Εξώφυλλο

Τα κοιτάσματα των Σπανίων Γαιών και η ενεργειακή μετάβαση = The Rare Earth deposits and the energy transition.

Σπυρίδων Νικόλαος Γιαμούκης

Περίληψη


Σε αυτήν τη διπλωματική εργασία εξετάζεται εκτενώς η χρήση των μετάλλων σπάνιων γαιών στις πρόσφατες τεχνολογικές εξελίξεις και τις πηγές ανανεώσιμης ενέργειας. Ο στόχος είναι να παρουσιαστούν αυτά τα "εργαλεία" της τεχνολογίας και να αναδειχθούν οι ξεχωριστές τους ιδιότητες που τα καθιστούν αναπόσπαστα μέρη των περισσότερων τεχνολογιών. Αρχικά, παρουσιάζονται στατιστικά και οικονομικά στοιχεία που αναδεικνύουν την έκταση της αυξανόμενης χρήσης αυτών των σπάνιων μετάλλων. Ταυτόχρονα, γίνεται αναφορά στα σημαντικότερα κοιτάσματα Σπάνιων Γαιών παγκοσμίως αλλά και στον Ελληνικό χώρο. Έπειτα περιγράφονται οι διαδικασίες εξόρυξης και επεξεργασίας των ορυκτών που περιέχουν αυτά τα μέταλλα. Τέλος, δίνεται έμφαση στις εφαρμογές αυτών των στοιχείων σε σύγχρονες και περιβαλλοντικά φιλικές τεχνολογίες για την ενεργειακή αξιοποίηση.

In this thesis, the extensive use of rare earth metals in recent technological advancements and renewable energy sources is thoroughly examined. The goal is to present these technological "metals" and highlight their unique properties that render them integral components of most modern technologies. Initially, statistical and economic data illustrating the extent of the increased utilization of these rare metals is presented. Also, reference is made to the most significant deposits and occurrences of rare earth metals worldwide and in Greece. Following this, the processes involved in the extraction and processing of minerals containing these metals are described. Lastly, emphasis is placed on the applications of these elements in contemporary and environmentally friendly technologies for energy utilization.


Πλήρες Κείμενο:

PDF

Αναφορές


ALEX STREKEISEN-Xenotime- [WWW Document], n.d. URL https://www.alexstrekeisen.it/english/pluto/xenotime.php (accessed 1.11.24).

Alves Dias, P., Bobba, S., Carrara, S., Plazzotta, B., 2020. The role of rare earth elements in wind energy and electric mobility. Eur. Comm. Luxemb.

Baillie, C., Schiller, R., 2011. Zero and low rare earth FCC catalysts. Pet. Technol. Q. 16.

Ballinger, B., Stringer, M., Schmeda-Lopez, D.R., Kefford, B., Parkinson, B., Greig, C., Smart, S., 2019. The vulnerability of electric vehicle deployment to critical mineral supply. Appl. Energy 255, 113844.

Borzykowski, B., 2019. Wyoming may hold the key to the rare earth minerals trade war with China [WWW Document]. CNBC. URL https://www.cnbc.com/2019/07/10/wyoming-may-hold-key-to-the-rare-earth-minerals-trade-war-with-china.html (accessed 11.4.23).

Britvin, S.N., Pekov, I.V., Krzhizhanovskaya, M.G., Agakhanov, A.A., Ternes, B., Schüller, W., Chukanov, N.V., 2019. Redefinition and crystal chemistry of samarskite-(Y), YFe3+Nb2O8: cation-ordered niobate structurally related to layered double tungstates. Phys. Chem. Miner. 46, 727–741. https://doi.org/10.1007/s00269-019-01034-0

Bünzli, J.-C.G., Eliseeva, S.V., 2010. Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J. Rare Earths 28, 824–842.

Campbell, L.S., Compston, W., Sircombe, K.N., Wilkinson, C.C., 2014. Zircon from the East Orebody of the Bayan Obo Fe–Nb–REE deposit, China, and SHRIMP ages for carbonatite-related magmatism and REE mineralization events. Contrib. Mineral. Petrol. 168, 1041. https://doi.org/10.1007/s00410-014-1041-3

Castilloux, R., 2018. Spotlight on Dysprosium. Revving Rising Demand Adamas Intell.

Castor, S.B., 2008. Rare Earth Deposits of North America. Resour. Geol. 58, 337–347. https://doi.org/10.1111/j.1751-3928.2008.00068.x

Castor, S.B., Hedrick, J.B., n.d. Rare Earth Elements. Ind. Miner. Rocks.

Ciuculescu, T., Foo, B., Gowans, R., Hawton, K., Jacobs, C., Spooner, J., 2013. Technical report disclosing the results of the feasibility study on the Nechalacho Rare Earth Elements project. Micon Int. Ltd. Quest Rare Miner. Tor. Can.

Cook, N.J., Ciobanu, C.L., Wade, B.P., Gilbert, S.E., Alford, R., 2023. Mineralogy and Distribution of REE in Oxidised Ores of the Mount Weld Laterite Deposit, Western Australia. Minerals 13, 656. https://doi.org/10.3390/min13050656

Croat, J.J., 1997. Current status and future outlook for bonded neodymium permanent magnets. J. Appl. Phys. 81, 4804–4809.

Cullinane, D., 2021. Rare earth stocks on the ASX: The Ultimate Guide [WWW Document]. Small Caps. URL https://smallcaps.com.au/rare-earth-stocks-asx-ultimate-guide/ (accessed 11.22.23).

Dostal, J. (2017). Rare Earth Element Deposits of Alkaline Igneous Rocks. Resources, 6 (3): 34.

Drew, L.J., Qingrun, M., Weijun, S., 1990. The Bayan Obo iron-rare-earth-niobium deposits, Inner Mongolia, China. Lithos, Alkaline Igneous Rocks and Carbonatites 26, 43–65. https://doi.org/10.1016/0024-4937(90)90040-8

Dushyantha, N., Batapola, N., Ilankoon, I.M.S.K., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., Dissanayake, K., 2020. The story of rare earth elements (REEs):

Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 122, 103521. https://doi.org/10.1016/j.oregeorev.2020.103521

Eliopoulos, D., Economou, G., Tzifas, I., Papatrechas, C., 2014. The potential of rare earth elements in Greece, in: Proceedings of the ERES2014: First European Rare Earth Resources Conference, Milos, Greece. pp. 4–7.

Eliopoulos, D.G., Economou-Eliopoulos, M., 2000. Geochemical and mineralogical characteristics of Fe–Ni- and bauxitic-laterite deposits of Greece. Ore Geol. Rev. 16, 41–58. https://doi.org/10.1016/S0169-1368(00)00003-2

Elshkaki, A., Graedel, T.E., 2014. Dysprosium, the balance problem, and wind power technology. Appl. Energy 136, 548–559.

Ende, B.M. van der, Aarts, L., Meijerink, A., 2009. Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11, 11081–11095. https://doi.org/10.1039/B913877C

Euxenite Gemstone: Properties, Meanings, Value & More [WWW Document], n.d. . Gem Rock Auctions. URL https://www.gemrockauctions.com/learn/a-z-of-gemstones/euxenite (accessed 1.11.24).

Fan, H.-R., Hu, F.-F., Yang, K.-F., Pirajno, F., Liu, X., Wang, K.-Y., 2014. Integrated U–Pb and Sm–Nd geochronology for a REE-rich carbonatite dyke at the giant Bayan Obo REE deposit, Northern China. Ore Geol. Rev. 63, 510–519. https://doi.org/10.1016/j.oregeorev.2014.03.005

Fan, H.-R., Yang, K.-F., Hu, F.-F., Liu, S., Wang, K.-Y., 2016. The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis. Geosci. Front., Special Issue: Giant Mineral Deposits 7, 335–344. https://doi.org/10.1016/j.gsf.2015.11.005

Gadolinite [WWW Document], n.d. URL https://www.chemeurope.com/en/encyclopedia/Gadolinite.html (accessed 1.11.24).

Gosen, B.S.V., Verplanck, P.L., Long, K.R., Gambogi, J., Ii, R.R.S., 2014. The rare-earth elements: Vital to modern technologies and lifestyles (No. 2014–3078), Fact Sheet. U.S.

Geological Survey. https://doi.org/10.3133/fs20143078

Gysi, A.P., Williams-Jones, A.E., 2015. The thermodynamic properties of bastnäsite-(Ce) and parisite-(Ce). Chem. Geol. 392, 87–101.

https://doi.org/10.1016/j.chemgeo.2014.11.001

H ζήτηση ορυκτών υλών - κρίσιμα ορυκτά και μέταλλα [WWW Document], n.d. URL http://www.orykta.gr/index.php?option=com_content&view=article&id=110:zitisi-orykton-

ylon&catid=2&Itemid=295 (accessed 12.30.23).

Haque, N., Hughes, A., Lim, S., Vernon, C., 2014. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact. Resources 3, 614–635. https://doi.org/10.3390/resources3040614

Haxel, G., 2005. Ultrapotassic mafic dikes and rare earth elements-and barium-rich carbonatite at Mountain Pass, Mojave Desert, Southern California: Summary and field trip localities. US Geological Survey.

Haxel, G., 2002. Rare Earth Elements: Critical Resources for High Technology. U.S. Department of the Interior, U.S. Geological Survey.

Hong, G., Gan, X., Leonhardt, C., Zhang, Z., Seibert, J., Busch, J.M., Bräse, S., 2021. A brief history of OLEDs—emitter development and industry milestones. Adv. Mater. 33, 2005630.

Hou, Z., Liu, Y., Tian, S., Yang, Z., Xie, Y., 2015. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments. Sci. Rep. 5, 10231. https://doi.org/10.1038/srep10231

Hou, Z., Tian, S., Yuan, Z., Xie, Y., Yin, S., Yi, L., Fei, H., Yang, Z., 2006. The Himalayan collision zone carbonatites in western Sichuan, SW China: Petrogenesis, mantle source and tectonic implication. Earth Planet. Sci. Lett. 244, 234–250. https://doi.org/10.1016/j.epsl.2006.01.052

Hu, F.-F., Fan, H.-R., Liu, S., Yang, K.-F., Chen, F., 2009. Samarium–Neodymium and Rubidium–Strontium Isotopic Dating of Veined REE Mineralization for the Bayan Obo REE-Nb-

Fe Deposit, Northern China. Resour. Geol. 59, 407–414. https://doi.org/10.1111/j.1751-3928.2009.00107.x

Hurst, C., 2010. China’s rare earth elements industry: What can the west learn?

Jaireth, S., Hoatson, D.M., Miezitis, Y., 2014. Geological setting and resources of the major rare-earth-element deposits in Australia. Ore Geol. Rev. 62, 72–128.

https://doi.org/10.1016/j.oregeorev.2014.02.008

Kanazawa, Y., Kamitani, M., 2006. Rare earth minerals and resources in the world. J. Alloys Compd., Proceedings of Rare Earths’04 in Nara, Japan 408–412, 1339–1343. https://doi.org/10.1016/j.jallcom.2005.04.033

Klinger, J.M., 2018. Rare earth elements: Development, sustainability and policy issues. Extr. Ind. Soc. 5, 1–7. https://doi.org/10.1016/j.exis.2017.12.016

Kogarko, L.N., Williams, C.T., Woolley, A.R., 2002. Chemical evolution and petrogenetic implications of loparite in the layered, agpaitic Lovozero complex, Kola Peninsula, Russia. Mineral. Petrol. 74, 1–24. https://doi.org/10.1007/s710-002-8213-2

Koltun, P., Tharumarajah, A., 2014. Life Cycle Impact of Rare Earth Elements. ISRN Metall. 2014, 1–10. https://doi.org/10.1155/2014/907536

Krishnamurthy, N., Gupta, C.K., 2015. Extractive Metallurgy of Rare Earths, ‖ CRC Press. Boca Raton FL.

Laskou, M., Economou-Eliopoulos, M., 2007. The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits, Greece. J.

Geochem. Explor. 93, 67–77. https://doi.org/10.1016/j.gexplo.2006.08.014

Li, L.Z., Yang, X., n.d. CHINA’S RARE EARTH ORE DEPOSITS AND BENEFICIATION.

Li, X.-Y., Ge, J.-P., Chen, W.-Q., Wang, P., 2019. Scenarios of rare earth elements demand driven by automotive electrification in China: 2018–2030. Resour. Conserv. Recycl. 145, 322–331. https://doi.org/10.1016/j.resconrec.2019.02.003

Liu, Y.-L., Ling, M.-X., Williams, I.S., Yang, X.-Y., Wang, C.Y., Sun, W., 2018. The formation of the giant Bayan Obo REE-Nb-Fe deposit, North China, Mesoproterozoic carbonatite and overprinted Paleozoic dolomitization. Ore Geol. Rev. 92, 73–83. https://doi.org/10.1016/j.oregeorev.2017.11.011

Liu, Z., Lin, C.-H., Hyun, B.-R., Sher, C.-W., Lv, Z., Luo, B., Jiang, F., Wu, T., Ho, C.-H., Kuo, H.-C., 2020. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9, 83.

Lusty, P., Walters, A., 2010. Rare earth elements.

Maksimovic, Z., Pantó, Gy., 1991. Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece. Geoderma, Weathering of soils 51, 93–109. https://doi.org/10.1016/0016-7061(91)90067-4

MarketScreener, 2015. Lynas : Mt Weld Mineral Resource and Ore Reserve Update 2015 -October 05, 2015 at 03:33 am EDT | MarketScreener [WWW Document]. URL https://www.marketscreener.com/quote/stock/LYNAS-RARE-EARTHS-LIMITED-6492543/news/Lynas-Mt-Weld-Mineral-Resource-and-Ore-Reserve-Update-2015-21144543/ (accessed 10.26.23).

McKerracher, C., Izadi-Najafabadi, A., O’Donovan, A., Albanese, N., Soulopolous, N., Doherty, D., Boers, M., Fisher, R., Cantor, C., Frith, J., 2020. Electric vehicle outlook 2020. Bloom. New Energy Finance 2–3.

Monazite gemstone information [WWW Document], n.d. URL https://www.gemdat.org/gem-2750.html (accessed 1.10.24).

Papadopoulos, A., Tzifas, I.T., Tsikos, H., 2019. The potential for REE and associated critical metals in coastal sand (placer) deposits of Greece: A review. Minerals 9, 469.

Resources | Free Full-Text | Rare Earth Element Deposits of Alkaline Igneous Rocks [WWW Document], n.d. URL https://www.mdpi.com/2079-9276/6/3/34 (accessed 11.21.23).

Sadeghbeigi, R., 2020. Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units. Butterworth-Heinemann.

Setlur, A.A., 2009. Phosphors for LED-based solid-state lighting. Electrochem. Soc. Interface 18, 32.

Smith, M.P., Campbell, L.S., Kynicky, J., 2015. A review of the genesis of the world class Bayan Obo Fe–REE–Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions. Ore Geol. Rev. 64, 459–476. https://doi.org/10.1016/j.oregeorev.2014.03.007

Smith, M.P., Moore, K., Kavecsánszki, D., Finch, A.A., Kynicky, J., Wall, F., 2016. From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements. Geosci. Front., Special Issue: Giant Mineral Deposits 7, 315–334. https://doi.org/10.1016/j.gsf.2015.12.006

Takeda, O., Okabe, T.H., 2014. Current Status on Resource and Recycling Technology for Rare Earths. Metall. Mater. Trans. E 1, 160–173. https://doi.org/10.1007/s40553-014-0016-7

Traversa, G., Gomes, C.B., Brotzu, P., Buraglini, N., Morbidelli, L., Principato, M.S., Ronca, S., Ruberti, E., 2001. Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Araxá complex (Alto Paranaíba Province, Brazil). An. Acad. Bras. Ciênc. 73, 71–98. https://doi.org/10.1590/S0001-37652001000100008

Wall, F., 2014. Rare earth elements, in: Critical Metals Handbook. John Wiley & Sons, Ltd, pp. 312–339. https://doi.org/10.1002/9781118755341.ch13

Wallington, T.J., Alonso, E., Everson, M.P., Field, F.R., Gruber, P.W., Keoleian, G.A., Kesler, S.E., Kirchain, R.E., Medina, P.A., Kolinski Morris, E.K., 2013. Sustainable mobility: lithium, rare earth elements, and electric vehicles, in: Proceedings of the FISITA 2012 World Automotive Congress: Volume 3: Future Automotive Powertrains (I). Springer, pp. 155–166.

Weitkamp, J., 2000. Zeolites and catalysis. Solid State Ion. 131, 175–188. https://doi.org/10.1016/S0167-2738(00)00632-9

Willett, G.C., Duncan, R.K., Rankin, R.A., 1986. Geology and economic evaluation of the Mt Weld carbonatite, Laverton, Western Australia. Int. Kimberl. Conf. Ext. Abstr. 4, 97–99. https://doi.org/10.29173/ikc1086

Wu, C., 2008. Bayan Obo Controversy: Carbonatites versus Iron Oxide-Cu-Au-(REE-U). Resour. Geol. 58, 348–354. https://doi.org/10.1111/j.1751-3928.2008.00069.x

Wübbeke, J., 2013. Rare earth elements in China: Policies and narratives of reinventing an industry. Resour. Policy 38, 384–394. https://doi.org/10.1016/j.resourpol.2013.05.005

Xiao, W., Kusky, T., 2009. Geodynamic processes and metallogenesis of the Central Asian and related orogenic belts: Introduction. Gondwana Res. 16, 167–169. https://doi.org/10.1016/j.gr.2009.05.001

Xu, G., Yano, J., Sakai, S., 2016. Scenario analysis for recovery of rare earth elements from end-of-life vehicles. J. Mater. Cycles Waste Manag. 18, 469–482.

Yang, K., Fan, H., Pirajno, F., Li, X., 2019. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite. Geology 47, 1198–1202. https://doi.org/10.1130/G46674.1

Yang, K.-F., Fan, H.-R., Santosh, M., Hu, F.-F., Wang, K.-Y., 2011. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: Constraints for the mechanism of super accumulation of rare earth elements. Ore Geol. Rev. 40, 122–131. https://doi.org/10.1016/j.oregeorev.2011.05.008

Zhao, X., Li, N.-B., Huizenga, J.M., Zhang, Q.-B., Yang, Y.-Y., Yan, S., Yang, W., Niu, H.-C., 2022. Granitic magma evolution to magmatic-hydrothermal processes vital to the generation of HREEs ion-adsorption deposits: Constraints from zircon texture, U-Pb geochronology, and geochemistry. Ore Geol. Rev. 146, 104931.

Zheng, X., Liu, Y., 2019. Mechanisms of element precipitation in carbonatite-related rare-earth element deposits: Evidence from fluid inclusions in the Maoniuping deposit, Sichuan Province, southwestern China. Ore Geol. Rev. 107, 218–238. https://doi.org/10.1016/j.oregeorev.2019.02.021

Zhongxin, Y., Ge, B., Chenyu, W., Zhongqin, Z., Xianjiang, Y., 1992. Geological features and genesis of the Bayan Obo REE ore deposit, Inner Mongolia, China. Appl. Geochem., Minerals for Future Materials 7, 429–442. https://doi.org/10.1016/0883-2927(92)90004-M

Zhou, B., Li, Z., Zhao, Y., Zhang, C., Wei, Y., 2016. Rare Earth Elements supply vs. clean energy technologies: new problems to be solve. Gospod. Surowcami Miner. 32, 29–44.

Ανυφαντάκης, Γ.Ε., 2021. Σπάνιες γαίες και εφαρμογές στην σύγχρονη οικονομία. Πτυχιακή διπλωματική εργασία, Τμήμα Πολιτικών Μηχανικών, Πανεπιστήμιο Θεσσαλίας, 129 σελ..

Μέλφος Β. (2020). Οι σπάνιες γαίες και η γεωπολιτική θέση της Ελλάδας. Ελληνικό Πανόραμα, 124, 2-13.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.