσης.
This diploma thesis focuses on the influence that lithium, as a critical mineral raw material, has on the global economy. Geopolitics is an approach to foreign policy analysis, with the aim of understanding, interpreting and ultimately predicting the behavior of international political actors, based on geographic parameters. These parameters include the climate, culture, topography, demography, natural resources and applied sciences of the area under consideration. The reason lithium is of such great interest and relevance to geopolitics is due to the fact that it is a key factor in the existence of rechargeable batteries, which associates with electrification and generally paves the way for constant evolution and implementation of green energy. Due to global warming and countless sources of pollution, treaties have been signed between the countries of the EU and the UN for a better future, based on electrification, reduction of carbon dioxide percentage in the atmosphere and the optimization of recycling models.
Πλήρες Κείμενο:
PDFΑναφορές
Baur, D. G., & Gan, D. (2018). Electric vehicle production and the price of lithium. SSRN 3289169.
Benson, T. R., Coble, M. A., Rytuba, J. J., & Mahood, G. A. (2017). Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nature
communications, 8(1), 270.
Boxall, N. J., King, S., Cheng, K. Y., Gumulya, Y., Bruckard, W., & Kaksonen, A. H. (2018). Urban mining of lithium-ion batteries in Australia: Current state and future trends.
Minerals Engineering, 128, 45-55.
Bruno, M., & Fiore, S. (2024). Review of lithium-ion batteries’ supply-chain in Europe: Material flow analysis and environmental assessment. Journal of Environmental Management, 358, 120758.
Choubey, P. K., Kim, M. S., Srivastava, R. R., Lee, J. C., & Lee, J. Y. (2016). Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources. Minerals Engineering, 89, 119-137.
Christmann, P., Gloaguen, E., Labbé, J. F., Melleton, J., & Piantone, P. (2015). Global lithium resources and sustainability issues. In Lithium process chemistry (pp. 1-40). Elsevier.
Flexer, V., Baspineiro, C. F., & Galli, C. I. (2018). Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of the Total Environment, 639, 1188-1204. Gourcerol et al (2019) European lithium resource potential.
Garcia, L. V., Ho, Y. C., Myo Thant, M. M., Han, D. S., & Lim, J. W. (2023). Lithium in a sustainable circular economy: A comprehensive review. Processes, 11(2), 418.
Gourcerol, B., Gloaguen, E., Melleton, J., Tuduri, J., & Galiegue, X. (2019). Re-assessing the European lithium resource potential–A review of hard-rock resources and metallogeny. Ore Geology Reviews, 109, 494-519.Sterba et al (2019) Lithium mining.
Grosjean, C., Miranda, P. H., Perrin, M., & Poggi, P. (2012). Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renewable and Sustainable Energy Reviews, 16(3), 1735-1744.
Hao, H., Liu, Z., Zhao, F., Geng, Y., & Sarkis, J. (2017). Material flow analysis of lithium in China. Resources Policy, 51, 100-106.
Henry, C. D., & John, D. A. (2013). Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA. Geosphere, 9(4), 951-1008.
Kesler, S. E., Gruber, P. W., Medina, P. A., Keoleian, G. A., Everson, M. P., & Wallington, T. J. (2012). Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore geology reviews, 48, 55-69.
Koo, B., Goli, P., Sumant, A. V., dos Santos Claro, P. C., Rajh, T., Johnson, C. S., ... & Shevchenko, E. V. (2014). Toward lithium ion batteries with enhanced thermal conductivity. ACS nano, 8(7), 7202-7207.
Küblböck, K., Radhuber, I., & Rodríguez, G. H. Unfair Connections? Tantalum for the high-tech-industries and the consequences of its extraction in Bolivia. DKA Austria, 41 p.
Madani, S. S., Schaltz, E., & Knudsen Kær, S. (2018). Review of parameter determination for thermal modeling of lithium ion batteries. Batteries, 4(2), 20.
Martin, G., Rentsch, L., Höck, M., & Bertau, M. (2017). Lithium market research–global supply, future demand and price development. Energy Storage Materials, 6, 171-179.
Meshram, P., Pandey, B. D., & Mankhand, T. R. (2014). Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy, 150, 192-208.
Riofrancos, T. (2022). Shifting mining from the global south misses the point of climate justice. Foreign Policy, 7.
Sanker, S. B., & Baby, R. (2022). Phase change material based thermal management of lithium ion batteries: A review on thermal performance of various thermal conductivity
enhancers. Journal of Energy Storage, 50, 104606.
Stanley, C. J., Jones, G. C., Rumsey, M. S., Blake, C., Roberts, A. C., Stirling, J. A., ... & Lepage, Y. (2007). Jadarite, LiNaSiB3O7 (OH), a new mineral species from the Jadar
Basin, Serbia. European Journal of Mineralogy, 19(4), 575-580.
Steinhardt, M., Barreras, J. V., Ruan, H., Wu, B., Offer, G. J., & Jossen, A. (2022). Meta-analysis of experimental results for heat capacity and thermal conductivity in lithium-ion batteries: A critical review. Journal of Power Sources, 522, 230829.
Tabelin, C. B., Dallas, J., Casanova, S., Pelech, T., Bournival, G., Saydam, S., & Canbulat, I. (2021). Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Minerals Engineering, 163, 106743.
Titirici, M. M. (2021). Sustainable batteries—quo vadis?. Advanced Energy Materials, 11(10), 2003700.
Wojewska, A. N., Staritz, C., Tröster, B., & Leisenheimer, L. (2024). The criticality of lithium and the finance-sustainability nexus: Supply-demand perceptions, state policies, production networks, and financial actors. The Extractive Industries and Society, 17, 101393.
Zhang, L., Zhu, C., Yu, S., Ge, D., & Zhou, H. (2022). Status and challenges facing representative anode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 66, 260-294.
Zhao, Y., Li, X., Yan, B., Xiong, D., Li, D., Lawes, S., & Sun, X. (2016). Recent developments and understanding of novel mixed transition‐metal oxides as anodes in lithium ion batteries. Advanced Energy Materials, 6(8), 1502175.
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.