
Κρίσιμες ορυκτές πρώτες ύλες στις επαναφορτιζόμενες μπαταρίες: Κοιτάσματα κοβαλτίου, νικελίου, λιθίου = Critical mineral raw materials in rechargeable batteries: Cobalt, Nickel, Lithium deposits
Περίληψη
Στη σύγχρονη βιομηχανική κοινωνία όλες οι ανθρώπινες δραστηριότητες στηρίζονται στην κατανάλωση ενέργειας (οικιακές συσκευές, μεταφορές, βιομηχανία). Είναι τόσο σημαντική που η αύξηση της κατανάλωσής της αποτελεί δείκτη ευημερίας των νοικοκυριών και της κοινωνίας. Η μεγάλη ζήτηση σε ενέργεια οδήγησε σε μαζική χρήση των ορυκτών καυσίμων με αποτέλεσμα την αύξηση των αερίων του θερμοκηπίου και ιδιαίτερα του CO2. H λύση στο φαινόμενο του θερμοκηπίου, οδηγεί την κοινωνία στην αναζήτηση ανανεώσιμων πηγών ενέργειας (αιολική, ηλιακή). Αυτό απαιτεί την ανάπτυξη συσκευών αποθήκευσης της παραγόμενης ενέργειας ώστε η παραγωγή και η ζήτηση να μπορούν να συγχρονίζονται. Στην αυτοκινητοβιομηχανία, η τάση προς την ηλεκτροκίνηση, απαιτεί την κατασκευή συσκευών με μεγάλη χωρητικότητα και ισχύ που να έχουν όσο το δυνατόν μικρότερο όγκο και βάρος. Σημαντικό ρόλο σε αυτή την κατεύθυνση παίζουν οι επαναφορτιζόμενες μπαταρίες. Κάθε μπαταρία αποτελείται από τα ηλεκτρόδια της ανόδου και της καθόδου, από τον ηλεκτρολύτη και τον διαχωριστή. Από όλα τα μέταλλα που έχουν χρησιμοποιηθεί ως υλικά για την κατασκευή των ηλεκτροδίων είτε με τη μορφή οξειδίων είτε με τη μορφή κραμάτων τα σημαντικότερα είναι το νικέλιο (Ni), το κοβάλτιο (Co) και το λίθιο (LI). Σταδιακά οι μπαταρίες ιόντων λιθίου επικρατούν, όμως το νικέλιο και το κοβάλτιο συνεχίζουν να χρησιμοποιούνται σε αυτές τις μπαταρίες ως ενώσεις ή ως κράματα μαζί με το λίθιο, γι’ αυτό η ζήτηση και η τιμή των τριών αυτών μετάλλων έχει αυξηθεί πολύ, ιδιαίτερα μετά το 2010. Η εξόρυξη κοβαλτίου ξεπερνά τους 150.000 τόνους. Το 63% της παγκόσμιας παραγωγής εξορύσσετε από στρωματόμορφα βασικά - υπερβασικά πετρώματα Cu-Co. τα μεγαλύτερα και πλουσιότερα κοιτάσματα σε Cu-Co να βρίσκονται στην κεντρική Αφρική με τη Λαϊκή Δημοκρατία του Κονγκό (DRC) να συμμετέχει σε ποσοστό περίπου 60% της παγκόσμιας παραγωγής. Η μεγαλύτερη παραγωγή λιθίου (περίπου 60%) προέρχεται από άλμη, με τις μεγαλύτερες ποσότητές της να εντοπίζονται μεταξύ της Χιλής, της Βολιβίας και της Αργεντινής (τρίγωνο του λιθίου). Το νικέλιο, εντοπίζεται σε πυριγενή βασικά και υπερβασικά πετρώματα και συνήθως συνυπάρχει με (Cu) και (Co). Μέχρι το 2009 η Ρωσία και ο Καναδάς είχαν τη μεγαλύτερη παραγωγή Ni προερχόμενο από σουλφίδια. Μετά το 2010 η Ινδονησία πλησιάζει 50% της παγκόσμιας παραγωγής που προέρχεται από λατερίτες.
In modern industrial society, all human activities rely on energy consumption (household appliances, transport, industry). It is so important, that an increase in its consumption is an indicator of the well-being of households and society. The high demand for energy has led to the massive use of fossil fuels resulting in an increase in greenhouse gases and especially CO2. The solution to the greenhouse effect leads society to search for renewable energy sources (wind, solar). This requires the development of storage devices for the generated energy so that production and demand can be synchronized. The trend towards electrical cars requires the construction of devices with high capacity and power with as much minimum volume and weight as possible. Rechargeable batteries play an important role in this direction. Each battery consists of the anode and cathode electrodes, the electrolyte and the separator. Of all the metals that have been used as materials for the construction of electrodes either in the form of oxides or in the form of alloys, the most important ones are Ni, Co and Li. Lithium-ion batteries tend to replace all the rest rechargeable batteries, but Ni and Co continue to be used as compounds or alloys along with lithium, so the demand and price of these three metals has increased greatly, especially after 2010. Cobalt mining exceeds 150,000 tons. Almost 63% of global production is mined from stratiform basic - ultrabasic Cu-Co rocks. The largest and richest Cu-Co deposits are in central Africa with the Democratic Republic of Congo (DRC) accounting for approximately 60% of global cobalt production. Most lithium production (about 60%) comes from brine, larger quantities, most of which are located between Chile, Bolivia and Argentina (lithium triangle). Nickel is found in igneous basic and ultrabasic rocks and usually coexists with (Cu) and (Co). Until 2009 Russia and Canada had the largest production of Ni from sulfides. After 2010 Indonesia approaches 50% of the world's nickel production from laterites.
Αναφορές
Abarro, J. M. E., Gavan, J. N. L., Loresca, D. E. D., Ortega, M. A. A., Esparcia Jr, E. A., & Paraggua, J. A. D. (2023). A Tale of Nickel-Iron Batteries: Its Resurgence in the Age of Modern Batteries. Batteries, 9(7), 383.
Abdalla, A. H., Oseghale, C. I., Gil Posada, J. O., & Hall, P. J. (2016). Rechargeable nickel–iron batteries for large‐scale energy storage. IET Renewable Power Generation, 10(10), 1529-1534.
Abraham, K. M. (2015). Prospects and limits of energy storage in batteries. The journal of physical chemistry letters, 6(5), 830-844.
Adams, S., Appetechi, G. B., Avdeev, M. V., Balbuena, P. B., Bardt, H., Berendes, E., ... & Zosel, J. (2018). Electrochemical storage materials: from crystallography to manufacturing technology (pp. 41-73). Walter de Gruyter GmbH & Co KG.
Agarwal, D. C. (2004). Nickel and nickel alloys. Handbook of Advanced Materials: Enabling New Designs, 217-270.
Ahmad, T., & Zhang, D. (2020). A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Reports, 6, 1973-1991.
Alessio, B. L., Collins, A. S., Siegfried, P., Glorie, S., De Waele, B., Payne, J., & Archibald, D. B. (2019). Neoproterozoic tectonic geography of the south-east Congo Craton in Zambia as deduced from the age and composition of detrital zircons. Geoscience Frontiers, 10(6), 2045-2061.
Alves Dias, P., Blagoeva, D., Pavel, C., & Arvanitidis, N. (2018). Cobalt: demand-supply balances in the transition to electric mobility. Publications Office of the European Union, 10, 97710.
Asadrokht, M., & Zakeri, A. (2022). Chemo-physical concentration of a Low-grade nickel laterite ore. Minerals Engineering, 178, 107398.
Bandura, A. V., & Lvov, S. N. (2006). The ionization constant of water over wide ranges of temperature and density. Journal of physical and chemical reference data, 35(1), 15-30.
Bahl Chambi, G. J. (2021). Technology Roadmapping for Energy Storage using ZEBRA Batteries (Doctoral dissertation, Massachusetts Institute of Technology).
Barceloux, D. G., & Barceloux, D. (1999). Cobalt. Journal of Toxicology: Clinical Toxicology, 37(2), 201-216.
Bide, T., Hetherington, L., & Gunn, G. (2008). Nickel.
Born, A. C. I. (1996). The Enigmatic'Battery of Baghdad'. SKEPTICAL INQUIRER, 31.
Bos, V., & Forget, M. (2021). Global Production Networks and the lithium industry: A Bolivian perspective. Geoforum, 125, 168-180.
Bowell, R. J., Lagos, L., de los Hoyos, C. R., & Declercq, J. (2020). Classification and characteristics of natural lithium resources. Elements, 16(4), 259-264.
Brisse, A. L., Stevens, P., Toussaint, G., Crosnier, O., & Brousse, T. (2018). Ni(OH)2 and NiO based composites: battery type electrode materials for hybrid supercapacitor devices. Materials, 11(7), 1178.
Brown, T. J., Bide, T., Walters, A. S., Idoine, N. E., Shaw, R. A., Hannis, S. D., ... & MacKenzie, A. C. (2011). World mineral production 2005-09. British Geological Survey.
Bull, S. R. (2001). Renewable energy today and tomorrow. Proceedings of the IEEE, 89(8), 1216-1226.
Cailteux, J. L. H., Kampunzu, A. B., Lerouge, C., Kaputo, A. K., & Milesi, J. P. (2005). Genesis of sediment-hosted stratiform copper–cobalt deposits, central African
Copperbelt. Journal of African Earth Sciences, 42(1-5), 134-158.
Cailteux, J. L. H., Kampunzu, A. B., & Lerouge, C. (2007). The Neoproterozoic Mwashya–Kansuki sedimentary rock succession in the central African Copperbelt, its Cu–Co mineralisation, and regional correlations. Gondwana Research, 11(3), 414-431.
Cailteux, J. L., Muchez, P., De Cuyper, J., Dewaele, S., & De Putter, T. (2018). Origin of the megabreccias in the Katanga Copperbelt (DR Congo). Journal of African Earth Sciences, 140, 76-93.
Cairns, E. J. (2004). Batteries, overview. Encyclopedia of Energy, 1, 117-126.
Castillo, A., & Gayme, D. F. (2014). Grid-scale energy storage applications in renewable energy integration: A survey. Energy Conversion and Management, 87, 885-894.
Chattopadhyay, J., Pathak, T. S., & Santos, D. M. (2023). Applications of polymer electrolytes in lithium-ion batteries: a review. Polymers, 15(19), 3907.
Chen, W., Jin, Y., Zhao, J., Liu, N., & Cui, Y. (2018). Nickel-hydrogen batteries for large-scale energy storage. Proceedings of the National Academy of Sciences, 115(46), 11694-11699.
Crundwell, F. K., Du Preez, N. B., & Knights, B. D. H. (2020). Production of cobalt from copper-cobalt ores on the African Copperbelt–An overview. Minerals Engineering, 156, 106450.
Dalvi, A. D., Bacon, W. G., & Osborne, R. C. (2004, March). The past and the future of nickel laterites. In PDAC 2004 International Convention, Trade Show & Investors Exchange (pp. 1-27). The prospectors and Developers Association of Canada Toronto.
Daniel, C., Mohanty, D., Li, J., & Wood, D. L. (2014, June). Cathode materials review. In AIP Conference Proceedings(Vol. 1597, No. 1, pp. 26-43). American Institute of Physics.
De Waele, B., Liégeois, J. P., Nemchin, A. A., & Tembo, F. (2006). Isotopic and geochemical evidence of Proterozoic episodic crustal reworking within the Irumide Belt of south-central Africa, the southern metacratonic boundary of an Archaean Bangweulu Craton. Precambrian Research, 148(3-4), 225-256.
Dehaine, Q., Tijsseling, L. T., Glass, H. J., Törmänen, T., & Butcher, A. R. (2021). Geometallurgy of cobalt ores: A review. Minerals Engineering, 160, 106656.
Dehghani-Sanij, A. R., Tharumalingam, E., Dusseault, M. B., & Fraser, R. (2019). Study of energy storage systems and environmental challenges of batteries. Renewable and Sustainable Energy Reviews, 104, 192-208.
Deng, D. (2015). Li‐ion batteries: basics, progress, and challenges. Energy Science & Engineering, 3(5), 385-418.
Dewaele, S., Muchez, P., Vets, J., Fernandez-Alonzo, M., & Tack, L. (2006). Multiphase origin of the Cu–Co ore deposits in the western part of the Lufilian fold-and-thrust belt, Katanga (Democratic Republic of Congo). Journal of African Earth Sciences, 46(5), 455-469.
Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and sustainable energy reviews, 4(2), 157-175.
Ding, Y., Cano, Z. P., Yu, A., Lu, J., & Chen, Z. (2019). Automotive Li-ion batteries: current status and future perspectives. Electrochemical Energy Reviews, 2, 1-28.
Dixon, J., Nakashima, I., Arcos, E. F., & Ortúzar, M. (2009). Electric vehicle using a combination of ultracapacitors and ZEBRA battery. IEEE transactions on industrial electronics, 57(3), 943-949.
Dong, C., & Xu, L. (2017). Cobalt-and cadmium-based metal–organic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries. ACS Applied Materials & Interfaces, 9(8), 7160-7168.
Eckstrand, O. R., & Hulbert, L. J. (2007). Magmatic nickel-copper-platinum group element deposits. Mineral deposits of canada: a synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods: geological association of Canada, mineral deposits division, Special Publication, 5, 205-222.
Elias, M. (2002). Nickel laterite deposits-geological overview, resources and exploitation. Giant ore deposits: Characteristics, genesis and exploration. CODES Special Publication, 4, 205-220.
Etacheri, V., Marom, R., Elazari, R., Salitra, G., & Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4(9), 3243-3262.
Evans, A., Strezov, V., & Evans, T. J. (2012). Assessment of utility energy storage options for increased renewable energy penetration. Renewable and sustainable energy
reviews, 16(6), 4141-4147.
Faessler, B. (2021). Stationary, second use battery energy storage systems and their applications: A research review. Energies, 14(8), 2335.
Feng, F., Geng, M., & Northwood, D. O. (2001). Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review. International Journal of Hydrogen Energy, 26(7), 725-734.
Gao, T. M., Fan, N., Chen, W., & Dai, T. (2023). Lithium extraction from hard rock lithium ores (spodumene, lepidolite, zinnwaldite, petalite): Technology, resources, environment and cost. China Geology, 6(1), 137-153.
Goonan, T. G. (2012). Lithium use in batteries (No. 1371). US Geological Survey.
Goudsblom, J. (2012). Energy and civilization. International Review of Sociology, 22(3), 405-411.
Grandpierre, A. (2004). Entropy and information of human organisms and the nature of life. Frontier Perspectives, 13(2), 16-21.
Gueguen, B., Rouxel, O., Ponzevera, E., Bekker, A., & Fouquet, Y. (2013). Nickel isotope variations in terrestrial silicate rocks and geological reference materials measured by MC‐ICP‐MS. Geostandards and Geoanalytical Research, 37(3), 297-317.
Gulley, A. L. (2022). One hundred years of cobalt production in the Democratic Republic of the Congo. Resources Policy, 79, 103007.
Haest, M., & Muchez, P. (2011). Stratiform and vein-type deposits in the Pan-African orogen in central and southern Africa: evidence for multiphase
mineralisation. Geologica Belgica.
Hairston Jr, N. G., & Hairston Sr, N. G. (1993). Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. The American Naturalist, 142(3), 379-411.
Hariprakash, B., Martha, S. K., Hegde, M. S., & Shukla, A. K. (2005). A sealed, starved-electrolyte nickel–iron battery. Journal of Applied Electrochemistry, 35, 27-32.
Helmers, E., & Marx, P. (2012). Electric cars: technical characteristics and environmental impacts. Environmental Sciences Europe, 24, 1-15.
Henckens, M. L. C. M., & Worrell, E. (2020). Reviewing the availability of copper and nickel for future generations. The balance between production growth, sustainability and recycling rates. Journal of Cleaner Production, 264, 121460.
Heth, C. L. (2019). Energy on demand: A brief history of the development of the battery. Substantia, 3(2), 77-86.
Heuberger, S., & Morgenthaler, J. (2023). Lithium in geothermal brines, status report on the current situation in Switzerland and in neighbouring countries (p. 43). Switzerland: Technical report Georesources Switzerland Group ETH Zurich.
Horn, S., Gunn, A. G., Petavratzi, E., Shaw, R. A., Eilu, P., Törmänen, T., ... & Wall, F. (2021). Cobalt resources in Europe and the potential for new discoveries. Ore Geology Reviews, 130, 103915.
Kessel, D. G. (2000). Global warming-facts, assessment, countermeasures. Journal of Petroleum Science and Engineering, 26(1-4), 157-168.
Keyser, P. T. (1993). The purpose of the Parthian galvanic cells: a first-century AD electric battery used for analgesia. Journal of Near Eastern Studies, 52(2), 81-98.
Khalili, S., Rantanen, E., Bogdanov, D., & Breyer, C. (2019). Global transportation demand development with impacts on the energy demand and greenhouse gas emissions in a climate-constrained world. Energies, 12(20), 3870.
Kierczak, J., Pietranik, A., & Pędziwiatr, A. (2021). Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review. Science of The Total Environment, 755, 142620.
Kim, H., Jeong, G., Kim, Y. U., Kim, J. H., Park, C. M., & Sohn, H. J. (2013). Metallic anodes for next generation secondary batteries. Chemical Society Reviews, 42(23), 9011-9034.
Koehler, U. (2019). General overview of non-lithium battery systems and their safety issues. Electrochemical Power Sources: Fundamentals, Systems, and Applications, 21-46.
Konnunaho, J., Eilu, P., Törmänen, T., Karinen, T., Ranta, J. P., Rasilainen, K., ... & Dehaine, Q. (2023). A mining industry overview of cobalt in Finland: exploration, deposits and utilization. Geoenergy, 1(1), geoenergy2023-016.
Krepelková, M. (2017). Evolution of batteries: From experiments to everyday usage. In 21st International Student Conference on Electrical Engineering.
Kurtulmuş, Z. N., & Karakaya, A. (2023). Review of lithium-ion, fuel cell, sodium-beta, nickel-based and metal-air battery technologies used in electric vehicles. International Journal of Energy Applications and Technologies, 10(2), 103-113.
Lawley, C. J., Tschirhart, V., Smith, J. W., Pehrsson, S. J., Schetselaar, E. M., Schaeffer, A. J., ... & Eglington, B. M. (2021). Prospectivity modelling of Canadian magmatic Ni (±Cu±Co±PGE) sulphide mineral systems. Ore Geology Reviews, 132, 103985.
Layton-Matthews, D., Lesher, C. M., Liwanag, J., Halden, N., Burnham, O. M., Hulbert, L., ... & Keays, R. R. (2011). Mineralogy, geochemistry, and genesis of komatiite-associated Ni-Cu-PGE mineralization in the Thompson nickel belt, Manitoba.
Leyssens, L., Vinck, B., Van Der Straeten, C., Wuyts, F., & Maes, L. (2017). Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology, 387, 43-56.
Lewandowski, A., & Świderska-Mocek, A. (2009). Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. Journal of Power sources, 194(2), 601-609.
Li, G., Lu, X., Kim, J. Y., Meinhardt, K. D., Chang, H. J., Canfield, N. L., & Sprenkle, V. L. (2016). Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density. Nature communications, 7(1), 10683.
Li, M., & Lu, J. (2020). Cobalt in lithium-ion batteries. Science, 367(6481), 979-980.
Lightfoot, P. C., & Evans-Lamswood, D. (2015). Structural controls on the primary distribution of mafic–ultramafic intrusions containing Ni–Cu–Co–(PGE) sulfide mineralization in the roots of large igneous provinces. Ore Geology Reviews, 64, 354-386.
Lin, M. F., Singh, N., Liang, S., Mo, M., Nunes, J. P. F., Ledbetter, K., ... & Wang, X. J. (2021). Imaging the short-lived hydroxyl-hydronium pair in ionized liquid water. Science, 374(6563), 92-95.
Liu, B., Liu, X., Fan, X., Ding, J., Hu, W., & Zhong, C. (2020). 120 Years of nickel-based cathodes for alkaline batteries. Journal of Alloys and Compounds, 834, 155185.
Logan, E. R., & Dahn, J. R. (2020). Electrolyte design for fast-charging Li-ion batteries. Trends in Chemistry, 2(4), 354-366.
Ma, X., Yu, J., Hu, Y., Texter, J., & Yan, F. (2023). Ionic liquid/poly (ionic liquid)-based electrolytes for lithium batteries. Industrial Chemistry & Materials, 1(1), 39-59.
Mambwe, P., Delpomdor, F., Lavoie, S., Mukonki, P., Batumike, J., & Muchez, P. (2020). Sedimentary evolution and stratigraphy of the~ 765–740 Ma Kansuki-Mwashya
platform succession in the Tenke-Fungurume Mining District, Democratic Republic of Congo. Geologica Belgica.
Mambwe, P., Shengo, M., Kidyanyama, T., Muchez, P., & Chabu, M. (2022). Geometallurgy of cobalt black ores in the Katanga Copperbelt (Ruashi cu-co deposit): a new proposal for enhancing cobalt recovery. Minerals, 12(3), 295.
Mambwe, P., Swennen, R., Cailteux, J., Mumba, C., Dewaele, S., & Muchez, P. (2023). Review of the origin of breccias and their resource potential in the central Africa Copperbelt. Ore Geology Reviews, 156, 105389.
Mansur, E. T., Sandstad, J. S., Slagstad, T., Miranda, A. C. R., Dare, S. A., & Nilsson, L. P. (2023). Geology, sulphide geochemistry and geochronology of the Romsås Ni-Cu-Co mineralisation, Norway: Implications for ore formation and regional prospectivity. Lithos, 454, 107244.
Marcus, R. A. (1956). On the theory of oxidation‐reduction reactions involving electron transfer. I. The Journal of chemical physics, 24(5), 966-978.
Master, S., Rainaud, C., Armstrong, R. A., Phillips, D., & Robb, L. (2005). Provenance ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with implications for basin evolution. Journal of African Earth Sciences, 42(1-5), 41-60.
Master, S., & Wendorff, M. (2011). Chapter 12 Neoproterozoic glaciogenic diamictites of the Katanga Supergroup, Central Africa. Geological Society, London, Memoirs, 36(1), 173-184.
Meutzner, F., & de Vivanco, M. U. (2014, June). Electrolytes-technology review. In AIP Conference Proceedings (Vol. 1597, No. 1, pp. 185-195). American Institute of Physics.
Mohajan, H. (2011). Greenhouse gas emissions increase global warming.
Muchez, P., Vanderhaeghen, P., El Desouky, H., Schneider, J., Boyce, A., Dewaele, S., & Cailteux, J. (2008). Anhydrite pseudomorphs and the origin of stratiform Cu–Co ores in the Katangan Copperbelt (Democratic Republic of Congo). Mineralium Deposita, 43(5), 575-589.
Muslimin, S., Nawawi, Z., Suprapto, B. Y., & Dewi, T. (2022, February). Comparison of batteries used in electrical vehicles (A Review). In 5th FIRST T1 T2 2021 International Conference (FIRST-T1-T2 2021) (pp. 421-425). Atlantis Press https://doi.org/10.2991/ahe.k.220205.074.
Mutarraf, M. U., Guan, Y., Xu, L., Su, C. L., Vasquez, J. C., & Guerrero, J. M. (2022). Electric cars, ships, and their charging infrastructure–A comprehensive review. Sustainable Energy Technologies and Assessments, 52, 102177.
Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: present and future. Materials today, 18(5), 252-264.
O'sullivan, T. M., Bingham, C. M., & Clark, R. E. (2006, May). Zebra battery technologies for all electric smart car. In International Symposium on Power Electronics,
Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006. (p. 243). IEEE.
Ostroushko, Y. I. (1962). Lithium, its chemistry and technology. US Atomic Energy Commission, Division of Technical Information.
Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and sustainable energy reviews, 15(3), 1513-1524.
Pasten, C., & Santamarina, J. C. (2012). Energy and quality of life. Energy Policy, 49, 468-476.
Petavratzi, E., Gunn, G., & Kresse, C. (2019). Cobalt. BGS Commod. Rev, 37, 201-2016.
Porter, T. M. (2016). Regional tectonics, geology, magma chamber processes and mineralisation of the Jinchuan nickel-copper-PGE deposit, Gansu Province, China: A review. Geoscience Frontiers, 7(3), 431-451.
Qi, S., Wu, D., Dong, Y., Liao, J., Foster, C. W., O'Dwyer, C., ... & Ma, J. (2019). Cobalt-based electrode materials for sodium-ion batteries. Chemical Engineering Journal, 370, 185-207.
Quast, K., Connor, J. N., Skinner, W., Robinson, D. J., & Addai-Mensah, J. (2015). Preconcentration strategies in the processing of nickel laterite ores Part 1: Literature review. Minerals Engineering, 79, 261-268.
Rachidi, N. R., Nwaila, G. T., Zhang, S. E., Bourdeau, J. E., & Ghorbani, Y. (2021). Assessing cobalt supply sustainability through production forecasting and implications for green energy policies. Resources Policy, 74, 102423.
Rainaud, C., Master, S., Armstrong, R. A., & Robb, L. J. (2005). Geochronology and nature of the Palaeoproterozoic basement in the Central African Copperbelt (Zambia and the Democratic Republic of Congo), with regional implications. Journal of African Earth Sciences, 42(1-5), 1-31.
Rao, G. V. (2000). Nickel and Cobalt ores: flotation. Encyclopedia of Separation Science, 67, 3491-500.
Retallack, G. J. (2010). Lateritization and bauxitization events. Economic Geology, 105(3), 655-667.
Rozelle, P. L., Shi, F., Rezaee, M., & Pisupati, S. V. (2020). Final Report on.
Rosenberg, S. J. (1968). Nickel and its alloys (Vol. 106). US Department of Commerce, National Bureau of Standards.
Satyanarayana, D. V. V., & Eswara Prasad, N. (2017). Nickel-based superalloys. Aerospace Materials and Material Technologies: Volume 1: Aerospace Materials, 199-228.
Sayed, E. T., Olabi, A. G., Alami, A. H., Radwan, A., Mdallal, A., Rezk, A., & Abdelkareem, M. A. (2023). Renewable energy and energy storage systems. Energies, 16(3), 1415.
Shengo, M. L., Kime, M. B., Mambwe, M. P., & Nyembo, T. K. (2019). A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. Journal of Sustainable Mining, 18(4), 226-246.
Shevkunov, S. V. (2013). Computer simulation of dissociative equilibrium in aqueous NaCl electrolyte with account for polarization and ion recharging. Ionization mechanism. Russian Journal of Electrochemistry, 49, 238-251.
Shortland, A. J., Tite, M. S., & Ewart, I. (2006). Ancient exploitation and use of cobalt alums from the Western Oases of Egypt. Archaeometry, 48(1), 153-168.
Šimić, Z., Topić, D., Knežević, G., & Pelin, D. (2021). Battery energy storage technologies overview. International journal of electrical and computer engineering systems, 12(1), 53-65.
Song, J. Y., Wang, Y. Y., & Wan, C. C. (1999). Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of power sources, 77(2), 183-197.
Srinivasan, V. (2008, September). Batteries for vehicular applications. In AIP conference proceedings (Vol. 1044, No. 1, pp. 283-296). American Institute of Physics.
Stopić, S. R., & Friedrich, B. G. (2016). Hydrometallurgical processing of nickel lateritic ores. Vojnotehnicki glasnik/Military Technical Courier, 64(4), 1033-1047.
Szlugaj, J., & Radwanek-Bąk, B. (2022). Lithium sources and their current use. Gospodarka Surowcami Mineralnymi, 38(1).
Tadesse, B., Makuei, F., Albijanic, B., & Dyer, L. (2019). The beneficiation of lithium minerals from hard rock ores: A review. Minerals Engineering, 131, 170-184.
Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. nature, 414(6861), 359-367.
Tardy, Y. (1992). Diversity and terminology of lateritic profiles. In Developments in earth surface processes (Vol. 2, pp. 379-405). Elsevier.
Thaller, L. H., & Zimmerman, A. H. (2003). Overview of the design, development, and application of nickel-hydrogen batteries (No. E-13595).
Trickett, D. (1998). Current status of health and safety issues of sodium/metal chloride (ZEBRA) batteries (No. NREL/TP-460-25553). National Renewable Energy Lab.(NREL), Golden, CO (United States).
Verma, P., Maire, P., & Novák, P. (2010). A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 55(22), 6332-6341.
Volta, A. (1800). XVII. On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, FRS Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPR S. Philosophical transactions of the Royal Society of London, (90), 403-431.
Von Handorf, D. R., & Crotty, D. E. (2002). The Baghdad Battery: Myth or reality?. Plating and surface finishing, 89(5), 84-87.
Voskoboynik, D. M., & Andreucci, D. (2022). Greening extractivism: Environmental discourses and resource governance in the ‘Lithium Triangle’. Environment and planning E: Nature and space, 5(2), 787-809.
Wang, M., Zhang, F., Lee, C. S., & Tang, Y. (2017). Low‐cost metallic anode materials for high performance rechargeable batteries. Advanced Energy Materials, 7(23), 1700536.
Wang, L., Wang, J., Wang, L., Zhang, M., Wang, R., & Zhan, C. (2022). A critical review on nickel-based cathodes in rechargeable batteries. International Journal of Minerals, Metallurgy and Materials, 29(5), 925-941.
Wendorff, M. (2000). Revision of the stratigraphical position of the ‘Roches Argilo-Talqueuses’(RAT) in the Neoproterozoic Katangan Belt, south Congo. Journal of African Earth Sciences, 30(3), 717-726.
Wendorff, M. (2022). New exploration criteria for ‘megabreccia’-hosted Cu-Co deposits in the Katangan belt, central Africa. In Mineral Deposits at the Beginning of the 21st
Century (pp. 19-22). CRC Press.
Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors?. Chemical reviews, 104(10), 4245-4270.
Wolfram, C., Shelef, O., & Gertler, P. (2012). How will energy demand develop in the developing world?. Journal of Economic Perspectives, 26(1), 119-138.
Xia, R., Zhao, K., Kuo, L. Y., Zhang, L., Cunha, D. M., Wang, Y., ... & Huijben, M. (2022). Nickel niobate anodes for high rate lithium‐ion batteries. Advanced energy materials, 12(1), 2102972.
Xu, J., Lin, F., Doeff, M. M., & Tong, W. (2017). A review of Ni-based layered oxides for rechargeable Li-ion batteries. Journal of Materials Chemistry A, 5(3), 874-901.
Xu, Y., & Mulder, F. M. (2021). Non-alloy Mg anode for Ni-MH batteries: Multiple approaches towards a stable cycling performance. international journal of hydrogen energy, 46(37), 19542-19553.
Yang, J., Chen, J., Wang, Z., Wang, Z., Zhang, Q., He, B., ... & Wei, L. (2021). High‐capacity iron‐based anodes for aqueous secondary nickel−iron batteries: recent progress and prospects. ChemElectroChem, 8(2), 274-290.
Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in carbon capture (pp. 3-28). Woodhead Publishing.
Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., & Zhang, J. (2015). A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 44(21), 7484-7539.
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.