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MepiAnyn

2Tnv TTapouoa epyacia xpnoidoTtrolouvTal TEXVNTA veupwvikd diktua (TNA) kal 0 oTaTIoTIKOG
0eikTNG Adyog ouxvotnTag (AZ) yia Tnv dnIoupyia XApPTWV EKTINNONG ETTIOEKTIKOTNTAG OF
ekdNAwan KatoAioBrnoewv o€ €0viK KAipaka. Ta dedouéva TwV PUOIKWY TTapayovTwy Ol
oTToiol  XpnoldoTtrolouvTal aviAouvTal atrd €BVIKEG, €UPWTTAIKEG Kal TTAayKOOMIEG BAoelg
0edopévwy. AQopouv OTO UWOUETPO, OTO PECO €TAOIO UWog Bpoxng, atn AIBoAoyia, otnv
KAAUWN ynG, Kal oTnv OEIOUIKN €TTITAXUvOn. O QUOIKOi TTapAYoVTEG IEpapXnOnKav, YEow
TEXVNTWV veupwviKwy OIkTUwv (TNA), autoopyavouuevwy xaptwv Kohonen (SOM) kai
YEVIKEUPEVWY  UNTPpwWwVY aAAnAettidpaong (TMA). H agloAdynon Twv atroTeAeouaTWY EBEIEE
IKAVOTTOINTIKI] CUP@QWVIA avAPeca OTOUG XAPTEG €KTiUNONG KivOUvou Kal oTn Bdon
0edouévwy CUUBAVTWY ekONAWMEVWY KATOMIOBROEwWY, Kal yia TIG dUo peBodoAoyieg, pe
MIKPR UTTEPOXH TOU AOyou ouxvoTnTag. Ta QTTOTEAECUOATA TWV XAPTWYV EKTIMNONG KIvOUvou
OuVOUAOTNKAV JE OTOIXEIO UTTO KiVOUVO yewypa@ikoU utrodbpou, (TTukvOeTnTa TTANBUCHOU,
OikTua peTagopwy, dloiknTikY dlaipean), Kal XpNOIMOTTOINONKAV WG OToIXEia £10000U YA Hid
TTPOKATOPKTIKA avAAuon diakivouveuong. To atroTéAeopa NG avaAuong oupBdaAAel otnv
Tagivounon Twyv vouwv TNG EAAGdAC kai Tnv afloAdynon Twv dIAQOPETIKWY TUNUATWY Tou
00IKOU BIKTUOU WG TTPOG TNV AVAUEVOWEVN ETTIOEKTIKOTNTA O€ KATOMOBNOCEIG.
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Abstract

In the current paper, national landslide susceptibility maps were developed in order to
recognize the most exposed regions, in Greece, using artificial neural networks (ANN) and
the statistical index frequency ratio (FR). The physical factors, necessary for running the
proposed models, are based on national, European and global datasets. These factors refer
to landscape elevation, mean annual precipitation, lithology, land cover, and seismic
acceleration. Through the use of Self Organizing Maps (SOM), ANN, and generic interaction

682
Wnoeiakh BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.lNM.O.



9° MANEAAHNIO FEQFPA®IKO ZYNEAPIO

matrix (GIM) the physical factors were ranked. This ranking is calculated in an objective and
systematic approach. The verification of results showed satisfactory agreement between the
susceptibility map and the landslide inventories for both methodologies, with a small
prevalence of (FR) model. The results obtained from the landslide susceptibility model in
integration with elements at risk, (i.e. population density, prefecture boundaries, and
transportation network), were used as input for preliminary risk assessment analysis. The
results of the preliminary analysis prioritized the prefectures and transportation network
according to potential landslide susceptibility.

Négeig KAeidia : “Extipnon EmdexkTtikétnTag KatoAiobrioewy, Texvntd Neupwvika AikTua,
Agiktng  Adyou  Zuxvotntag, Tlewypagikd  TMAnpogoplakd  Zuothuarta,  EkTipnon
Ailakivduveuong KatoAioBrioewy”

Keywords: “Landslides susceptibility mapping, Artificial Neural Network, Frequency Ratio,
Geographic Information Systems, Landslide Risk Assessment”.

1. Introduction

In recent years, even though experience was accumulated in assessing and treating
landslide hazard, our knowledge still remains fragmentary. Consequently, landslides and
related instability phenomena in natural and manmade slopes remain an engineering
geological problem to solve, and a natural hazard to confront. The study of landslide
processes and mechanisms, as well as the rating of the critical physical factors is crucial for
the selection of effective mitigation measures and the prediction of future events.

In order to estimate landslide susceptible areas for a given study area numerous
methods (qualitative and quantitative) were proposed considering landslide causal factors.
General overviews are presented in the work of (Carrara et al., 1999; Guzzetti et al., 1999).
Quialitative mapping approaches, define landslide hazard by studying the distribution of the
past landslide events. Usually the main criticism to geomorphological approach is the
subjectivity related to expert evaluation and the difficulty for reproduction. In order to
overpass subjectivity, computer algorithms were introduced through quantitative mapping
approaches. Quantitative mapping approaches, involve the mapping and the statistical
analysis of large number of parameters to derive a predictive relationship between the
environmental factors and the occurrence of landslide events. Artificial neural networks are
also very popular in landslide hazard assessment among others (Ercanoglu and Gokceoglu,
2001; Ermini et al., 2005; Melchiore et al., 2006). They offer a computational mechanism that
can acquire, represent and compute a map by taking data from one multivariate space of
information to another, given a set of landslide related data.

In Greece, landslides are a frequent natural hazard. In the last two decades, the
landslide activity is relatively high as a result of increased urbanization and the development
of transportation facilities, dams and reservoirs, industrial and urban activities, in landslide-
prone areas. The continued deforestation, the wildfires and post-fire erosion processes, the
climate change and the high potential for extreme weather conditions may also be a
contributing factor.

In this study we apply SOMs ANN and FR methods, in order to produce landslide
susceptibility maps across Greece with the use of landslide susceptibility index (LSI). Among
the aims of this paper is the rating of the importance of the environmental factors related to
landsliding. A preliminary risk analysis is also performed, by classifying administrative units
and transportation infrastructure according to potential risk to landsliding.

2. Methodology

2.1 Study area and data preparation

The study was implemented in the mainland of Greece and the islands of Crete and
Euboea (total area ~ 110000 Km?. The landslide inventory is developed from IGME (Institute
of Geological and Mineral Exploration) (Figure 1). The term landslide in this study obeys the
definition given by Cruden and Varnes (1996) and Dikau et al. (1996), (used for soil, debris
and rock travelling by sliding, flow and complex movement). Major rock fall events (a very
common failure in Greece), are also included in the examined landslide inventory.
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For the application of the proposed quantitative methods a spatial database with landslide
related factors is developed. The considered environmental factors that influence the
phenomenon were divided in three categories: topographic (slope, elevation), geological
(seismic ground acceleration, lithology), climatic (mean annual precipitation) and
anthropogenic (land cover). Elevation is obtained from a global database (SRTM-3, 2004)
with moderate resolution data. Table 1 presents the properties and scale of the influencing
factors used in this study. The evaluation and mapping of landslide hazard requires firstly
the selection of the appropriate minimum mapping unit (MMU). The selection of MMU
influences all the subsequent analysis and modeling procedure. In this paper the study area
is represented through raster layers (grid format, - with cellsize 250 x 250m).

Gridded population ~ .','.‘\ x
persons per km2 ) 0
o
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| administrative boundaries

transportation network

Landslide events

Figure 1. The study area with landslide events, and elements at risk

Table 1. Data Layers of the study area

Influencing factors type cell size
Topographic elevation SRTM data grid 250
Slope angle DEM derived grid 250
Map of max horizontal ground
Seismic acceleration acceleration, 1992 Technical Chamber polylines
of Greece

Based on data from P.P.C. for the

Mean annual precipitation period (1950-1974) polylines
Geological formations Geological Map of Greece, IGME polygons
Land cover Corine Land Cover grid 100
Landslide inventory IGME points
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3. Landslide Susceptibility and hazard mapping
3.1 Susceptibility mapping using frequency ratio (FR)

The Frequency Ratio (FR) statistical index, is the ratio of the area where mass landslides
occurred in the total study area, and is also defined as the ratio of the probabilities of a
landslide occurrence to a non-occurrence for a given factor (Lee and Talib, 2005).

Equation 1 shows the formulation of FR.

IR — (N[_J’ ] N']') __ Numberoflandslide pixel insubclass ~ Densityin subclass
A[-I ' AT

(1)

Number of landelide pixel intotal area - Dencsityin map

Table 2 presents the relationship between landslide occurrence and each factor. Each
factor was subdivided in a suitable number of relevant subclasses. Each grid data layer was
reclassified according to FR value. Six data layers were overlaid to create a final landslide
susceptibility map. Landslide susceptibility index (LSI) is calculated through the overlay
function of the selected factors (Figure 2).

Landslide Susceptibility Index
ani

[; Very Low
[:] Low
:] Medium
[ High
I Very High

transportation network

Figure 2. Landslide Susceptibility Index based on FR.

3.2 Susceptibility mapping using ANN

Landslide hazard evaluation was also performed by means of Artificial Neural Networks
(ANNs) and Generic Interaction Matrix (GIM). This kind of analysis is aimed at coupling ANN
and GIM to model the complex non linear relationships between landslides and influencing
factors for landslide susceptibility zonation, in order to identify landslide prone areas.

Self Organizing Maps (SOM), which are unsupervised neural networks, were coupled
with Generic Interaction Matrix (GIM), a methodology originally introduced by Hudson,
(1991), which dictates a hollistic and synthetic hierarchic approach when interpreting
engineering systems, such as natural or man-made slopes. Self organizing map, Kohonen
(1995) is a special type of ANN that can learn from complex, multi-dimensional data and
transform them into visually decipherable clusters. Basically, the SOM Toolbox, Vesanto,
(2000) used in this study, is a visualization, clustering and projection tool. The scope of the
application of this methodology, was the determination of the weights of the landslide
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influencing factors. The importance of the related factors, their dominance and interaction
intensity, following Hudson (1991) definition, was also estimated. A systematic landslide
inventory, Koukis and Ziourkas (1991), was manipulated through ANN and GIM, in order to
determine the weights of the landslide causal factors.

Each raster layer representing an influencing factor was subdivided in a suitable number
of relevant subclasses. Each subclass received different scores, based on a scale in which
the highest mark corresponds to that category that has the highest contribution to
landsliding. This coding is subjective and is taking into account the preexisting knowledge for
landslides frequency in each subclass and results from statistical analysis performed in a
data base of 802 events in the Greek territory (Koukis and Ziourkas, 1991). Overlay mapping
of the weighted maps, was the next step. In this case, the map subclasses occurring in each
input map were assigned different scores (Table 2). Reclassified grids were produced
according to different scores.

A very important visualization offered from SOM training algorithm through SOM Toolbox
is scatter diagrams and histograms of all the parameters involved in the analysis. Scatter
diagram can be coded and become a generic interaction matrix. A binary approach was
followed in order to code the scatter diagram. Following this methodology a cause — effect
diagram was produced. The cause effect plot refers to the influence of each parameter on
the system and the effect refers to the influence of the system to the parameter. According to
the applied methodology the most dominant parameters are, land cover, slope and mean
annual precipitation. The most interactive parameters are land cover, and slope. For a more
detailed presentation of this methodology the interested reader can refer to Ferentinou and
Sakellariou (2005, 2007), where this methodology is presented. The relative weights
calculated through SOM and GIM for the factors involved are presented in Table 3. The
weighting values and the rating of the parameters combined with the rating of the subclass
intervals of the parameters demonstrate the LSI for each map unit. The values of landslide
hazard for each map unit are calculated as the product of parameter dominance multiplied
by the reclassified grids.

According to the specific model the various thematic layers are superimposed in such a
way that each map unit of the final map (Figure 3) takes its value according to weighing
value of each factor and the score of the subclass interval. For the final product, landslide
susceptibility index (LSI) for each map unit n is:

LS| = (w,item,) + (Wzlter?]z) + ...+ (w,item ) @

Where: w; to w, are the weighting values according to ANN and GIM; item, to item, are
the items of the data base for each reclassified parameter.

4. Validation of ANN and FR Models - Results

For better comparison of the susceptibility map hazard values were stretched in 0-1 with
“1” value corresponding to maximum susceptibility value. The final output map for each
approach was divided into five categories — implementing equal interval classification — in
order to identify the following landslide hazard zones: very low — low - moderate — high — and
very high (Figure 2 and Figure 3).

In order to validate the accuracy of each map the landslide inventory was compared to
the produced LSI. The landslide susceptibility map produced according to frequency ratio
(FR) model showed 86.75 % of the events coincide with medium to very high susceptibility
class, in prediction accuracy of the total area of Greece. The ANN coupling SOM and GIM
theory showed 83.22%. Accuracies of the two models can be evaluated relatively similar.
The applied methodologies gave reasonable predictions. The areas of very high
susceptibility are more or less located in the same parts of Greece for both methods. These
areas are in the western and mountainous part of Greece (Pindos ridge and its south
expansion in Peloponnese), in Crete and some other pockets across Greece mainland.
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Table 2. Frequency ratio and scores of the landslide influential factors

Landslide Iarz\ldrscl)ifde Nr of pixels in FR = Dens
Influential Parameter pixels in parameter subclass /
Factors subclasses subclass subclasses Dens Map scores
Lithology
Metamorphic
1 formations 103 252848 0,71 2
2 Limestones 232 459608 0,87 3
Volcanic
3 formations 26 95764 0,47 1
4 Marbles 17 89554 0,33 3
5 Schists 28 46556 1,04 2
6 Neogene 255 292441 1,51 6
7 Quaternary 90 382187 0,41 5
8 Flysch 281 196065 2,48 7
9 Molasse 11 33788 0,56 6
10 Shist cherts 46 26493 3,01 4
11 Terraces 2 7663 0,45 1
Land cover
1 Artificial 79 41468 3,30 1
2 Agricultural 546 755208 1,25 3
3 Forest 199 361489 0,95 2
Little or no
4 vegetation 265 702352 0,65 3
Slope angle (o)
1 0-1 27 239533 0,19 1
2 1-2 36 122533 0,51 1
3 2-3 30 101948 0,51 1
4 3-6 108 268119 0,69 1
5 6-9 142 232500 1,05 2
6 9-12 157 205972 1,31 3
7 12-16 200 237149 1,45 7
8 16-20 169 183876 1,58 8
9 20-25 133 154001 1,49 9
10 >25 101 152109 1,14 4
Topographical
elevation (m)
1 0-100 105 335319 0,54 3
2 100-300 242 471924 0,88 3
3 300-500 178 259790 1,18 5
4 500-900 398 491887 1,40 5
5 900-1100 101 102408 1,70 4
6 1100-1400 59 136582 0,75 2
7 1400-1700 12 67949 0,30 1
8 1700-2874 2 23486 0,15 1
Seismic
acceleration
1 0,169 452 753628 0,81
2 0,249 639 677661 1,27 2
3 0,369 3 34865 0,12
Precipitation
(mm)
1 338-675 155 860339 3,21 2
2 675-921 362 646720 1,03 4
3 921-1225 342 287659 0,49 5
4 1225-1603 190 87863 0,27 6
5 1603-2440 50 14980 0,17 7
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Table 3. Weights of influencing factors

Influencing Factor Weights
Land cover 1.71
Slope 1.64
Mean annual precipitation 1.64
Elevation 1.57
Seismic acceleration 1.42
Lithology 1.35
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Figure 3 Landslide susceptibility index based on SOM — ANN.

5. Preliminary qualitative risk assessment

Based on the UN definition (UNDRO, 1979), risk is determined by three components:
hazard (probability of occurrence), elements at risk and vulnerability. In this paper, a
preliminary risk analysis is performed, therefore the aim the analysis is to highlight general
trends, rather than come up with exact results. Risk refers to expected human or economic
loss due to landslides, while vulnerability reflects “the degree of loss” (Coburn et al., 1991).

The elements at risk that were analyzed are the population density, transportation
network, and the Greek administrative units (Figure 1). Transportation network was buffered
at 100m and combined with LSI produced by FR model, which was slightly more accurate.
According to the results of this overlay 1% of the transportation network is characterized to
be in high and very high LSI zone. About 103km of total 10335km of transport network, are
located in landslide prone terrain. The Greek prefectures were also combined, with FR LSI
map. The study shows, that the following prefectures are mostly inside the landslide hazard
hotspots: loannina, Aitoloakarnania, Achaia, Evrytania and Hleia. Several landslide prone
areas in Greece were identified as being dangerous for the population after the combination
of population density grid and LSI maps.
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6. Conclusions

The development of landslide susceptibility maps in national scale is of great importance in
planning agencies for preliminary hazard studies. In the current paper two methodologies
are presented which produce LSI maps through statistical index and SOM. GIS technology,
proved to be an indispensable tool for managing environmental factors, and to produce
landslide susceptibility assessment maps. Landslide risk analysis even in preliminary level,
can facilitate stakeholders, to select suitable locations for development schemes and plan
mitigation measures in unstable landslide prone- areas. About 1%, of total of transport
network, is located in landslide — prone terrain. Moreover, towns with population of a few
hundred to a few thousands inhabitant is situated in the vicinity of landslide areas. The use
of these results for specific local conditions is not recommended, as several uncertainties
govern the data used in this study mainly attributed to scale. Much better agreement with
landslide inventories could be achieved if the weighting of the parameters were calibrated
and tuned to local conditions and even more factors could be implemented in the analysis in
local scale.
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