Εξώφυλλο

Comparing probabilistic seismic hazard maps with ShakeMap footprints and strong motion records in Greece = Σύγκριση πιθανολογικών χαρτών σεισμικής επικινδυνότητας, χαρτών ShakeMap και καταγραφών ισχυρής σεισμικής κίνησης στην Ελλάδα.

Nikolaos Miltiadis Anterriotis - Kalpakidis

Περίληψη


Probabilistic Seismic Hazard Assessment (PSHA) maps provide estimates of the likelihood and intensity of ground shaking, usually expressed in terms of Peak Ground Acceleration (PGA) or Spectral Acceleration (Sa) at different periods, due to potential earthquakes, over a specific time. These maps are a vital tool for assessing earthquake engineering requirements. This study evaluates the performance of four PSHA maps for Greece —ESHM20, ESHM13, GSHAP, and the national seismic hazard map of Greece (EAK2000)— all designed for a 10% probability of exceedance in 50 years. These maps are compared against observational data from ShakeMap footprints, strongmotion records, and historical macroseismic intensities to assess their reliability. We analyzed intensity measures (IMs) such as Peak Ground Acceleration (PGA) and spectral accelerations at 0.3s, 1.0s, and 3.0s, derived from ShakeMaps spanning January 1973 to January 2023. Sites where observed IMs exceeded those predicted by the PSHA maps were identified, and fractional exceedance areas were calculated to compare these exceedances with the 10% probability target. EAK2000 showed the closest fit to this target, with all maps displaying reasonable alignment overall. In addition to general site comparisons, specific regions of interest, including urban areas in Greece, were analyzed and compared with results from Ground Motion Prediction Equations (GMPEs). Strong-motion data was further examined to determine how many seismic stations were expected to exceed the predicted thresholds and compared these results to observed station exceedances. Additionally, historical macroseismic data was used to estimate PGA through ground-motion intensity conversion equations (GMICEs), allowing for the identification of regions with higher-than-expected seismic activity. Our findings highlight areas where the expected levels of ground motion were considerably exceeded during earthquakes and also provide insights into the strengths and weaknesses of PSHA models in Greece. These results contribute to the ongoing development of more accurate seismic hazard assessments and risk mitigation strategies specific to the region. This thesis is structured in five chapters: In the first chapter, an introduction is provided to probabilistic seismic hazard maps, as well as a review of the four maps studied alongside, a review of the methodologies and results from similar studies. In the second chapter, the data for each of the three methods is described. The completeness of the data is discussed, along with the uncertainties present in the ShakeMap charts, as well as in the calculation of macroseismic intensities from historical earthquakes. In the third chapter, the methodology followed to retrieve the maximum ground acceleration values for the corresponding observation periods is described, as well as how the influence of local ground conditions was addressed and the calculation of the expected exceedance rates for the seismic hazard maps. In the fourth chapter, the results for each method are presented, and limitations and uncertainties that may exist in the results are discussed, mainly due to the limited availability of data. Finally, in the fifth chapter, the conclusions of the study are summarized.

Οι Πιθανολογικοί Χάρτες Σεισµικής Επικινδυνότητας (PSHA) παρέχουν εκτιµήσεις σχετικά µε την πιθανότητα και την ένταση της σεισµικής κίνησης, συνήθως εκφρασµένες σε όρους Μέγιστης Εδαφικής Επιτάχυνσης (PGA) ή Φασµατικής Επιτάχυνσης (Sa) σε διαφορετικές περιόδους, λόγω πιθανών σεισµικών γεγονότων, για ένα συγκεκριµένο χρονικό διάστηµα. Αυτοί οι χάρτες είναι ζωτικής σηµασίας για την αξιολόγηση των απαιτήσεων της αντισεισµικής µηχανικής. Η παρούσα µελέτη αξιολογεί την απόδοση τεσσάρων PSHA χαρτών για την Ελλάδα —ESHM20, ESHM13, GSHAP και τον εθνικό χάρτη σεισµικής επικινδυνότητας της Ελλάδας (ΕΑΚ2000)— οι οποίοι έχουν σχεδιαστεί για πιθανότητα υπέρβασης 10% σε 50 χρόνια. Τα προβλεπόµενα επίπεδα της σεισµικής κίνησης από αυτούς τους χάρτες PSHA συγκρίνονται µε πραγµατικές παρατηρήσεις από χάρτες ShakeMap, καταγραφές ισχυρής εδαφικής κίνησης και ιστορικές µακροσεισµικές εντάσεις για την αξιολόγηση της αξιοπιστίας τους. Αναλύσαµε µέτρα έντασης (IMs), όπως η Μέγιστη Εδαφική Επιτάχυνση (PGA) και ϕασµατικές επιταχύνσεις στα 0.3s, 1.0s και 3.0s, που προέρχονται από χάρτες ShakeMap για την περίοδο από τον Ιανουάριο 1973 έως τον Ιανουάριο 2023. Εντοπίστηκαν περιοχές όπου τα παρατηρούµενα IMs υπερέβαιναν τις προβλεπόµενες τιµές από τους χάρτες PSHA, και υπολογίστηκαν οι περιοχές υπέρβασης, ώστε αυτές οι υπερβάσεις να συκριθούν µε τον στόχο του 10%. Ο χάρτης ΕΑΚ2000 εµφάνισε την πιο ακριβή προσέγγιση στον στόχο, ενώ όλοι οι χάρτες έδειξαν γενικά καλή προσαρµογή. Επιπλέον, εφαρµόσαµε την ίδια διαδικασία για συγκεκριµένες περιοχές ενδιαφέροντος, συµπεριλαµβανοµένων αστικών περιοχών στην Ελλάδα, και τα αποτελέσµατα συγκρίθηκαν µε αυτά που προέκυψαν από Εξισώσεις Πρόβλεψης Εδαφικής Κίνησης (GMPEs). Τα δεδοµένα ισχυρής εδαφικής κίνησης εξετάστηκαν περαιτέρω για να προσδιοριστεί πόσοι σεισµολογικοί σταθµοί αναµένεται να υπερβούν τα προβλεπόµενα όρια και συγκρίθηκαν αυτά τα αποτελέσµατα µε τις παρατηρήσεις των σταθµών. Επιπλέον, χρησιµοποιήθηκαν ιστορικά µακροσεισµικά δεδοµένα για την εκτίµηση της PGA µέσω εξισώσεων µετατροπής της έντασης (GMICEs), επιτρέποντας τον εντοπισµό περιοχών µε υψηλότερη σεισµική δραστηϱιότητα από την αναµενόµενη. Τα ευρήµατά µας, καταρχάς αναδεικνύουν περιοχές για τις οποίες έχει παϱατηρηθεί υπέρβαση των προβλέψεων των χαρτών και επιπρόσθετα αναδεικνύουν τις αβεβαιότητες που υπεισέρχονται στην εκτίµηση της σεισµικής επικινδυνότητας στην Ελλάδα από τα µέχρι σήµερα επικρατέστερα µοντέλα. Η διατριβή έχει πέντε κεφάλαια: Στο πρώτο κεφάλαιο γίνεται µία εισαγωγή στους πιθανολογικούς χάρτες σεισµικής επικινδυνότητας, καθώς και µία ανασκόπηση των τεσσάρων χαρτών που µελετιούνται στην εργασία. Τέλος, γίνεται µια ανασκόπηση των µεθοδολογιών και των αποτελεσµάτων από παρόµοιες εργασίες. Στο δεύτερο κεφάλαιο περιγράφονται τα δεδοµένα για κάθε µία από τις τρείς µεθόδους. Σχολιάζεται η πληρότητα τους, καθώς οι αβεβαιότητες που υπάρχουν στους χάρτες ShakeMap, όπως και στον υπολογισµό των µακροσεισµικών εντάσεων από τους ιστορικούς σεισµούς. Στο τρίτο κεφάλαιο περιγράφεται η µεθοδολογία που ακολουθήθηκε ώστε να ανακτηθούν οι µέγιστες τιµές της εδαφικής επιτάχυνσης για τις αντίστοιχες πεϱιόδους παρατήρησης, ο τρόπος που αντιµετωπίστηκε η επίδραση των τοπικών εδαφικών συνθηκών, καθώς και ο υπολογισµός των αναµενόµενων ποσοστών υπερβάσεων για τους χάρτες σεισµικής επικινδυνότητας. Στο τέταρτο κεφάλαιο παρουσιάζονται τα αποτελέσµατα για κάθε µέθοδο και συζητιούνται περιορισµοί και αβεβαιότητες που µπορεί να υπάρχουν στα αποτελέσµατα κυρίως λόγω των περιορισµένων διαθέσιµων δεδοµένων. Τέλος, στο πέµπτο κεφάλαιο συνοψίζονται τα συµπεράσµατα της εργασίας.


Πλήρες Κείμενο:

PDF

Αναφορές


Albarello, D., & D’Amico, V. (2008). Testing probabilistic seismic hazard estimates by comparison with observations: An example in Italy. Geophysical Journal International, 175(3), 1088–1094. https://doi.org/10.1111/j.1365-246X. 2008.03928.x

Albini, P., & Pantosti, D. (2004). The 20 and 27 April 1894 (Locris, Central Greece) Earthquake Sources through Coeval Records on Macroseismic Effects. Bulletin of the Seismological Society of America, 94, 1305–1326. https://doi.org/10.1785/012003174

Albini, P., Locati, M., Rovida, A., & Stucchi, M. (2013). European Archive of Historical Earthquake Data (AHEAD). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.6092/ingv.it-ahead

Allen, T. I., & Wald, D. J. (2007). Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 97. https://doi.org/10.1785/0120060267

Allen, T. I., Ghasemi, H., & Griffin, J. D. (2023). Exploring Australian hazard map exceedance using an Atlas of historical ShakeMaps. Earthquake Spectra, 39(2), 985–1006. https://doi.org/10.1177/87552930231151977

Allen, T. I., Wald, D. J., Earle, P. S., Marano, K. D., Hotovec, A. J., Lin, K., & Hearne, M. G. (2009). An Atlas of ShakeMaps and population exposure catalog for earthquake loss modeling. Bulletin of Earthquake Engineering, 7(3), 701–718. https://doi.org/10.1007/s10518-009-9120-y

Baker, J. (2008). An introduction to Probabilistic Seismic Hazard Analysis (PSHA).

Banitsiotou, I., Tsapanos, T., Margaris, B., & Hatzidimitriou, P. (2004). Estimation of the seismic hazard parameters for various sites in Greece using

a probabilistic approach. Natural Hazards and Earth System Sciences, 4. https://doi.org/10.5194/nhess-4-399-2004

Båth, M. (1965). Lateral inhomogeneities of the upper mantle. Tectonophysics, 2(6), 483–514.

Benetatos, C., Kiratzi, A., Roumelioti, Z., Stavrakakis, G., Drakatos, G., & Latoussakis, I. (2005). The 14 August 2003 Lefkada Island (Greece) earthquake:

Focal mechanisms of the mainshock and of the aftershock sequence. Journal of Seismology, 9, 171–190. https://doi.org/10.1007/s10950-005-7092-1

Boore, D. (2006). Orientation-independent measures of ground motion. Bulletin of the Seismological Society of America, 96, 1502–1511. https://doi.org/10. 1785/0120050209

Boore, D. (2010). Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion. Bulletin of The Seismological Society of America - BULL SEISMOL SOC AMER, 100, 1830–1835. https://doi.org/10.1785/0120090400

Boore, D., & Kishida, T. (2017). Relations between some horizontal-componentground-motion intensity measures used in practice. Bulletin of the Seismological Society of America, 107. https://doi.org/10.1785/0120160250

Boore, D., Stewart, J., Skarlatoudis, A., Seyhan, E., Margaris, B., Theodoulidis, N., Scordilis, E., Kalogeras, I., Klimis, N., & Melis, N. (2021). A Ground-Motion Prediction Model for Shallow Crustal Earthquakes in Greece. Bulletin of the Seismological Society of America, 111. https://doi.org/10.1785/0120200270

Borcherdt, R. (1994). Estimates of Site-Dependent Response Spectra for Design (Methodology and Justification). Earthquake Spectra - EARTHQ SPECTRA, 10. https://doi.org/10.1193/1.1585791

Caprio, M., Tarigan, B., Worden, C., Wiemer, S., & Wald, D. (2015). Ground Motion to Intensity Conversion Equations (GMICEs): A Global Relationship and Evaluation of Regional Dependency. Bulletin of the Seismological Society of America, 105. https://doi.org/10.1785/0120140286

CEN. (2004). Eurocode 8: Design Provisions for Earthquake Resistance of Structures, Part 1.1: General Rules, Seismic Actions and Rules for Buildings, EN1998–

[Preprint].

Chiou, B. S.-J., & Youngs, R. R. (2008). Chiou and Youngs PEER-NGA empirical ground motion model for the average horizontal component of peak acceleration, peak velocity, and pseudo-spectral acceleration for spectral periods of 0.01 to 10 seconds (Final Report) (Submitted to PEER). Pacific Earthquake Engineering Research Center (PEER).

Chousianitis, K., Sboras, S., Mouslopoulou, V., Chouliaras, G., & Hristopulos, D. (2024). The Upper Crustal Deformation Field of Greece Inferred From GPS Data and Its Correlation With Earthquake Occurrence. Journal of Geophysical Research: Solid Earth, 129. https://doi.org/10.1029/2023JB028004

Cito, P., Vitale, A., & Iervolino, I. (2024). Territorial exceedance of probabilistic seismic hazard from ShakeMap data. Scientific Reports, 14, 4840. https : //doi.org/https://doi.org/10.1038/s41598-024-55415-9

Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S., & Giardini, D. (2021). The 2020 update of the European Seismic Hazard Model: Model Overview. (001). https://doi.org/10.12686/a15

Earthquake Planning and Protection Organization. (2003). Greek seismic code.

Engineering Strong Motion Database. (2024a). Event Search [Accessed: 2024-07-07]. https://esm-db.eu/#/event/search

Engineering Strong Motion Database. (2024b). MasterStationList [Accessed: 2024-07-07]. https://esm-db.eu//esmws/shakemap/1/masterstationlist.txt

Ganas, A., Oikonomou, I. A., & Tsimi, C. (2013). Noafaults: A digital database for active faults in Greece. Bulletin of the Geological Society of Greece, 47(2), 518–530. https://doi.org/10.12681/bgsg.11079

Gardner, J., & Knopoff, L. (1974). Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(465), 1363–1367.

Giardini, D., Grünthal, G., Shedlock, K. M., & Zhang, P. (1999). The GSHAP Global Seismic Hazard Map. Annali di Geofisica, 42(6), 1225–1228.

Giardini, D., Wössner, J., & Danciu, L. (2014). Mapping Europe’s Seismic Hazard. Eos, Transactions American Geophysical Union, 95(29), 261–262. https://doi.org/https://doi.org/10.1002/2014EO290001

Graizer, V., & Kalkan, E. (2016). Summary of the GK15 Ground-Motion Prediction Equation for Horizontal PGA and 5% Damped PSA from Shallow Crustal Continental Earthquakes. Bulletin of the Seismological Society of America, 106(2), 687–707. https://doi.org/10.1785/0120150194

Grünthal, G., Bosse, C., Sellami, S., D, M.-R., & D, G. (1999). Compilation of the GSHAP regional seismic hazard for Europe, Africa and the Middle East. Annals of Geophysics, 42. https://doi.org/10.4401/ag-3782

International Federation of Digital Seismograph Networks. (2024). FDSN Networks [Accessed: 2024-07-07]. https://www.fdsn.org/networks/

Jordahl, K., den Bossche, J. V., Fleischmann, M., Wasserman, J., McBride, J., Gerard, J., Tratner, J., Perry, M., Badaracco, A. G., Farmer, C., Hjelle, G. A., Snow, A. D., Cochran, M., Gillies, S., Culbertson, L., Bartos, M., Eubank, N., maxalbert, Bilogur, A., . . . Leblanc, F. (2020). geopandas/geopandas: v0.8.1 (Version v0.8.1). Zenodo. https://doi.org/10.5281/zenodo.3946761

Kaklamanos, J., Baise, L., & Boore, D. (2011). Estimating Unknown Input Parameters when Implementing the NGA Ground-Motion Prediction Equations in Engineering Practice. Earthquake Spectra, 27, 1219–1235. https://doi.org/10.1193/1.3650372

Karakaisis, G., Papazachos, C., & Scordilis, E. (2010). Seismic sources and main seismic faults in the Aegean and surrounding area. Bulletin of the Geological Society of Greece, 43, 2026–2042. https://doi.org/10.12681/bgsg.11393

Kassaras, I., Kapetanidis, V., Ganas, A., Tzanis, A., Kosma, C., Karakonstantis, A., Valkaniotis, S., Chailas, S., Kouskouna, V., & Papadimitriou, P. (2020). The New Seismotectonic Atlas of Greece (v1.0) and Its Implementation. Geosciences, 10(11). https://doi.org/10.3390/geosciences10110447

Kaviris, G., Zymvragakis, A., Bonatis, P., Sakkas, G., Kouskouna, V., & Voulgaris, N. (2022). Probabilistic Seismic Hazard Assessment for the Broader Messinia (SW Greece) Region. Pure and Applied Geophysics, 179. https://doi.org/10.1007/s00024-022-02950-z

Kiratzi, A., & Louvari, E. (2003). Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: A new database. Journal of Geodynamics, 36, 251–274. https://doi.org/10.1016/S0264-3707(03)00050-4

Kotha, S. R., Weatherill, G., Bindi, D., & Cotton, F. (2020). A regionally-adaptable ground-motion model for shallow crustal earthquakes in Europe. Bulletin of Earthquake Engineering, 18(9), 4091–4125. https://doi.org/10.1007/s10518-020-00869-1

Lanzano, G., Luzi, L., Russo, E., Felicetta, C., D’Amico, M. C., Sgobba, S., & Pacor, F. (2018). Engineering Strong Motion Database (ESM) flatfile. https://doi.org/10.13127/esm/flatfile.1.0

Manea, E. F., Danciu, L., Cioflan, C. O., Toma-Danila, D., & Gerstenberger, M. (2024). Testing the 2020 European Seismic Hazard Model (ESHM20) against observations from Romania. Natural Hazards and Earth System Sciences Discussions, 2024, 1–18. https://doi.org/10.5194/nhess-2023-232

McCue, K. (1999). Seismic hazard mapping in Australia, the Southwest Pacific and Southeast Asia. Annali di Geofisica, 42. https://doi.org/10.4401/ag-3776

Mignan, A., & Chouliaras, G. (2014). Fifty Years of Seismic Network Performance in Greece (1964–2013): Spatiotemporal Evolution of the Completeness Magnitude. Seismological Research Letters, 85, 657–667. https://doi.org/10.1785/

Musson, R., Grünthal, G., & Stucchi, M. (2009). The comparison of macroseismic intensity scales. Journal of Seismology, 14, 413–428. https://doi.org/10.

/s10950-009-9172-0

National Observatory of Athens. (2024). ShakeMaps [Accessed: 2024-07-07]. https://accelnet.gein.noa.gr/shakemaps/

Papazachos, C., Papaioannou, C., Papastamatiou, D., Margaris, B., & Theodoulidis, N. (1990). On the reliability of different methods of seismic hazard assessment in Greece. Natural Hazards, 3, 141–151. https://doi.org/10.1007/

BF00140428

Pitilakis, K., Riga, E., & Roumelioti, Z. (2016). The urgent need for an improvement of the Greek seismic code based on a new seismic hazard map for Europe

and a new site classification system.

Pothon, A., Gueguen, P., Buisine, S., & Bard, P.-Y. (2020). Comparing Probabilistic Seismic Hazard Maps with ShakeMap Footprints for Indonesia. Seismological Research Letters, 91. https://doi.org/10.1785/0220190171

Rey, J., Beauval, C., & Douglas, J. (2018). Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013? Journal of Seismology, 22. https://doi.org/10.1007/s10950-017-9724-7

Rovida, A., & Antonucci, A. (2021). EPICA - European PreInstrumental Earthquake CAtalogue, version 1.1 [Dataset]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/epica.1.1

Rovida, A., Antonucci, A., & Locati, M. (2022). The European Preinstrumental Earthquake Catalogue EPICA, the 1000–1899 catalogue for the European Seismic Hazard Model 2020. Earth System Science Data. https://doi.org/10. 5194/essd-14-5213-2022

Sakellariou, N., Kouskouna, V., & Makropoulos, K. C. (2010). Macroseismic Intensities in Central-Southern Peloponnese during the 19th century (Internal Report) (Macroseismic Data Points available in the Hellenic Macroseismic Database of the University of Athens). N&K University of Athens, Greece.

Shedlock, K., & Tanner, J. (1999). Seismic hazard map of the western hemisphere. Annals of Geophysics, 42. https://doi.org/10.4401/ag-3779

Slejko, D., Rebez, A., Santulin, M., Garcia-Pelaez, J., Sandron, D., Tamaro, A., Civile, D., Volpi, V., Caputo, R., Ceramicola, S., Chatzipetros, A., Daja, S., Fabris, P., Geletti, R., Karvelis, P., Moratto, L., Papazachos, C., Pavlides, S., Rapti, D., . . . Zuliani, D. (2021). Seismic hazard for the Trans Adriatic Pipeline (TAP). Part 1: Probabilistic seismic hazard analysis along the pipeline. Bulletin of Earthquake Engineering, 19(9), 3349–3388. https ://doi .org/10 .1007/s10518-021-01111-2

Slejko, D., Santulin, M., Garcia Pelaez, J., Papoulia, J., Daskalaki, E., Fasulaka, C., Fokaefs, A., Ilinski, D., Mascle, J., Makris, J., Nicolich, R., Papadopoulos, G., Tsampas, A., & Wardell, N. (2010). Preliminary seismic hazard assessments for the area of Pylos and surrounding region (SW Peloponnese). Bollettino di Geofisica Teorica ed Applicata, 51, 163–186.

Sotiriadis, D., & Margaris, B. (2023). Evaluation of the predictive performance of regional and global ground motion predictive equations against Greek strong motion data. Soil Dynamics and Earthquake Engineering, 165, 107656. https://doi.org/10.1016/j.soildyn.2022.107656

Sotiriadis, D., Margaris, B., Klimis, N., & Dokas, I. M. (2023). Seismic Hazard in Greece: A Comparative Study for the Region of East Macedonia and Thrace. GeoHazards, 4(3), 239–266. https://doi.org/10.3390/geohazards4030014

Stirling, M., & Gerstenberger, M. (2010). Ground motion–based testing of seismic hazard models in New Zealand. Bulletin of the Seismological Society of America, 100, 1407–1414.

Stylianou, E., G., M., Kouskouna, V., & Papoulia, J. (2016). Seismic Hazard Assessment in the North Aegean Trough based on a New Seismogenic Zonation. Bulletin of the Geological Society of Greece, Volume L. https://doi.org/10. 12681/bgsg.38198

Tasan, H., Beauval, C., Helmstetter, A., Sandikkaya, A., & Guéguen, P. (2014). Testing probabilistic seismic hazard estimates against accelerometric data in two countries: France and Turkey. Geophysical Journal International, 198(3), 1554–1571. https://doi.org/10.1093/gji/ggu191

Tsapanos, T., Mäntyniemi, P., & Kijko, A. (2009). A probabilistic seismic hazard

assessment for Greece and the surrounding region including site-specific considerations. Annals of Geophysics, 47. https://doi.org/10.4401/ag-3367

Tselentis, A., & Danciu, L. (2010). Probabilistic seismic hazard assessment in Greece – Part 1: Engineering ground motion parameters. Natural Hazards and Earth System Sciences, 10. https://doi.org/10.5194/nhess-10-25-2010

Tselentis, A., & Danciu, L. (2008). Empirical Relationships between Modified Mercalli Intensity and Engineering Ground-Motion Parameters in Greece. Bulletin of The Seismological Society of America - BULL SEISMOL SOC AMER, 98, 1863–1875. https://doi.org/10.1785/0120070172

U.S. Geological Survey. (2024a). Comprehensive Earthquake Catalog (ComCat) [Accessed: 2024-07-07]. https://earthquake.usgs.gov/data/comcat/

U.S. Geological Survey. (2024b). ShakeMap Data [Accessed: 2024-07-07]. https://earthquake.usgs.gov/data/shakemap/

U.S. Geological Survey. (2024c). VS30 Database [Accessed: 2024-07-07]. https://earthquake.usgs.gov/data/vs30/

Vamvakaris, D., Papazachos, C., Papaioannou, C., Scordilis, E., & Karakaisis, G. (2017). SEISMIC HAZARD ASSESSMENT IN THE BROADER AEGEAN AREA USING TIME-INDEPENDENT SEISMICITY MODELS BASED ON SYNTHETIC EARTHQUAKE CATALOGS. Bulletin of the Geological Society of Greece, 50, 1463. https://doi.org/10.12681/bgsg.11859

Vavlas, N., Kiratzi, A., Margaris, B., & Karakaisis, G. (2019). Probabilistic Seismic Hazard Assessment (PSHA) for Lesvos Island Using the Logic Tree Approach. Bulletin of the Geological Society of Greece, 55(1), 109–136. https://doi.org/ 10.12681/bgsg.20705

Woessner, J., Danciu, L., Giardini, D., Crowley, H., Cotton, F., Grünthal, G., Valensise, G., Arvidsson, R., Basili, R., Demircioglu, M. B., Hiemer, S., Meletti, C., Musson, R. W., Rovida, A. N., Sesetyan, K., Stucchi, M., & Consortium, T. S. (2015). The 2013 European Seismic Hazard Model: Key components and results. Bulletin of Earthquake Engineering, 13(12), 3553–3596. https: //doi.org/10.1007/s10518-015-9795-1

Worden, C., Thompson, E., Hearne, M., & Wald, D. (2020). ShakeMap Manual Online: Technical Manual, User’s Guide, and Software Guide. https://doi. org/10.5066/F7D21VPQ

Worden, C., Gerstenberger, M., Rhoades, D., & Wald, D. (2012). Probabilistic Relationships between Ground-Motion Parameters and Modified Mercalli Intensity in California. The Bulletin of the Seismological Society of America, 102, 204–221. https://doi.org/10.1785/0120110156

Zhang, P., Yang, Z.-X., Gupta, H., Bhatia, S., & Shedlock, K. (1999). Global Seismic Hazard Assessment Program (GSHAP) in continental Asia. Annali di Geofisica, 42, 1167–1190. https://doi.org/10.4401/ag-3778


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.