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Landform evolution using Discrete Markov chains

Th. Gournelios
Toubac Fewvpagiac - KAwaroAayiac MavemommounoAn, 157 84 Abnva

Mepiknyn

Ze QUTO T &pAPO TapoudlaleTal £va POVTEAG EEENENG TOu Yhvou
avayhugpou Bacioévo 01N Bewmpia Twy meavoTiTwy. O xUEES Napdue -
TPOL MoU AauBavovtar utt’ oguv elval n SldBpwon, n aviywon ™Te NepLo -
¥HQ KAl © Xpbvoe.

ETol T0 avayiupo unopel va taElivounBel oe LEPIKE MEpYpPAPIKE OTA -
Bla eEEMENG, Ta onofa Bewpouvral SdPopeq KaTaoTacelg (states) evdg
guoThuaTeq.

H avdiuon Tou napanavew OUSTHHATOG YIVETQL YpnowWonowvTac TG
BlakplTEG ahluoideq Markov. O1 eEayauevol nivakeg pag divouv 6ia Ta
gTo¥ela yia v £EEAIEN 10U QUOTHHATOS OTOVY Xpovo.

Abstract

In this paper | present a mode! for a long term landform evolution
based on a probability theory. The main factors which were taken into
account were the erosion, the magnitude of uplift and the time. Based on
these factors the landforms can be classified into numerous descriptive
stages, which are ireated as the stages of a system. The analysis of the
abave system is achieved by using discrete Markov chains. The resulting
matrices give a clear picture of the system evolution.

Introduction

The most influential tong-term landscape models are certainly these
proposed by Davis (1698) and Penck (1924). Nowadays our knowledge
aboyt the factors which are responsible for the (andform development is
much better than in the past.

We dispose a vast data concerning exogenic or endogenic processes,
but even now the extreme interrelations between the different factors
and process render probability models more appropriate to formulate.
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A Markov chain Model

In this paper we suppose that the landforms can be classified into
numerous descriptive stages mainly of erosion, the magnitude of the
uplift and subsidence, and the time. Supposedly the climate has to be
humid-temperate, but with few modifications the proposed model can be
applied to different climatic conditions. Some geometric stages are
shown in Fig. 1. | assume an evolutionary sequence of stages (Fig. 2),
this means that from an initial relatively flat relief (stage 1) there are
two possibilities. First a normal evolution without an uplift to stage 2 with
probability P(t) and second, a contemporaneous uplift and the passage
to stage 2', with probability q(t), (Fig. 3).

Zx. 1. The evolutionary sequence of the used stages.

In this scheme (Fig.1, 2) the numbers 1, 2, 3 and 4 represent normal
evolution of the Landform, the upper index (ex. 21) shows the periods of
uplift. Finite Markov chains have been studied by many authors as
FRECHET (1938), CHUNG (1967), FELLER (1968), IOSIFESCU (1979),
BHAT (1972).
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Ix. 2. The Landform development of the geomorphological stages.

To apply discrete Markov chains to Landform development we firstly
define the states (stages) of the system. Fig. 1 contains all the stages
and their mutual transitions. It must be noted that we assumed that
there is an upper limit for the uplift movement (reflective state), meaning
that the landform can not grow infinitely. The second step is to analyze
this process and to formulate the transition matrix and put it in its
canonical form.

A=I[P,] A=
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3. The transition matrix of probabilities.

Wr](pml(n B|B)\|oenKn Oeb6ppaaTog - Tunpa MNewloyiag. A.M.0.

vt



p=0%6 q=04

06 04 O O O o 0o | (467127 ] [ 098 ]
1 0 -06 -04 O 0 0 3.16239 0,99
o 1 0O -0 -04 O O 4.43458 0,98
0 0 1 0 0 -04 O J 1. 66667 0,99

My = . Ly = 5

o o 0 1 0 -06 -0,4 2. 90598 | 098
0 o o o 1 o -06 4 22748 0,98
0o o o o o0 o8 O 1. 66667 0,99

.04 O 0 0 0 0 1 J 2. 26946 | | 0,96

-04 -06 0 0 0 0O - 0 6 79717 0,98
1 0 -04 -08 o) 0 0 4.54082 0,99
0 1 0O -04 -06 0 0 6.63474 0,99
0 0 1 0 0O -06 O My - < 2.50000 Lye o 0,99
0 0 0 1 0 -0,4 -06 4.23469 0,99
o} o} 0 o) 1 0 -04 6.56810 0,99
0 0 0 0 O 04 O 2.50000 1

-086 0 0 0 0 0 U | 372449 | _o,99j
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Where, |: the identity matrix which corresponds to the unique absar-
bing state,
Q : the matrix of probabilities of transient states,
R : the matrix of probabilities from transients to recurrent state.

We can now proceed to find the fundamental matrix M.

Two simple examples:

The fundamental problem to apply such a model is to construct a
transition probability matrix which better represents the geotectonic
position of a Landform. This means o assign the appropriate values of
probabilities to the above evolutionary scheme.

In the first applicaton we assume that P(t) =0,6 q{t)=0.4. This
example refers to an area where erosion dominates and uplift
movements are less important.

The resulting tundamental matrix is: M, and the matrix L, (Fig. 4)
gives the expected number of states the system spent in the transient
states prigr to absorption (the total denudation of the relief).

in the second example we assume that P{t)=0,4 q(t) = 0,6. In this
case we assume a high probability for uplift movements and low
probabilities for erosion. Here the fundamental matrix is M, and the
matrix giving the expected number ol changes before the chain enters
the absorbing state is L, (Fig. 4).

Conclusions

From the above two simple applications it 15 obvious that in the first
case where erosion is more probable than uplitt a rapid decay of relief
will result. The matrices M1 and L1 suggest that the whole process will
finish relatively rapidly, the number of changes at states are relatively
small. The same is valid also tor the variety of relief forms. On the
contrary in the second case, where the uplift movements dominate, a
repeated constructional process witll be present. The results from the
matrices, show that the whole system will pass from many Landform
stages, before its total denudation.
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