Υποθαλάσσιες ροές βαρύτητας και η επίδρασή τους στις ανθρώπινες δραστηριότητες = Submarine gravity flows and their effect on human activities.
Περίληψη
Η παρούσα διπλωματική εργασία εξετάζει την επίδραση των υποθαλάσσιων ροών βαρύτητας στις ανθρώπινες δραστηριότητες, εστιάζοντας στις γεωλογικές διαδικασίες που τις προκαλούν και στις συνέπειες για τις ανθρώπινες υποδομές και εγκαταστάσεις. Στο πρώτο κεφάλαιο, παρέχεται ένα ολοκληρωμένο θεωρητικό πλαίσιο για τις υποθαλάσσιες ροές βαρύτητας. Ορίζονται οι βασικές έννοιες και τα χαρακτηριστικά των υποθαλάσσιων ροών βαρύτητας. Το κεφάλαιο συνεχίζει με την ανάλυση των ροών υψηλής και χαμηλής πυκνότητας, την εφαρμογή του μοντέλου Buma για την κατανόηση των ροών και τα αίτια δημιουργίας αυτών των φαινομένων. Το δεύτερο κεφάλαιο αναλύει τις επιπτώσεις των υποθαλάσσιων ροών βαρύτητας στις ανθρώπινες δραστηριότητες. Εξετάζονται οι επιπτώσεις στις υποθαλάσσιες ανθρώπινες εγκαταστάσεις, όπως οι πλατφόρμες εξόρυξης και τα υποθαλάσσια δίκτυα. Στο τρίτο κεφάλαιο, παρουσιάζονται παραδείγματα που αναδεικνύουν τη σημασία της κατανόησης των υποθαλάσσιων ροών βαρύτητας και των επιπτώσεών τους. Εξετάζονται τέσσερις περιοχές με έντονα γεωλογικά χαρακτηριστικά και σημαντικές επιπτώσεις στις ανθρώπινες δραστηριότητες: ο Κορινθιακός Κόλπος, το δέλτα του Ροδανού, το Capbreton Canyon και το δέλτα του Στενού της Ταϊβάν. Κάθε παράδειγμα αναλύει τις διαδικασίες εναπόθεσης ιζημάτων, τις γεωμορφολογικές μεταβολές και τις επιπτώσεις στις υποδομές. Μέσα από τη παρούσα εργασία, αναδεικνύεται η ανάγκη για συνεχή παρακολούθηση και βελτίωση των στρατηγικών προστασίας των υποδομών από τις υποθαλάσσιες ροές, καθώς και η σημασία της κατανόησης των γεωλογικών διαδικασιών για την πρόβλεψη και την αποφυγή καταστροφών με στόχο την ενίσχυση της ασφάλειας και της ανθεκτικότητας των ανθρωπίνων υποδομών στις θαλάσσιες περιοχές.
The present thesis examines the impact of submarine gravity flows on human activities, focusing on the geological processes that drive them and their consequences for human infrastructure and facilities. The First chapter provides a comprehensive theoretical framework for submarine gravity flows. It defines the fundamental concepts and characteristics of submarine gravity flows and explores their types, such as turbidity currents, debris flows, and slumps. The chapter continues with an analysis of high-density and low-density flows, the application of the Buma model for understanding these flows, and the causes of these phenomena. The second chapter analyzes the effects of submarine gravity flows on human activities. It investigates the impacts on underwater human installations, such as extraction platforms and subsea networks. The study focuses on the damage that submarine gravity flows can inflict on infrastructure and the strategies for preventing and minimizing these risks. The third chapter presents examples highlighting the importance of understanding submarine gravity flows and their impacts. It examines four areas with significant geological features and notable impacts on human activities: the Corinth Gulf, the Rhône Delta, Capbreton Canyon, and the Taiwan Strait Delta. Each example analyzes sediment deposition processes, geomorphological changes, and impacts on infrastructure. Through this thesis, the need for ongoing monitoring and improvement of infrastructure protection strategies against submarine flows is highlighted, as well as the importance of understanding geological processes to predict and avoid disasters, with the aim of enhancing the safety and resilience of human infrastructure in marine areas.
Πλήρες Κείμενο:
PDFΑναφορές
Amblas, D., Gerber, T.P., Canals, M., Pratson, L.F., Urgeles, R., Lastras, G. and Calafat, A.M. (2011) Transient erosion in the Valencian Trough turbidite system, NW Mediterranean Basin.
Boulesteix, K., Poyatos-Moré, M., Flint, S.S., Hodgson, D.M., Taylor, K.G. and Brunt, R.L. (2022) Sedimentologic and stratigraphic criteria to distinguish between basin-floor and slope mudstones: Implications for the delivery of mud to deep-water environments. The Depositional Record, 8, 958–988.
Bouma, A. (1962) Sedimentology of some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, 168 pp.
Brocheray, S., Cremer, M., Zaragosi, S., Schmidt, S., Eynaud, F., Rossignol, L. and Gillet, H. (2014) 2000 years of frequent turbidite activity in the Capbreton Canyon (Bay of Biscay). Marine Geology, 347, 136–152.
Corella, J. P., Arantegui, A., Loizeau, J. L., DelSontro, T., Le Dantec, N., Stark, N., ... &Girardclos, S. (2014). Sediment dynamics in the subaquatic channel of the Rhone delta (Lake Geneva, France/Switzerland). Aquaticsciences, 76, 73-87.
Corella, J.P., Loizeau, J.-L., Kremer, K., Hilbe, M., Gerard, J., le Dantec, N., Stark, N., González-Quijano, M. and Girardclos, S. (2016) The role of mass-transport deposits and turbidites in shaping modern lacustrine deepwater channels. Marine and Petroleum Geology, 77, 515–525.
Crevello, P.D. and Schlager, W. (1980) Carbonate debris sheets and turbidites, Exuma Sound, Bahamas.
De Gelder, G., Doan, M.L., Beck, C., Carlut, J., Seibert, C., Feuillet, N., Carter, G.D.O., Pechlivanidou, S. and Gawthorpe, R.L. (2022) Multi-scale and multi-parametric analysis of Late Quaternary event deposits within the active Corinth Rift (Greece). Sedimentology, 69, 1573–1598.
Droxler, A.W. and Schlager, W. (1985) Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas. Geology, 13, 799–802.
Ferentinos, G., Papatheodorou, G., Collins, M.B. (1988). Sediment Transport processes on an active submarine fault escarpment: Gulf of Corinth, Greece. , 83(1-4), 43–61. doi:10.1016/0025-3227(88)90051-5
The present thesis examines the impact of submarine gravity flows on human activities, focusing on the geological processes that drive them and their consequences for human infrastructure and facilities. The First chapter provides a comprehensive theoretical framework for submarine gravity flows. It defines the fundamental concepts and characteristics of submarine gravity flows and explores their types, such as turbidity currents, debris flows, and slumps. The chapter continues with an analysis of high-density and low-density flows, the application of the Buma model for understanding these flows, and the causes of these phenomena. The second chapter analyzes the effects of submarine gravity flows on human activities. It investigates the impacts on underwater human installations, such as extraction platforms and subsea networks. The study focuses on the damage that submarine gravity flows can inflict on infrastructure and the strategies for preventing and minimizing these risks. The third chapter presents examples highlighting the importance of understanding submarine gravity flows and their impacts. It examines four areas with significant geological features and notable impacts on human activities: the Corinth Gulf, the Rhône Delta, Capbreton Canyon, and the Taiwan Strait Delta. Each example analyzes sediment deposition processes, geomorphological changes, and impacts on infrastructure. Through this thesis, the need for ongoing monitoring and improvement of infrastructure protection strategies against submarine flows is highlighted, as well as the importance of understanding geological processes to predict and avoid disasters, with the aim of enhancing the safety and resilience of human infrastructure in marine areas.Frutos, I., &Sorbe, J. C. (2017). Suprabenthic assemblages from the Capbreton area (SE Bay of Biscay). Faunal recovery after a canyon turbidity disturbance. Deep Sea Research Part I: Oceanographic Research Papers, 130, 36-46.
Garziglia, S., Migeon, S., Ducassou, E., Loncke, L. and Mascle, J. (2008) Mass-transport deposits on the Rosetta province (NW Nile deep-sea turbidite system, Egyptian margin): Characteristics, distribution, and potential causal processes. Marine Geology, 250, 180–198.
Gaudin, M., Mulder, T., Cirac, P., Berné, S., & Imbert, P. (2006). Past and present sedimentary activity in the Capbreton Canyon, southern Bay of Biscay. Geo-MarineLetters, 26, 331-345.
Gómez-Ballesteros, M., Arrese, B., Díez, I. P., Galparsoro, I., Sánchez-Guillamón, O., Martínez-Carreño, N., ... & Sánchez, F. (2022). Morphosedimentary characterization of the Capbreton submarine canyon system, Bay of Biscay (Cantabrian Sea). Estuarine, Coastal and ShelfScience, 274, 107955.
Guiastrennec-Faugas, L., Gillet, H., Silva Jacinto, R., Dennielou, B., Hanquiez, V., Schmidt, S., Simplet, L. and Rousset, A. (2020) Upstream migrating knickpoints and related sedimentary processes in a submarine canyon from a rare 20-year morphobathymetric time-lapse (Capbreton submarine canyon, Bay of Biscay, France). Marine Geology, 423, 106143.
Hansen, L., Callow, R., Kane, I. and Kneller, B. (2017) Differentiating submarine channel-related thin-bedded turbidite facies: Outcrop examples from the Rosario Formation, Mexico. Sedimentary Geology, 358, 19–34.
Hansen, L.A.S., Callow, R.H.T., Kane, I.A., Gamberi, F., Rovere, M., Cronin, B.T. and Kneller, B.C. (2015) Genesis and character of thin-bedded turbidites associated with submarine channels. Marine and Petroleum Geology, 67, 852–879.
Haughton, P.D.W., Barker, S.P. and McCaffrey, W.D. (2003) ‘Linked’ debrites in sand-rich turbidite systems - origin and significance. Sedimentology, 50, 459–482.
Heard, T.G., Pickering, K.T. and Robinson, S.A. (2008) Milankovitch forcing of bioturbation intensity in deep-marine thin-bedded siliciclastic turbidites. Earth and Planetary Science Letters, 272, 130–138.
Henstra, G.A., Grundvåg, S.-A., Johannessen, E.P., Kristensen, T.B., Midtkandal, I., Nystuen, J.P., Rotevatn, A., Surlyk, F., Sæther, T. and Windelstad, J. (2016) Depositional processes and stratigraphic architecture within a coarse-grained rift-margin turbidite system: The Wollaston Forland Group, east Greenland. Marine and Petroleum Geology, 76, 187–209.
Hsiung, K. H., & Saito, Y. (2017). Sediment trapping in deltas of small mountainous rivers of southwestern Taiwan and its influence on East China Sea sedimentation. Quaternary International, 455, 30-44.
Huh, C. A., Chen, W., Hsu, F. H., Su, C. C., Chiu, J. K., Lin, S., ... & Huang, B. J. (2011). Modern (< 100 years) sedimentation in the Taiwan Strait: Rates and source-to-sink pathways elucidated from radionuclides and particle size distribution. Continental Shelf Research, 31(1), 47-63.
Hüneke, H., Hernández-Molina, F.J., Rodríguez-Tovar, F.J., Llave, E., Chiarella, D., Mena, A. and Stow, D.A.V. (2021) Diagnostic criteria using microfacies for calcareous contourites, turbidites and pelagites in the Eocene–Miocene slope succession, southern Cyprus. Sedimentology, 68, 557–592.
Jin, L., Shan, X., Shi, X., Fonnesu, M., Qiao, S., Kandasamy, S., Wang, H., Liu, S., Fang, X. and Zou, X. (2021) Hybrid event beds generated by erosional bulking of modern hyperpycnal flows on the Choshui River delta front, Taiwan Strait. Sedimentology. doi: https://doi.org/10.1111/sed.12862
Jin, L., Shan, X., Shi, X., Fonnesu, M., Qiao, S., Kandasamy, S., ... & Zou, X. (2021). Hybrid event beds generated by erosional bulking of modern hyperpycnal flows on the Choshui River delta front, Taiwan Strait. Sedimentology, 68(6), 2500-2522.
Johnson, C.L. and Graham, S.A. (2004) Cycles in Perilacustrine Facies of Late Mesozoic Rift Basins, Southeastern Mongolia. Journal of Sedimentary Research, 74, 786–804.
Johnson, S.D., Flint, S., Hinds, D. and De Ville Wickens, H. (2001) Anatomy, geometry and sequence stratigraphy of basin floor to slope turbidite systems, Tanqua Karoo, South Africa. Sedimentology, 48, 987–1023.
Komar, P.D. (1985) The hydraulic interpretation of turbidites from their grain sizes and sedimentary structures. Sedimentology, 32, 395–407.
Kremer, K., Corella, J. P., Hilbe, M., Marillier, F., Dupuy, D., Zenhäusern, G., & Girardclos, S. (2015). Changes in distal sedimentation regime of the Rhone delta system controlled by subaquatic channels (Lake Geneva, Switzerland/France). MarineGeology, 370, 125-135.
Kruit, C., & Van Andel, T. H. (1955). Sediments of the Rhône delta. Mouton.
Kuhn, G. and Meischner, D. (1988) 14. QUATERNARY AND PLIOCENE TURBIDITES IN THE BAHAMAS, LEG 101, SITES 628, 632, AND 635. In: Proceedings of the Ocean Drilling Program, Leg 101 Scientific Results, 101,
Lepage, H., Gruat, A., Thollet, F., Le Coz, J., Coquery, M., Masson, M., ... & Raimbault, P. (2022). Concentrations and fluxes of suspended particulate matter and associated contaminants in the Rhône River from Lake Geneva to the Mediterranean Sea. EarthSystemScienceData, 14(5), 2369-2384.
Liu, J. P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J., & Lin, S. W. (2008). Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. MarineGeology, 256(1-4), 65-76.
Liu, J. T., Kao, S. J., Huh, C. A., & Hung, C. C. (2013). Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area. Annual Review of MarineScience, 5(1), 47-68.
Loizeau, J. L. (2011). Major sedimentation pattern changes in the Rhone Delta. ARCHIVES DES SCIENCES, 64, 91-98.
Luthi, S. an (1981) Experiments on non-channelized turbidity currents and their deposits. Marine Geology, 40, M59–M68.
Lykousis, V., Sakellariou, D., Rousakis, G., Alexandri, S., Kaberi, H., Nomikou, P., ... & Balas, D. (2007, September). Sediment failure processes in active grabens: the western Gulf of Corinth (Greece). In Submarine mass movements and their consequences: 3 international symposium (pp. 297-305). Dordrecht: Springer Netherlands.
Mazières, A., Gillet, H., Castelle, B., Mulder, T., Guyot, C., Garlan, T. and Mallet, C. (2014) High-resolution morphobathymetric analysis and evolution of Capbreton submarine canyon head (Southeast Bay of Biscay—French Atlantic Coast) over the last decade using descriptive and numerical modeling. Marine Geology, 351, 1–12.
McNeill, L. C., Shillington, D. J., & Carter, G. D. O. (2019). Corinth active rift development. Proceedings of the International Ocean Discovery Program, 381.
Middleton, G.V., 1993, Sediment deposition from turbidity currents: Annual Review of Earth and Planetary Sciences, v. 21, p. 89–114.
Moodie, T.B., and Pascal, J.L., 1998, Upslope particle deposition from polydispersed gravity current suspensions: International Journal of Non-Linear Mechanics, v. 33, p.727–740.
Moscariello, A., Arlaud, F., Akhtman, Y., &Lemmin, U. (2012). Searching the Rhone Delta Channel in Lake Geneva since François Alphonse Forel. Archives des Sciences, 65, 103-118.
Mulder, T. and Alexander, J. (2001) The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48, 269–299.
Mulder, T., Gillet, H., Hanquiez, V., Reijmer, J.J.G., Droxler, A.W., Recouvreur, A., Fabregas, N., Cavailhes, T., Fauquembergue, K., Blank, D.G., Guiastrennec, L., Seibert, C., Bashah, S., Bujan, S., Ducassou, E., Principaud, M., Conesa, G., Le Goff, J., Ragusa, J., Busson, J. and Borgomano, J. (2018) Into the deep: A coarse-grained carbonate turbidite valley and canyon in ultra-deep carbonate setting. Marine Geology. doi: 10.1016/j.margeo.2018.11.003
Mulder, T., Gillet, H., Reijmer, J., Droxler, A., Cavailhes, T., Hanquiez, V., Fauquembergue, K., Bujan, S., Blank, D., Bashah, S., Guiastrennec, L., Fabregas, N., Recouvreur, A. and Seibert, C. (2017) Into the deep: A coarse-grained carbonate turbidite thalweg generated by gigantic submarine chutes. 19, 19236.
Mulder, T., Syvitski, J.P.M., Migeon, S., Faugères, J.-C. and Savoye, B. (2003) Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20, 861–882.
Mulder, T., Weber, O., Anschutz, P., Jorissen, F., & Jouanneau, J. M. (2001). A few months-old storm-generated turbidite deposited in the Capbreton Canyon (Bay of Biscay, SW France). Geo-MarineLetters, 21, 149-156.
Mulder, T., Zaragosi, S., Garlan, T., Mavel, J., Cremer, M., Sottolichio, A., ... & Schmidt, S. (2012). Present deep-submarine canyons activity in the Bay of Biscay (NE Atlantic). MarineGeology, 295, 113-127.
Mullins, H.T. and Cook, H.E. (1986) Carbonate apron models: Alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration. Sedimentary Geology, 48, 37–79.
Mullins, H.T., Heath, K.C., Van Buren, H.M. and Newton, C.R. (1984) Anatomy of a modern open-ocean carbonate slope: northern Little Bahama Bank. Sedimentology, 31, 141–168.
Mutti, E. (1977) Distinctive thin-bedded turbidite facies and related depositional environments in the Eocene Hecho Group (South-central Pyrenees, Spain). Sedimentology, 24, 107–131.
Mutti, E. (2019) Thin-bedded plumites: an overlooked deep-water deposit. Journal of Mediterranean Earth Sciences. doi: 10.3304/JMES.2019.005
Mutti, E., Tinterri, R., Benevelli, G., Biase, D. di and Cavanna, G. (2003) Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Marine and Petroleum Geology, 20, 733–755.
Perissoratis, C, Piper, D.J.W, Lykousis, V (2000). Alternating marine and lacustrine sedimentation during late Quaternary in the Gulf of Corinth rift basin, central Greece., 167(3-4), 391–411. doi:10.1016/s0025-3227(00)00038-4
Perissoratis, C., Piper, D.J.W. and Lykousis, V. (2000) Alternating marine and lacustrine sedimentation during late Quaternary in the Gulf of Corinth rift basin, central Greece. Marine Geology, 167, 391–411.
Piper, D. and Stow, D. (1991) Fine-grained turbidites (1991) Cycles and Events in Stratigraphy. Einsele, G., Ricken, W. and Seilacher, A.(Eds.), 360–376.
Piper, D.J.W. (1978) Turbidite, muds and silts on deep-sea fans and abyssal plains. In Dowden; Stanley, D.J., Kelling, G., Eds.; Hutchinson and Ross: Stroudsburgh, PA, USA, 1978; pp. 163–176.
Pohl, F., Eggenhuisen, J.T., Cartigny, M.J.B., Tilston, M.C., de Leeuw, J. and Hermidas, N. (2020) The influence of a slope break on turbidite deposits: An experimental investigation. Marine Geology. doi: 10.1016/j.margeo.2020.106160
Poulos, S. E., Collins, M. B., Pattiaratchi, C., Cramp, A., Gull, W., Tsimplis, M., & Papatheodorou, G. (1996). Oceanography and sedimentation in the semi-enclosed, deep-water Gulf of Corinth (Greece). Marine Geology, 134(3-4), 213-235.
Prélat, A. and Hodgson, D.M. (2013) The full range of turbidite bed thickness patterns in submarine lobes: controls and implications. Journal of the Geological Society, 170, 209–214.
Reading, H.G. and Richards, M. (1994) Turbidite Systems in Deep-Water Basin Margins Classified by Grain Size and Feeder System. AAPG Bulletin, 78, 792–822.
Recouvreur, A., Mulder, T., Hanquiez, V., Borgomano, J., Reijmer, J., Droxler, A., Gillet, H., Cavailhes, T., Fabregas, N., Guiastrennec, L., Fauquembergue, K., Blank, D., Bashah, S., Bujan, S., Seibert, C., Ducassou, E., Principaud, M., Conesa, G., Le Goff, J. and Ragusa, J. (2017) Large carbonate-fed deep-sea turbidite fan developped at the mouth of a giant canyon along the Bahamian slope.
Reijmer, J.J.G., Palmieri, P. and Groen, R. (2012) Compositional variations in calciturbidites and calcidebrites in response to sea-level fluctuations (Exuma Sound, Bahamas). Facies, 58, 493–507.
Reijmer, J.J.G., Palmieri, P., Groen, R. and Floquet, M. (2015) Calciturbidites and calcidebrites: Sea-level variations or tectonic processes? Sedimentary Geology, 317, 53–70.
Salles, T., Mulder, T., Gaudin, M., Cacas, M. C., Lopez, S., &Cirac, P. (2008). Simulating the 1999 Capbreton canyon turbidity current with a Cellular Automata model. Geomorphology, 97(3-4), 516-537.
Schieber, J. (1999) Distribution and deposition of mudstone facies in the Upper Devonian Sonyea Group of New York. Journal of Sedimentary Research, 69, 909–925.
Schlager, W. (1971) Fluxoturbidites into turbidites : lateral variation of a carbonate grain flow deposit. 8th International IAS. Sedimentological Cong. Program, 88.
Selim, S.S. (2019). Sedimentological model, architecture, and evolution of a shallow-water Gilbert-type delta from the Lower Miocene, Red Sea Rift, Egypt. International Geology Review, (), 1–24. doi:10.1080/00206814.2019.1686659
Shanmugam, G. (2002) Ten turbidite myths. Earth-Science Reviews, 58, 311–341.
Shanmugam, G. (2016) The seismite problem. Journal of Palaeogeography, 5, 318–362.
Shanmugam, G. (2020) Gravity flows: Types, definitions, origins, identification markers, and problems. Journal Indian Association of Sedimentologists, Vol. 37, Issue 2, p. 61-90. 61–90.
Siwek P., Waśkowska, A. and Wendorff, M. (2023) Mud-rich low-density turbidites in structurally-controlledintraslope mini-basin: The influence of flow containment on depositional processes and sedimentation patterns (Szczawa, Oligocene, Polish Outer Carpathians). Sedimentology. doi: 10.1111/sed.13095
Stow, D. a. V. and Piper, D.J.W. (1984) Deep-water fine-grained sediments: facies models. Geological Society, London, Special Publications, 15, 611–646.
Stow, D.A.V. (1985) Fine-grained sediments in deep water: An overview of processes and facies models. Geo-Marine Letters, 5, 17–23.
Stow, D.A.V. and Omoniyi, B.A. (2018) Thin-Bedded Turbidites: Overview and Petroleum Perspective. In: Rift-Related Coarse-Grained Submarine Fan Reservoirs; the Brae Play, South Viking Graben, North Sea, The American Association of Petroleum Geologists, 97–118.
Stow, D.A.V. and Shanmugam, G. (1980)Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments. Sedimentary Geology, 25, 23–42.
Stow, D.A.V. and Tabrez, A.R. (1998) Hemipelagites: processes, facies and model. Geological Society, London, Special Publications, 129, 317–337.
Stow, D.A.V. and Wetzel, A. (1990). HEMITURBIDITE: A NEW TYPE OF DEEP-WATER SEDIMENT. In: Proceedings of the Ocean Drilling Program, 116 Scientific Results, Ocean Drilling Program, 116,
Sumner, E.J., Talling, P.J., Amy, L.A., Wynn, R.B., Stevenson, C.J. and Frenz, M. (2012) Facies architecture of individual basin-plain turbidites: Comparison with existing models and implications for flow processes. Sedimentology, 59, 1850–1887.
Talling, P.J., Amy, L.A., Wynn, R.B., Blackbourn, G. and Gibson, O. (2007) Evolution of Turbidity Currents Deduced from Extensive Thin Turbidites: MarnosoArenacea Formation (Miocene), Italian Apennines. Journal of Sedimentary Research, 77, 172–196.
Talling, P.J., Amy, L.A., Wynn, R.B., Peakall, J. and Robinson, M. (2004) Beds comprising debrite sandwiched within co-genetic turbidite: origin and widespread occurrence in distal depositional environments. Sedimentology, 51, 163–194.
Talling, P.J., Masson, D.G., Sumner, E.J. and Malgesini, G.(2012) Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59, 1937–2003.
Vaucher, R., Dillinger, A., Hsieh, A. I., Chi, W. R., Löwemark, L., &Dashtgard, S. E. (2023). Storm‐flood‐dominated delta succession in the Pleistocene Taiwan Strait. The Depositional Record, 9(4), 820-843.
Walker, R.G. (1965) The Origin and Significance of the Internal Sedimentary Structures of Turbidites. Proceedings of the Yorkshire Geological Society, 35, 1–32.
Παπαδόπουλος, Γ. (2008). ΑΝΑΠΤΥΞΗ ΕΝΕΡΓΩΝ ΡΗΓΜΑΤΩΝ ΣΤΟΝ ΚΟΡΙΝΘΙΑΚΟ ΚΟΛΠΟ Bulletin of the Geological Society of Greece, 36.
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.