
The possible impact of cosmic rays to the total ozone column in Athens 
– Greece  
 
Mavrakis A.1*, Papavasileiou Chr.2  
 
1* Mavrakis A. Institute of Urban Environment and Human Resources, Department of Economic and Regional 
Development, Panteion University, 136 Syngrou Av., 176 71 Athens e-mail: mavrakisan@yahoo.gr   
2 Papavasileiou Chr. West Attica Local Administration of Secondary School Education, Greek Ministry of Education, 
Homer & Diomedou str., 19600, Mandra – Attica, Greece, e-mail: xripapav@gmail.com   
 
Abstract  
During the last decade a number of studies have indicated connection between cosmic rays / 
solar activity and climatic parameters. The present study investigates the possible variation of 
cosmic rays / solar activity signal in a total ozone column above mid latitude Mediterranean city 
of Athens – Greece. The daily data used, covered 1978 – 2012 time interval while they included 
daily: multi sensor reanalysis data sets for ozone column, sunspot number from omniweb 
datasets and cosmic rays data from Moscow Neutron Monitor datasets. The results indicated a 
clear signal of solar activity variation (positive / negative and vice versa) in the total ozone 
column.  
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1 Introduction 
Galactic cosmic rays (GCR), consisting principally of energetic protons and particles emitted 
from the Sun and stars within our galaxy, are a primary source of the atmospheric ionization 
which affects cloud formation. The number of GCRs that reach a certain point on the surface of 
the Earth is influenced by solar activity, latitude, altitude, the diurnal cycle of the Sun and the 
weather (Svensmark & Friis-Christensen, 1997; Svensmark 1998; Todd & Kniveton, 2001). The 
primary cosmic rays interact in the atmosphere at around 30 km altitude, producing showers of 
secondary particles, which penetrate the troposphere below 7 km. The charged cosmic rays lose 
energy by ionization and, away from continental sources of radon, are responsible for 
essentially all of the fair-weather ionization in the troposphere. The solar wind, the geomagnetic 
field strength and the galactic environment of our solar system modulate the GCR flux, typically 
by a few tens of per cent, depending on latitude and altitude (Raspopov et al, 1998; Gehrels et 
al, 2003; Jackman & McPeters, 2004; Lastovicka & Krizan, 2005 & 2009; Gray et al, 2010). 
Also there are papers that refers to how upper stratospheric ozone changes may amplify 
observed, 11-year solar cycle irradiance changes to affect climate and it implies that these 
oscillations are likely driven, by solar variability (for example Penner & Chang, 1978; 
Blackshear & Tolson, 1978; Shintell et al., 1999). Lee & Smith 2003, discus the combined 
effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone 
changes.  
Emissions of matter and electromagnetic fields from the Sun, namely solar wind, increase 
during high solar activity, making it harder for GCRs to penetrate the inner solar system and 
reach the Earth. Nummik 1999 & 2007, has shown that, to within statistical deviations, the total 
number of SEP events observed during any given time interval is proportional to the sum of 
sunspot numbers (SSN). Thus, the GCR intensity is modulated by solar activity, expressed by 
(SSN). The phenomenon presents an approximately 11–year periodicity following the variation 
of SSN. Irregular decreases of GCR intensity on short time scales are of particular interest. 
These anomalies are known as Forbush decreases (FDs), and are associated with magneto-
hydrodynamic disturbances following solar coronal mass ejections (Ney, 1959; Mannuel et al, 
2002; Palle Bago et al, 2004). Also, Gehrels et al. 2003, discuss possible ozone depletion from 
nearby supernovae.  
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A strong correlation has also been observed between paleoclimate and GCRs, suggesting that 
the effects of SSN – GCR variation levels are more evident at larger rather than smaller time 
scales (LaViolette, 1987 & 2005; Kirkby, 2008).  
Regarding energetic solar particles, the main effects reported in the literature could be 
summarized as follows: (i) an ozone response to solar proton events is generally observed at 
high latitudes where the shielding action of the geomagnetic field is reduced, (ii) solar particle 
with energies greater than 10 MeV affect the stratospheric chemistry, (iii) ozone depletion starts 
within few hours of the arrival of charged particles, (iv) the solar particle-induced effects in the 
atmosphere could last days or weeks, but no relevant long-lived effects were claimed (Lu and 
Sanche, 2001; Gehrels, et al., 2003; Kislyakov et al., 2004; Jackman and McPeters, 2004; Lu, 
2009; Muller and Grooß, 2009; Tritakis et al., 2009). Krivolutsky (1999; 2003) and Krivolutsky 
et al. (2002) report a clearly distinguishable negative response of the total ozone to the strong 
solar proton events, a periodical ozone response to GCRs (with opposite phase to the decadal 
cycle of SSN), which has a negative trend, and a tendency of positive total ozone response to 
solar energetic particles, at lower latitudes.  
Also Kellet, (2001), has revised Nye’s “diagrammatic scenario” (Ney, 1959) showing a series of 
possible links between solar activity and atmospheric processes. Furthermore he has presented 
evidence that the various nitrogen components and nitrate ion data seem to have an almost ~5.3 
years delay with respect to sunspot series. Lu and Sanche (2001) and Lu (2009) suggested a 
natural mechanism in order to explain their observations, mainly referring to the relation 
between cosmic rays – electron production and the stratospheric ozone. Lu (2009), used satellite 
data covering two full 11-year solar cycles (1980-2007), to demonstrate a strong correlation 
between cosmic rays intensity and ozone depletion. Thus, the cosmic ray flux could be one of 
the potential sources for the variability in total ozone content at high latitudes and to some 
extent in mid-latitudes as well. Yet, the uncertainties involved regarding the controlling 
mechanism and the associated physical explanation, as well as the time scales of the 
phenomenon are still considerable. Further, since meteorological parameters can also be 
affected (Tsiropoula 2003; Mavrakis & Lykoudis, 2006), could the variation in GCR/SSN levels 
influence or, from an observational point of view, relate to changes in air pollution levels at a 
local scale?  
The aim of this study is to investigate, from an observational perspective, and on a local spatial 
scale, the possible relationship between the average, annual, monthly and daily levels of total 
ozone column (TOC), as recorded above the mid latitude Mediterranean city of Athens – Attica 
region, Greece and the fluctuation of GCR and solar activity (SSN).  
 
2 Data and Methodology 
The daily data used, covered 1978 – 2012 time interval while they included 4 values per day 
multi sensor reanalysis data sets for ozone column (van der A et al, 2010), sunspot number from 
omniweb datasets and cosmic rays data from Moscow Neutron Monitor datasets. In order to 
compare datasets, we calculate normalized values of GCR, SSN and Ozone Column data, 
removing seasonal variation for ozone data, in three time scales (daily, monthly and annually), 
correlated each other and graphs were made.  
 
3 Results 
Data for Total Ozone Column (TOC) adopting from Multi Sensor Reanalysis (MSR) datasets 
(Figure 1a, with blue line) and from Ozone Monitoring Instrument (OMI) datasets (Figure 1a, 
with pink line) for Athens, we show a slight decline of Total Ozone during the last few years. 
The normalized values are shown in Figures 1b (daily), 1c (monthly) and 1d (yearly). It is clear 
that the time interval play a key role to understand the effect / contribution of GCR / SSN to 
modulation of ozone column. When we proceed from daily scale to annually scale, the effect on 
ozone column is clear. Solar activity (SSN) is widely known as one of the most important 
factors influencing the levels of cosmic radiation reaching the surface of the Earth (Nummik 
1999 & 2007). Thus, increased solar activity causes low GCR levels and vice versa. The 
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correlation coefficients between them vary between -0,710, -0,792 and -0,814 for daily, monthly 
and annually data respectively.  
Correlation coefficients for the effect / contribution of GCR / SSN to ozone column are: -0,035 / 
0,069, -0,074 / 0,151 and -0,198 / 0,260 daily, monthly and annually data respectively in 
agreement with findings of LaViolette, 1987; Raspopov et al, 1998; Gehrels et al, 2003; 
Jackman & McPeters, 2004; Kirkby, 2008. The results are typically by a few tens of per cent, 
depending on time scales. It seems that the effects are more evident at larger rather than smaller 
time scales (a phase delay) and indicates how fast physical and chemical processes of the ozone 
column response to the external triggering of GCR / SSN variation  

 

a b 

c d 
Fig. 1. a) Daily Ozone Column data from MSR & OMI for Athens (1978–2012). Normalized values for 
Total Ozone Column (TOC), Sun Spot Number (SSN) and Galactic Cosmic Rays (GCR): b) Daily, c) 
Monthly and d) Annually. Data cover three solar cycles  
 
Table 1. Correlation coefficients for three time scales  

  TOC GCR SSN 

Daily 
TOC 1 -0,035 0,069 
GCR  1 -0,710 
SSN   1 

Monthly 
TOC 1 -0,074 0,151 
GCR  1 -0,792 
SSN   1 

Annually 
TOC 1 -0,198 0,260 
GCR  1 -0,814 
SSN   1 

Correlation is significant: ** at the 0.01 level (2-tailed).  
 
4 Conclusions 
In the present paper we attempted to investigate the relation among Total Ozone Column 
(TOC), Galactic Cosmic Rays (GCR) and SunSpot Number (SSN) from an observational 
perspective, on a limited spatial scale, in three time scales. The conclusions drawn can be 
summarized as follows:  

y = -0,0007x + 326,71
R2 = 0,006
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 The results depict a positive correlation of TOC with sun spot number (SSN) and a negative 
correlation with galactic cosmic rays (GCRs) levels, as measured at the Earth’s surface, in 
agreement with previous studies.  

 Effects are more evident at larger rather than smaller time scales (a phase delay) indicates 
how fast is the response of the examined parameter to the external triggering, in this case 
GCR / SSN variation.  

Besides the obvious interest on how, abrupt and intense variations of SSN or GCR, could 
potentially affect air quality, the relationship between SSN / GCR with TOC can contribute to 
the formation and investigation of scenarios regarding their behavior and their possible 
influence on atmospheric procedures.  
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