Estimation of spectral amplification coefficients of seismic motion in Greece and comparison with the corresponding coefficients of 'Eurocode 8' Antiseismic Code = Εκτίμηση συντελεστών φασματικής ενίσχυσης σεισμικής κίνησης στην Ελλάδα και σύγκριση με τους αντίστοιχους συντελεστές του Αντισεισμικού Κανονισμού 'Ευρωκώδικα 8'.
Περίληψη
Site characterisation at a target site is a fundamental component in understanding the geotechnical characteristics and predicting site's ground response for seismic hazard assessment. Seismic building codes usually adopt as a fundamental parameter for site classification the average velocity of S-waves at the topmost 30m of the subsurface, VS30 However, to address the limitations of this approach, efforts towards new seismic codes have been attempted, introducing additional parameters. The primary aim of this dissertation is to enhance seismic hazard assessment by presenting an integrated approach for Site Amplification Factors (SAFs) estimation, by considering both the seismological, H3km/s and engineering, H0.8km/s bedrock, using 152 stations of ITSAK accelerometer network, throughout Greece. The Horizontal Spectral Amplification Factors (HSAFs) estimated down to H0.8km/s, have been utilised in categorisation per soil type according to the European current seismic building code (Eurocode 8, EC8-1) and the new version of 2024 draft of EC8. For each category in both EC8 versions, an average HSAF was calculated and juxtaposed along with the standard site amplification factors determined in the codes. Horizontal and Vertical SAFs alongside with seismic source (moment magnitude Mo, stress drop Δσ) and propagation path factors (geometrical spreading γ, quality, Q) of shear wave window of recordings, were estimated through the Generalized Inversion Technique (GIT). Six stations were selected as references, which were located on 'rock' formations all over Greece, according to IGME geological maps. Ambient noise measurements (mHVSR) and dispersion curves data at those six reference sites were utilised for a joint inversion, using 'HV-inv' software, considering the Diffused Field Assumption (DFA), in order to acquire 1D profiles of shear wave velocity with respect to depth, Vsz, down to seismological bedrock. These six reference sites profiles, were then used to estimate their corresponding 1D theoretical Site spectral Amplification Factors (SAFstheoretical) for H0.8km/s and H3km/s, to adapt their observed Fourier Amplification Spectra (FAS) on the surface to their equivalent on bedrock. Then, the deconvolved FAS were fed in the GIT and the resulting seismic source, path and site factors for H0.8km/s were compared with the corresponding ones for H3km/s, revealing small differences for the first two factors and more discernible for the site factor. Furthermore, the inverse of the horizontal-to-vertical spectra ratio, VbHbR, which is used to convert the amplitude of horizontal S-waves into vertical P-waves, was evaluated for each reference site. Since the horizontal-to-vertical spectral ratio of earthquake recordings (eHVSR) also contain the vertical amplification there is need to correct the VSAF. For this purpose, the Vertical Amplification Correction Functions (VACFs) were determined utilising the HSAFs as resulted from the GIT analysis, which could be used to blindly estimate the HSAF at a site. An average VACF was calculated for all 152 stations and an average VACF for eight categories based on the fundamental frequency, f0, and the corresponding amplification, A0, of eHVSR data. Finally, the 152 accelerometer station sites were characterised according to the current EC8 and the draft 2024 EC8. While overall comparisons of HSAF and the corresponding EC8 amplification factors per category align satisfactorily, certain discrepancies and limitations were identified and discussed.
Η εδαφική κατηγοριοποίηση μίας θέσης αποτελεί θεμελιώδες στοιχείο για την κατανόηση των γεωλογικών χαρακτηριστικών αλλά και την πρόβλεψη της εδαφικής της απόκρισης, με στόχο την ακριβέστερη εκτίμηση της σεισμικής επικινδυνότητας. Αρκετοί αντισεισμικοί κανονισμοί υιοθετούν ως κύρια παράμετρο για την εδαφική ταξινόμηση μιας θέσης, τη μέση ταχύτητα των εγκαρσίων κυμάτων στα αρχικά 30m του υπεδάφους, VS30. Ωστόσο, εντοπίσθηκαν αρκετοί περιορισμοί στη προσέγγιση αυτή, οδηγώντας σε τροποποιήσεις των αντισεισμικών κανονισμών, εισάγοντας επιπρόσθετες παραμέτρους. Πρωταρχικός στόχος αυτής της διατριβής είναι η βελτίωση των εκτιμήσεων της σεισμικής επικινδυνότητας, παρουσιάζοντας μια προσέγγιση για την εκτίμηση των φασματικών παραγόντων ενίσχυσης (SAFs), τόσο για το σεισμολογικό, H3km/s όσο και το βραχώδες, H0.8km/s, υπόβαθρο, αξιοποιώντας 152 σταθμούς του δικτύου επιταχυνσιογράφων του Ινστιτούτου Τεχνικής Σεισμολογίας και Αντισεισμικών Κατασκευών από όλο τον ελλαδικό χώρο. Οι συντελεστές φασματικής ενίσχυσης οριζόντιας συνιστώσας (HSAFs) που υπολογίστηκαν για H0.8km/s, χρησιμοποιήθηκαν στη κατηγοριοποίηση ανά τύπο εδάφους σύμφωνα με τον ισχύοντα ευρωπαϊκό αντισεισμικό κανονισμό (Ευρωκώδικας 8, EC8-1) και τη νέα έκδοση του 2024 EC8. Για κάθε κατηγορία εδάφους που ορίζεται και στους δύο ευρωκώδικες EC8 υπολογίστηκε ένας μέσος όρος HSAF και συγκρίθηκε με τους αντίστοιχους συντελεστές που ορίζονται στους δύο κώδικες. Τα SAFs της οριζόντιας και κατακόρυφης συνιστώσας, μαζί με παράγοντες της σεισμική πηγή (σεισμική ροπή, MΟ, πτώση τάσης, Δσ) και του δρόμου διαδρομής (συντελεστής γεωμετρικής διασποράς γ, συντελεστής ποιότητας, Q) των φασμάτων Fourier, εκτιμήθηκαν μέσω της Γενικευμένης Αντιστροφής (GIT). Επιλέχθηκαν έξι σταθμοί αναφοράς σε όλη την Ελλάδα, εγκατεστημένοι σε βραχώδεις σχηματισμούς, σύμφωνα με τους γεωλογικούς χάρτες του ΙΓΜΕ. Οι μετρήσεις περιβαλλοντικού θορύβου (mHVSR) και οι υπολογισμοί των καμπυλών διασποράς σε αυτές τις έξι θέσεις, χρησιμοποιήθηκαν σε μια κοινή αντιστροφή, χρησιμοποιώντας το λογισμικό 'HV-inv', λαμβάνοντας υπόψη την υπόθεση της διάχυσης της σεισμικής ενέργειας (DFA), με στόχο την ανάκτηση μονοδιάστατου (1D-VSZ) προφίλ μέχρι το βάθος του σεισμολογικού υποβάθρου. Αυτά τα έξι προφίλ στις θέσεις αναφοράς, στη συνέχεια χρησιμοποιήθηκαν για την εκτίμηση των 1D θεωρητικών φασματικών παραγόντων ενίσχυσης (1D-SAFstheoretical) για H0.8km/s και H3km/s, προκειμένου να γίνει αναγωγή των παρατηρούμενων φασμάτων Fourier (FAS) από την επιφάνεια στο ζητούμενο υπόβαθρο. Στη συνέχεια, τα διορθωμένα FAS αξιοποιήθηκαν στη τροφοδοτήθηκαν στον κώδικα της GIT και οι προκύπτοντες παράγοντες σεισμικής πηγής, διαδρομής και θέσης ενδιαφέροντος για H0.8km/s συγκρίθηκαν με τους αντίστοιχους για H3km/s, αποκαλύπτοντας διαφορές μικρές για τους δύο πρώτους παράγοντες και πιο ευδιάκριτες στη περίπτωση των τοπικών εδαφικών συνθηκών. Επιπλέον, ο αντίστροφος φασματικός λόγος της οριζόντιας προς την κατακόρυφη συνιστώσα, VbHbR, που χρησιμοποιείται για τη μετατροπή του πλάτους των οριζόντιων εγκαρσίων κυμάτων σε κατακόρυφα επιμήκη κύματα, αξιολογήθηκε για κάθε ένα σταθμό αναφοράς. Καθώς το eHVSR περιέχει, επιπλέον, την κατακόρυφη ενίσχυση, απαιτείται η διόρθωση του VSAF. Για τον σκοπό αυτό προσδιορίστηκε η συνάρτηση διόρθωσης της κατακόρυφης φασματικής ενίσχυσης (VACF) με τη χρήση των HSAF που προέκυψαν από το GIT. Ένας μέσος όρος VACF υπολογίστηκε για τους 152 σταθμούς, αλλά επίσης, ένας μέσος VACF για τις οκτώ κατηγορίες εδαφών με βάση τη θεμελιώδη συχνότητα, f0, και το αντίστοιχο πλάτος, A0, των δεδομένων eHVSR. Τέλος, οι 152 θέσεις των σταθμών επιταχυνσιογράφων κατηγοριοποιήθηκαν σύμφωνα με τις οδηγίες του ισχύοντος EC8 και του 2024 draft EC8. Ενώ η σύγκριση των εκτιμηθέντων HSAF με αυτούς του ερωκώδικα τόσο για το σύνολο των σταθμών όσο και για κάθε κατηγορία εδαφών εμφανίζουν ικανοποιητική συμφωνία, εντοπίστηκαν ορισμένες αποκλίσεις και συζητούνται περιορισμοί που προκύπτουν.
Πλήρες Κείμενο:
PDFΑναφορές
Cen (2004). Eurocode 8: Design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels.
Geopsy. https://www.geopsy.org.
K. Aki. Space and time spectra of stationary stochastic waves, with special reference to microtremors. Earthquake Research Institute, XXXV, June 1957.
K. Aki. Local site effects on strong ground motion. Earthquake Engineering and Soil Dynamics II—Recent Advances in Ground Motion Evaluation, ASCE, Reston, Virginia, page 103–155, 1988.
D.J. Andrews. Objective determination of source parameters and similarity of earthquakes of different size. Earthquake Source Mechanics, 37:259 – 267, 1986. https://doi.org/10.1029/GM037p0259.
P.I. Apostolidis, D.G. Raptakis, K.K. Pandi, M.V. Manakou, and K.D. Pitilakis. Definition of subsoil structure and preliminary ground response in aigion city (Greece) using microtremor and earthquakes. Soil Dynamics and Earthquake Engineering, 26:922–940, 2006. https://doi.org/10.1016/j.soildyn.2006.
001.
H. Arai and K. Tokimatsu. S-wave velocity profiling by inversion of microtremor h/v spectrum. Bulletin of the Seismological Society of America, 94:53–63, 2004. https://doi.org/10.1785/0120030028.
M. W. Asten and J. D. Henstridge. S-wave velocity profiling by inversion of microtremor h/v spectrum. Bulletin of the Seismological Society of America, 49(11):53–63, 1984. https://doi.org/10.1190/1.1441596.
D.M. Boore. Determining generic velocity and density models for crustal ampli- fication calculations, with an update of the Boore and Joyner, (1997)[11] generic site amplification for V¯ S (Z) = 760m/s. Bulletin of the Seismological Society of
America, 106(1):316–320, 2016. https://doi.org/10.1785/0120150229.
D.M. Boore and J. Boatwright. Average body-wave radiation coefficients. Bul- letin of the Seismological Society of America, 74(5):1615–1621, 1984. https:
//doi.org/10.1785/BSSA0740051615.
D.M. Boore and W.B. Joyner. Site amplifications for generic rock sites. Bulletin of the Seismological Society of America, 87:327–341, 1997. https://doi.org/ 10.1785/BSSA0870020327.
D.M. Boore, J.P. Stewart, A.A. Skarlatoudis, E. Seyhan, B. Margaris,
N. Theodoulidis, E. Scordilis, I. Kalogeras, N. Klimis, and N.S. Melis. A ground-motion prediction model for shallow crustal earthquakes in greece. Bul- letin of the Seismological Society of America., 111(2):857–874, 2021. https:
//doi.org/10.1785/0120200270.
R. D. Borcherdt. Effects of local geology on ground motion near san francisco bay. Bulletin of the Seismological Society of America., 60(1):29–61, 1970. https:
//doi.org/10.1785/BSSA0600010029.
T.M. Brocher. Empirical relations between elastic wavespeeds and density in the earth’s crust. 95(6):2081–2092, 2005. https://doi.org/10.1785/0120050077.
T.M. Brocher. Compressional and shear-wave velocity versus depth relations for common rock types in northern california. 98(2):950–968, 2008. https:
//doi.org/10.1785/0120060403.
J.N. Brune. Correction [to “tectonic stress and the spectra of seismic shear waves from earthquakes”]. Journal of Geophysical Research, 20::5002, 1971. http:
//dx.doi.org/10.1029/JB076i020p05002.
J.N. Brune. Tectonic stress and the spectra of seismic shear waves from earth- quakes. Journal of Geophysical Research, 75(26):4901–5141, 1971. https:
//doi.org/10.1029/JB075i026p04997.
J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57(8):1408 – 1418, August 1969. https://doi.org/10.1109/PROC.
7278.
S. Castellaro, F. Mulargia, and P.L. Rossi. vs30: Proxy for seismic amplifica- tion? Seismological Research Letters, 79(4):540–543, 2008. https://doi.org/ 10.1785/gssrl.79.4.540.
R.R. Castro, J.G. Anderson, and S.K. Singh. Site response, attenuation and source spectra of s waves along the guerrero, mexico, subduction zone. Bulletin of the Seismological Society of America, 80(6A):1481–1503, 1990. https://doi. org/10.1785/BSSA08006A1481.
P. Dang, J. Cui, H. Yang, and J. Song. Regional spectral characteristics, qual- ity factor and site responses in western-central Sichuan, China (I): Application of parametric generalized inversion technique. Soil Dynamics and Earthquake Engineering, 176:108303, 2024. https://doi.org/10.1016/j.soildyn.2023.
S. Drouet, S. Chevrot, F. Cotton, and A. Souriau. Simultaneous inversion of source spectra, attenuation parameters, and site responses: Application to the data of the french accelerometric network. Bulletin of the Seismological Society of America, 98(1):198–219, 2008. https://doi.org/10.1785/0120060215.
M. R. Gallipoli and M. Mucciarelli. Comparison of site classification from vS30, vS10, and HVSR in italy. Bulletin of the Seismological Society of America, 99(1):340–351, 2009. https://doi.org/10.1785/0120080083.
A. Garc´ıa-Jerez, J. Pin˜a-Flores, F.J. S´anchez-Sesma, F. Luz´on, and M. Petron. A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption. Computers and Geosciences, 97:67–78, 2016. https://doi.org/https://doi.org/10.1016/j.cageo.2016.06.016.
A. Garc´ıa-Jerez, H. Seivane, M. Navarro, M. Mart´ınez-Segura, and J. Pin˜a- Flores. Joint analysis of rayleigh-wave dispersion curves and diffuse-field hvsr for site characterization: The case of el ejido town (se spain). Soil Dynamics and Earthquake Engineering, 121:102–120, 2019. https://doi.org/10.1016/ j.soildyn.2019.02.023.
R. Graves and A. Pitraka. Broadband time history simulation using a hybrid approach. In 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6 2004. Paper No. 1098.
I. Grendas, N. Theodoulidis, P. Hatzidimitriou, B. Margaris, and S. Drouet. Determination of source, path and site parameters based on non-linear inversion of accelerometric data in greece. Bulletin of the Seismological Society of America, 16:5061–5094, April 2018. https://doi.org/10.1007/s10518-018-0379-8.
I. Grendas, N. Theodoulidis, F. Hollender, and P. Hatzidimitriou. Effects of the s-wave time-window selection on standard spectral ratio (ssr): Application to the argonet vertical array in greece. 6th International Conference on Earthquake Engineering and Seismology, 13-15 October,GTU, Gebze, Kocaeli, Turkey, 2021.
I. Grendas, N. Theodoulidis, F. Hollender, and P. Hatzidimitriou. A GIT algo- rithm for simultaneous estimation of seismic source, site response and regional- distance dependent attenuation parameters: application to synthetic and real data. Journal of Seismology, 25:575–598, 2021. https://doi.org/10.1007/ s10950-020-09975-8.
I. Grendas, N. Theodoulidis, F. Hollender, and P. Hatzidimitriou. Spectral decomposition of S-waves in investigating regional dependent attenuation and improving site amplification factors: A case study in western Greece. Bul- letin of Earthquake Engineering, 20(12):6441–6465, Septemper 2022. https:
//doi.org/10.1007/s10950-020-09975-8.
T.C. Hanks and H. Kanamori. A moment magnitude scale. Journal of Geophysical Research, 84(B5):2145–2400, 1979. https://doi.org/10.1029/ JB084iB05p02348.
W.K. Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1):97–109, 1970. https://doi.org/10.1093/ biomet/57.1.97.
E. Ito, K. Nakano, F. Nagashima, and H. Kawase. A method to directly es- timate s-wave site amplification factor from horizontal-to-vertical spectral ra- tio of earthquakes (ehvsrs). Bulletin of the Seismological Society of America, 110(6):2892–2911, 2020. https://doi.org/10.1785/0120190315.
T. Iwata and K. Irikura. Source parameters of the 1983 japan sea earthquake sequence. Journal of Physics of Earth, 36(4):155–184, 1988. https://doi.org/ 10.4294/jpe1952.36.155.
S. Jeong, B. W. Stump, and H. R. DeShon. Spectral characteristics of ground motion from induced earthquakes in the fort worth basin, texas, using the gen- eralized inversion technique . Bulletin of the Seismological Society of America, 110(5):2058–2076, 2020. https://doi.org/10.1785/0120200097.
K. Kato, M. Takemura, T. Ikeura, K. Urao, and T. Uetake. Preliminary analysis for evaluation of local site effects from strong motion spectra by an inversion method. Journal of Physics of Earth, 40(1):175–191, 1992. https://doi.org/ 10.4294/jpe1952.40.175.
H. Kawase. Site effects on strong ground motions. International Handbook of Earthquake and Engineering Seismology, Part B, W Lee, H. Kanamori, P. Jen- nings, and C. Kisslinger (Editors), Academic Press, London, United Kingdom, page 1013–1030, 2003.
H. Kawase. Site effects derived from spectral inversion method for k-net, kik-net, and jma strong-motion network with special reference to soil nonlinearity in high pga records. Bulletin of the Seismological Society of America, 81:309–315, 2006. http://id.ndl.go.jp/bib/8865881.
H. Kawase, J. Francisco, F.J. S´anchez-Sesma, and S. Matsushima. The opti- mal use of horizontal-to-vertical spectral ratios of earthquake motions for ve- locity inversions based on diffuse-field theory for plane waves. Bulletin of the Seismological Society of America, 101(5):2001–2014, October 2011. https:
//doi.org/10.1785/0120100263.
H. Kawase and H. Matsuo. Amplification characteristics of k-net, kik-net, and jma shindokei network sites based on the spectral inversion technique. 3th World Conference on Earthquake Engineering Vancouver, B.C., Canada, Paper No. 454, August 1-6 2004.
H. Kawase, Y. Mori, and F. Nagashima. Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to s-wave velocity inversion based on the diffuse field concept. Earth, Planets and Space, 70(1), 2018. https://doi.org/10.1186/s40623-017-0766-4.
H. Kawase, F. Nagashima, K. Nakano, and Y. Mori. Direct evaluation of s-wave amplification factors from microtremor H/V ratios: Double empirical corrections to “nakamura” method. Soil Dynamics and Earthquake Engineering, 126, 2018. https://doi.org/10.1016/j.soildyn.2018.01.049.
S. Kirkpatrick, D. Gelatt, and M. Vecchi. Optimization by simulated anneal- ing. Science (New York, N.Y.), 220:671–680, 1983. https://doi.org/10.1126/ science.220.4598.671.
P. Klin, G. Laurenzano, and E. Priolo. Gitanes: A matlab package for estima- tion of site spectral amplification with the generalized inversion technique. Seis- mological Research Letters, 89(1):182–190, 2018. https://doi.org/10.1785/
K. Konno and T. Ohmachi. Ground-motion characteristics estimated from spec- tral ratio between horizontal and vertical components of microtremor. Bul- letin of the Seismological Society of America, 88(1):228–241, February 1998. https://doi.org/10.1785/BSSA0880010228.
S. R. Kotha, D. Bindi, and F. Cotton. Partially non-ergodic region specific gmpe for europe and middle-east. Bulletin of the Seismological Society of America, 14:1245–1263, 2016. https://doi.org/10.1007/s10518-016-9875-x.
V. W. Lee and M. D. Trifunac. Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification? Soil Dynamics and Earth- quake Engineering, 30(11):1250–1258, 2010. https://doi:10.1016/j.soildyn.
05.007.
Y.S. Lee, E. Graham, G. jackson, A. Galindo, and C.S. Adjiiman. A comparison of the performance of multi-objective optimization methodologies for solvent design. Computer Aided Chemical Engineering, 46:37–42, 2019. https://doi. org/10.1016/B978-0-12-818634-3.50007-2.
I. Maragkakis. Site Amplification Factors in stations of the National Network of Accelerometers in Greece. Master Thesis, School of Geology, Aristotle University of Thessaloniki, page 130pp, 2022.
F. Nagashima, H. Kawase, and S. Matsushima. Estimation of horizontal seis- mic bedrock motion from vertical surface motion based on horizontal-to-vertical spectral ratios of earthquake motions. 16 th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th, Paper No 3685, 2017. Reg- istration Code: S-N1463127272.
F. Nagashima, S. Matsushima, H. Kawase, F. J. S´anchez-Sesma, T. Hayakawa,
T. Satoh, and M. Oshima. Application of horizontal-to-vertical spectral ratios of earthquake ground motions to identify subsurface structures at and around the k-net site in tohoku, japan. Bulletin of the Seismological Society of America, 104(5):2288–2302, 2014. https://doi.org/10.1785/0120130219.
Y. Nakamura. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of Railway Technical Research Institute, 30:25–33, 1989.
Y. Nakamura. Real-time information systems for hazards mitigation. Proceedings of the 11th World Conference on Earthquake Engineering (Acapulco, Mexico)., 1996.
Y. Nakamura. Vulnerability indexes for surface ground and structures using microtremor. 8th Soil Dynamics Earthquake Engineering ’97, 30:25–33, 20 -24
July 1997.
Y. Nakamura. Clear identification of fundamental idea of nakamura’s technique and its applications. Proceedings of the 12th World Conference on Earthquake Engineering (Auckland, New Zealand)., (8p), 2000.
Y. Nakamura. A modified estimation method for amplification factor of ground and structures using the H/V spectral ratio. Proc. Of the 2nd Workshop on Dynamic Interaction of Soil and Structure ’12, L’Aquila, Italy, pages 273–284, 29-30 March 2014.
Y. Nakamura. What is the nakamura method? Seismological Research Letters, 90(4):1437– 1443, 2019. https://doi.org/10.1785/0220180376.
K. Nakano, S. Matsushima, and H. Kawase. Statistical properties of strong ground motions from the generalized spectral inversion of data observed by k- net, kik-net, and the jma shindokei network in japan. Bulletin of the Seismolog- ical Society of America, 105(5):2662–2680, 2015. https://doi.org/10.1785/ 0120140349.
J.A. Nelder and R. Mead. Simplex method for function minimization. The Computer Journal, 7(4):308–313, 1965. https://doi.org/10.1093/comjnl/7.
308.
M. Nogoshi and T. Igarashi. On the propagation characteristics of microtremor.
Zisin, 23:264–280, 1970a. (in Japanese with English abstract).
M. Nogoshi and T. Igarashi. On the amplitude characteristics of mi- crotremor—part 1. Zisin, 23:281–303, 1970b. (in Japanese with English ab- stract).
M. Nogoshi and T. Igarashi. On the amplitude characteristics of mi- crotremor—part 2. Zisin, 24:26–40, 1971. (in Japanese with English abstract).
M. Ohori, A. Nobata, and K. Wakamatsu. A comparison of esac and fk methods of estimating phase velocity using arbitrarily shaped microtremor arrays. Bulletin of the Seismological Society of America, 92(6):2323–2332, August 2002. https:
//doi.org/10.1785/0119980109.
R. Paolucci, M. Aimar, A. Ciancimino, M. Dotti, S. Foti, G. Lanzano, P. Mat- tevi, F. Pacor, and M. Vanini. Checking the site categorization criteria and amplification factors of the 2021 draft of eurocode 8 part 1–1. Bulletin of Earthquake Engineering, 19:4199–4234, 2021. https://doi.org/10.1007/ s10518-021-01118-9.
C.B. Park, R.D. Miller, J. Xia, J.A. Hunter, and J.B. Harris. Higher mode observation by the masw method. SEG Technical Program Expanded Abstracts
· January 1999, 1999. https://doi.org/10.1190/1.1821070.
M. Petron, F.J. S´anchez-Sesma, A. Rodriquez-Castellanos, M. Campillo, and
R.L. Weaver. Two perspectives on equipartition in diffuse elastic fields in three dimensions. The Journal of the Acoustical Society of America, 126:1125–1130, 2009. https://doi.org/10.1121/1.3177262.
J. Pin˜a-Flores, M. C´ardenas-Soto, A. Garcia-Jerez, M. Campillo, and F.J. S´anchez-Sesma. The search of diffusive properties in ambient seismic noise. Bul- letin of the Seismological Society of America, 111(3):1650–1660, 2021. https:
//doi.org/10.1785/0120200189.
D. Raptakis, N. Theodulidis, and K. Pitilakis. Data analysis of the Euro- seistest strong motion array in Volvi (Greece): standard and horizontal-to- vertical spectral ratio techniques. Earthquake Spectra, 14(1):203–224, 1998. https://doi:10.1785/0120130030.
J. Roberts, M. Asten, H.H. Tsang, S. Venkatesan, and N. Lam. Shear wave velocity profiling in melbourne silurian mudstone using the spac method. AEES Conference at Mount Gambier., November 2004.
A. Rodriguez-Marek, F. Cotton, N. A. Abrahamson, S. Akkar, L. A. Atik, B. Ed- wards, G. A. Montalva, and H. M. Dawood. A model for single-station stan- dard deviation using data from various tectonic regions. Bulletin of the Seis- mological Society of America, 103(6):3149–3163, 2013. https://doi:10.1785/ 0120130030.
F.J. S´anchez-Sesma, J.A. P´erez-Ruiz, F. Luzon, M. Campillo, and A. Rodr´ıguez- Castellanos. Diffuse fields in dynamic elasticity. Wave Motion, 45(5):641–654, 2008. https://doi.org/10.1016/j.wavemoti.2007.07.005.
F.J. S´anchez-Sesma, M. Rodr´ıguez, U. Iturraran-Viveros, A. Rodr´ıguez- Castellanos, M. Suarez, M.A. Santoyo, A. Garcia-Jerez, and F. Luzon. Site effects assessment using seismic noise. in Proceedings of the 9th International Workshop on Seismic Microzoning and Risk Reduction, February 21 -24 2010. Cuernavaca, Mexico.
F.J. S´anchez-Sesma, M. Rodr´ıguez, U. Iturrar´an Viveros, F. Luzon, M. Campillo,
M. Ludovic, A. Garcia-Jerez, M. Suarez, M.A. Santoyo, and A. Rodr´ıguez Castellanos. A theory for microtremor H/V spectral ratio: application for a layered medium. Geophysical Journal International, 186(1):221–225, 2011. https://doi.org/10.1111/j.1365-246X.2011.05064.x.
F.J. S´anchez-Sesma, R.L. Waver, H. Kawase, S. Matsushima, F. Luzon, and
M. Campillo. Energy partitions among elastic waves for dynamic surface loads in a semi-infinite solid. Bulletin of the Seismological Society of America, 101(4):1704–1709, 2011. https://doi.org/10.1785/0120100196.
T. Satoh, H. Kawase, , and T. Sato. Statistical spectral model of earthquakes in the eastern tohoku district, japan, based on the surface and borehole records ob- served in sendai. Bulletin of the Seismological Society of America, 87(2):446–462, 1997. https://doi.org/10.1785/BSSA0870020446.
SESAME European research project. Guidelines for the implementation of the h/v spectral ratio technique on ambient vibrations measurements, processing and interpretation. WP12 – Deliverable D23.12, 2004. https://sesame.geopsy. org/Delivrables/Del-D23-HV_User_Guidelines.pdf.
H. Shible, F. Hollender, D. Bindi, P. Traversa, A. Oth, B. Edwards, P. Klin,
H. Kawase, I. Grendas, R. R. Castro, N. Theodoulidis, and P. Gueguen. Gitec: A generalized inversion technique benchmark. Bulletin of the Seismological Society of America, 112(2):850–877, 2022. https://doi.org/10.1785/0120210242.
J.H. Steidl, G.T. Alexei, and R.F. Archuleta. What is a reference site?. Bulletin of the Seismological Society of America, 86(6):1733–1748, 1996. https://doi. org/10.1785/BSSA0860061733.
J. P. Stewart, N. Klimis, A. Savvaidis, N. Theodoulidis, E. Zargli, G. Athana- sopoulos, P. Pelekis, G. Mylonakis, and B. Margaris. Compilation of a lo- cal vs profile database and its application for inference of vS30 from geologic- and terrain-based proxies. Bulletin of the Seismological Society of America., 104(6):2827–2841, 2014. https://doi.org/10.1785/0120130331.
R. Takahashi and K. Hirano. Seismic vibrations of soft grounds. Bulletin of Earthquake Research Institute Tokyo University, 19(3):534–543, 1941. in Japanese with English abstract.
Y. Tao and E. Rathje. Taxonomy for evaluating the site-specific applicability of one-dimensional ground response analysis. Soil Dynamics and Earthquake Engineering, 128:10,5865, 2020. https://doi.org/10.1016/j.soildyn.2019.
A. Tarantola. Inverse problem theory and methods for model parameter estima- tion. Society for Industrial and Applied Mathematics., 2005.
N. Theodoulidis, F. Hollender, P. Rischette, M. Buscetti, I. DousteBacque,
I. Grendas, and Z. Roumelioti. Characterization of selected “rock” reference stations of the Hellenic Accelerometer Network (HAN). to be submitted for pub- lication., 2024.
N. Theodoulidis, I. Maragkakis, I. Grendas, P. Hatzidimitriou, H. Kawase, E. Ito, and P. Triantafyllidis. Estimation of s-wave horizontal spectral amplification factor (HSAF) from earthquake horizontal-to-vertical spectral ratio (eHVSR) in Greece. 3rd European Conference on Earthquake Engineering Seismology, Bucharest, Romania, 2022.
F. Vats and D. Basu. On the construction of joyner-boore distance (Rjb) for PESMOS and COSMOS databases. Journal of Seismology, 27::173–202, 2014. https://doi.org/10.1007/s10950-022-10129-1.
R.A. Waltz, J.L. Morales, J. Nocedal, and D. Orban. An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, 107(3):391–408, 2006. https://doi.org/10.1007/ s10107-004-0560-5.
M. Wathelet, B. Guillier, P. Roux, C. Cornou, and M. Ohrnberger. Rayleigh wave three-component beamforming: signed ellipticity assessment from high- resolution frequency-wavenumber processing of ambient vibration arrays. Geo-physical Journal International, 215(1):507–523, October 2018. https://doi. org/10.1007/s10107-004-0560-5.
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.