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In connection with Prof. Dingle’s arguments that there is no asymme-
try in the case of the <clock paradox» we show the difference between rela-
tivity and symmetry. Then a comnplete solution of the problem by the Spe-
cial Relativity is giveu, Many oppounent views are discussed and their errors
are found. In the solution of the problem by the General Relativity an
abridged exposition of Mdller’s calculations is given. Finally the experi-
mental verification of the asymmetric ageing of mesons is discussed.

1. THE FROBLEM

One of the most discussed and controversial subjects of the
Theory of Relativity is the so called «clock paradox». This problem
may be stated in its usual form as follows : Suppose that we have
two identical clocks A and B near each other, showing the same time.
B moves away from A until it reaches a third point C and then it
returns near A. It is known that, according to the Special Theory of
Relativity B’s time will go slower, as measured by A, while it mo-
ves away or to the clock A. «Therefore» it will show a smaller time
when it will return near A. But, as the motion between A and B is
relative, we may regard B at rest and A moving with exactly the
opposite velocity of B at every moment. Then, according to the pre-
vious argument, A will be younger than B. This constitutes the pa-
radox. What of the two descriptions is right ? Or rather will A and B
give the same reading at their meeting and no one will be younger
than the other?

The above problem is not a new one. Einstein already in his
original paper on the Special Theory of Relativity (a, p. 9o4) has
stated that a clock moving in a circular orbit will show on its return
a retardation. A nice illustration of this retardation was given by Lan-
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gevin's {1911) «voyageur» who retnrns after a long travel much
younger than his brother that stays at home. Eddington {a, p. 24r1;
b, p. 28) gives a «justification» of the retardation of a moving clock
based on the fact that only this clock suffers a real reversal of his
motion, a disturbance, which is not relative, but absolnte {see also
M. v. Lane, a; b, p. 59). He makes a distinction between acceleration
which is relative, and disturbance, which is not; however this di-
stitiction is not gnite clear.

A proof of the retardation of the moving clock was given in
1934 by Tolman (p. 192 - 197). His proof is based on the General
Relativity, bnt it is only approximate. The discussion continued
after some years (Dingle a, b, ¢, Cambell) but no final conclusion
was reached.

It seems a little strange that the problem of the clock paradox
is not definitely settled as yet. The discussion continues even to day,
more than 50 years after Einstein’s original paper, and many people
are not quite sure if the theory of Relativity implies or not an asym-
metry between two stmilar clocks and whether travelling has any
effect on the ageing of one person relative to another.

A few years ago McCrea (a) was writing that «it has never
be:n made quite clear that there really is no {clock) paradox». The
discussion that followed this paper, which we shall see presently, has
proved that indeed the problem in not quite clear yet,

The general interest on the clock paradox has been revived
these last years on account of the possibilities now arising of space
travel. In some popular books on this snbject the suggestion is made
that space- travel may involve a lengthening of the life of the space-
travellers. Of course the velocities likely to be attained in interpla-
netary flights are qnite insufficient to give any significant time -
dilatation; Lowever the perspective of a lengthening of one’s life is so
much attractive ! This is perhaps one reason why the problem of
the time dilatation has become so popnlar to-day.

A long exchange of opposing views on this contraoversial
subject has taken place these last two years. We mention mainly
the papers that followed an exchange of views on the clock paradox
between Professor Dingle and Professor McCrea in 1956-1957 {(Dingle
d,e, f g1,k 1,m,n,0,p,q), McCrea {b,c,d, e, {, g, h), Crawford
(a, b}, Singer, Cochran, Fisher, Halsbury, Weston, Builder (a, b, ¢),
Fremlin, Darvin, Cnllwick etc.). Of course the discussion is confined
to the theoretical problem only, and especially in clarifying the imphi-
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cations of the theory of Relativity on the problem of the clock para-
dox. On the one side are Professor Dingle, Professor Cullwick and
others. Dingle maintains in a very clear way, it must be admitted,
the view of the exact symmetry of the motion of the clocks, which,
he says, 1s an immediate consequence of the tHeory of Relativity. It
is strange that although a great deal of authors have taken an oppo-
site view, no one succeded in convincing him that he is wrong. In
fact, if we except two replies, one by McCrea (h) and another by
Crawford (b) which give a reasonable reply to Dingle’s arguments,
no one replied satisfactory to Dingle’s basic argumentation, which is
set forth in the form of a syllogism (k, 1) :

1) According to relativity, il two bodies {e.g. two identical
clocks) separate and reunite, there is no observable phenomenon that
will enable one to say, in an absolute sense, that one rather than the
other has moved.

2) If, on reunion, one clock is retarded by a quantity depen-
ding on the motion and the other is not, that phenomenon would
enable one to say absolutely that the first had moved and not the
second.

3) Hence, if relativity is true, the clocks must be retarded
equally or not at all : in either case their readings will agree ou
reunion if they agreed at separation.

Iu this paper we shall point out first the weak point of
this syllogism and show the basic difference between relativity and
symmetry. Further we shall discuss the clock paradox by the Special
and, separately, by the General Relativity, pointing out some errors
of Dingle and others in this connection. Finally we shall refer to the
experimental verification of the asymmetric ageing described by Craw-
ford and give a reply to Dingle’s objections to this,

2. RELATIVITY VERSUS SYMMETRY

Tt is evident that the motion of the two clocks in the case of
the clock paradox is relative, i.e. we may regard either A mo-
ving relative to B, or B moving relative to A; there is no absolute
motion of course. However we inust distinguish between t he rel a-
ti ve motion of the twobodies irrespective of therest
of the world, and the relative motion of one
body with respect to the rest of the world
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If the only objects existing in tlie world were the two clocks of the
clock paradox problem, then evidently there should be exact symme-
try between them and Dingle should be right, In fact any force sepa-
rating them should act symmetrically to them and any cause that
should make these clocks to reunite (e.g. if the two clocks are con-
nected by an elastic string which contracts after it is streched) it
should again act sywmetrically ; no case of asyminetry should arise.

But in the real world there exist more than two objects of
course. Therefore it is quite possible that the mioticn of the one
clock with respect to therest of the world is not symmetric to the
motion of the other clock with respect to the corresponding rest of
the world. We shall illustrate this hy a simple example.

Suppose that there are three objects in the world on a straight
line, say ABC, and that A and C are connected in such a way that
no change of distance between thein is possible. The emovings clock
B goes from A to C, where its motion is reversed by a collision and
it returns to A. B is moving with respect to the system AC;
thereforc we may regard B at rest and the syvstem AC
moving with respect to B. This motion is exactly symnmetric
to the previous motion of B with respect to AC, i.e. B is symmetric
to AC as regards their motious. But AC is not anything similar
to B. It is composed of a clock A and a third object C. Therefore
no conclusion about the equality of the readings of the clocks
A and B can be drawn. It is seen on the contrary that A and B
are not symmetric in their motion with respect to the rest of the
world. Namely A’s motion with respect to BC is not at all symme-
tric with B’s motion with respect to AC. Therefore there is no
apriori reason, based on the theory of Relativity, that the two clocks
A and B should show the same readings on their reunion. As we
shall see further, it is possible to prove, by the General Theory of
Relativity, that B and not A will be retarded. In the ivllowing
paragraphs we shall show how some specific «proofs» of Tdingle and
Cullwick about the equality of A’s and B’s readings on their reunion
are invalidated. For the present we notice that Dingle’s postulate of
symmetry can be proved in general false, when three or more
bodies exist in the world.

In a recent reply to Crawford i{b} Dingle {k} denies the asymme-
try hecause the assumed asymmetric ageing is «a quantity depending
‘;2
cﬂ

on their relative niotions» namely 2T(1——V1—— ) This lhowever
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is no objection at all to our syllogism. The asymetric ageing is a
function of v, where v is the velocity of B with respect to AC, or
the velocity of AC with respect to B. This shows that we cannot say
if B or AC has moved in any absolute sense. But this does not
change the fact that B’s motion is not symmetric to A’s. In fact
the asymmetric ageing is a function of the
velocities of A and B with respect to the rest
of the world {here the point C).

3, THE CILOCE FARADOX IN SPECIAL RELATIVITY

In the case of the Special Theory of Relativity the clock paradox

[
may be formulated as follows (Ives 1951): «—— A
B

Two clocks A and B are moviug with respect to each other with uniform
velocity v, At some instant t=0 the two clocks go by each other
and are then synchronized. At a later moment B meets a third elock C
approaching A with velocity v; then B and C are synchronized.
When C will meet A, will it show a smaller reading than A or not?
It is evident that the motion of the system BC with respect to
A is not symmetric to the motion of AC with respect to B. The
corresponding symmetric experiment, when B is regarded at rest,
should involve a fourth clock D moving toward B with velocity v
and meeting A when A shows the same time that shows B when it
meets C; theu D will be slow with respect to B, on meeting it, by
the same amount as C is slow with respect to A when it meets it.
It is seen in this experiment that an asymmetry does not want neces-
sarily an acceleration to occur. However in the case of a retur-
ning clock an acceleration is necessary, and a «third boby accele-
ration», as Crawford (b) calls it, introduces the asymmetry in the
problem. .

The clock paradox in the case of the Special Relativity has
been solved in first approximation by Ives. We shall give a complete

]
solution here: When B and C meet, their times are tg =tc —t, I/ 1—%-

where ta is the reading of a clock at rest with respect to A and
synchronous to it at the point of B’s and C’s meeting. When Cand A
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meet, C’s time is te = tec + (TA— ta) ]/ 1—36; =t, |/ 1—:—:. If now

we regard B at rest, then A and C are moving in the same direction.
C’'s velocity with respect to A is v, i.e. its velocity with respect to B is
2v

u—=
1+

When C and A meet, their readings according to B are:

When B and C meet, their readings are tg’' = teo'.

v
C'!

te' = ta' + {to’ — to) VI*J %: and t, = tg Vl—— %,' i.e. both

run slower than B. Further: v ts’ — {ts’ — tp’)u, hence:

te’ — _
ty’ == t; (1—{—:) It is also 1— _“; _(1 c?

RS

. Therefare;

The same result is found if either B or A is supposed moving ; the
motion is relative hut the phenomenon is not symmetrical.

4. CRITICISM OF OPPONENT VIRWS

Dingle {g) thinks that he can prove, by means of the above
example, that A’s and B’'s times will be the same at their meeting.
His argument is: «Consider three clocks, B,, C,, D,, which at the
common reading t = 0, are together and such that, if D, is regarded
as being at rest, B, and C, are moving in opposite directions, each
with uniform speed v with respect to D,. If these clocks are re-
spectively at the origins of co - ordinate systems of which the x - axes
all lie along the line of motion and are positive in the direction
towards which C, is moving, then these systems are related by the
Lorentz transformation., There 1s a fourth clock A, at rest at the
point (x,0, )} in the D, system and at the event E’';= (x, 0,0 —x/c)
in that system let it emit a beam of light which, on reaching D,,
is reflected back again to A,, clearly reaching it at the event Ey=
(x,0,0, x/c) in the D, system. By the ILorentz transformation,
E,'= {xb, 0, 0, — xb/c) in the B, system and {x/b,0, 0,— x/cb) in
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(+0)

x/cb) in the B, system and (xb, 0, 0, xbjc) in the C, system. Hence,
by Einstein’s criterion, the time of the event E,’, at which the light

the C; system, where b = while E; = (x/b, 0,0,

falls on D,, will be 0 in the D, system, %(—be +%) in the

X

xb\ . . .
b +T) in the C, system. Since D, is at

B, system and ;— (—
rest witl respect to A,, D, is synchronized with A, if it actually
reads O at this event. Let this be so. Then, by hypothesis, B,, C,
and D; will be coincident and will all read 0 at the event E;’. Hence
B, will be slow and C, fast by the same amount, viz. x (1/b - b}f2¢
at the event E,y'».

Crawford (b} pointed out clearly tlie main error in this argu-
ment, which invalidates Dingle’s «proof». Dingle’s calculations are
based on a misunderstanding of Einstein’s definition of synchro-
nization. T'wo distant clocks can be synchronized only if
they belong to the same inertial system, i.e. if they are at
rest with respect to each other (Einstein a, p. 894 f; b, p. 16,
¢, p. 18, d, p. 26). This is forgotten in the application of Einstein’s
criterion for the event E,’ of the reflection of the light. In the mo-
ving system the time of the event E," is the mean between the
times of departure and returning of the light to the same point
(in the corresponding system) namely xb in B, and x/b in C,. Then,
as it is expected, the times of the event E, are found to be all zero.

Dingle did not try to refute Crawford’s criticism but stated his
theorem in anotier way (Dingle, k) :

«Let B, and C, be two observers - cum - clocks moving with
the same velocity v away from and towards, respectively, a distant
object A, regarded as stationary. Then the events on A, which B, and
Cy regard as simultaneous with their meeting are respectively before
and after, by egual amounts, the event on A, which an observer on
A, regards as simultaneons with that meeting. To prove this, introduce
as an intermediary an observer-clock D,, stationary with respect to Ay,
and coincident with B, and C, at their meeting. Let all three clocks,
By, C;, Dy, read 0 at that event so that their co-ordinates are
related by the Lorentz trasformation. If x is the distance between A,
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and D, in their common rest frame, the event E, on A, which is
simultaneous in the D, co-ordinate system with the meeting of B,
Cy, Dy, i3 (x, 0} in that system. Hence, by the Lorentz transforma-
VX
cia
~—=. Now let A, be a clock identical in working with By and C,

cla

tion, its time in the B, system is and in the C, system,

but set at random, so that its reading at the event E, is 'I';, which
may be anything at all. Then clearly the readings of A; which By
and C, respectively, regard as simultaneous with their meeting are

vX VX
T(]— e and T+ pra
B, and C; as occuring at T,, for that is his reading for the event
which D, times at zero. This proves the proposition. It is easily ve-

rified that ;’; = % —c}% - k‘cb of the former proof»,

Dingle’s results are correct in this case, but they have no con-
nection with our problem : they prove no proposition about the clock
paradox. In fact we are not at all interested to what By and C; re-
gard in A, as simultaneous with their meeting. The proplem is
what were the readings of A,, By, when they have met and what
will be the readings of A, and C, when they will meet. From
Dingle’s own description it follows that, as B,, C,;, D,, show at their
meeting the same time 0, B, was fast with respect to A, (if A, is

A, will obviously regard the meeting of

synchronized with D,) when it met it, by the amount XT {1 — o),

(Where o =v1——-€;) while C, will be slow with respect to A, when
it will meet it, by the same amount, In the general case A,’s readings
when it meets B, and C; are: T,— -XT and T, + XT, while B,’s rea-
ding at the first moment is — % a and C;’s reading at the second
moment is +3;— a. The time interval is 2% according to A,, while
it is -Qvia. according to the B, -C, time (i.e. the tlne transferred from

B, to C)). It is therefore seen clearly that Dingle’s example gives
the usual asymmetric effect, if rightly described.

A similar case is treated by Dingle geometrically (g) and the
same conclusions from irrelevant data are drawn. Fig. 1 illustrates
the previcus description {(only the subscripts of ABC have been

ommijtted).
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X .
D XB

Fie. 1. Geametrical solution of the clock paradox.

The world - lines of A, B, C, are T, Ty, T respectively ; Tg
and T¢ form the same angle with T's, It is seen that the reading of
A when B and C meet (simnltaneous with the event P in the system
of A) is OL. In the systems of B and C however the readings of A
simultaneous with P are OM and ON respectively. It is evidently
LM=LN, «i.e., says Dingle, C will regard A as being fast by the
same amount that B will regard it as being slow». This however
again has nothing to do with the problem of the clock paradox.
The problem is not if B of C will regard A as being fast or slow,
but if C’s reading when it meets A, at the event S, is equal or not
with A’s reading. Tt is evident that if A and B have the same rea-
dings 0 at O, and if at the event P, B transmits its time to C,
then C’s time at S is represented by the length (OP) + (PS),
which is greater than (OS) ; therefore as the timne axis is imaginary
Cstimeis smaller than A’s at S. This conclusion
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is absolute, because the four-dimensional
space is absolute.

The symmetric experiment for B involves a fourth clock D
which meets A at the event P’ (where OP'=0P) and moves with
velocity v with respect to B (i.e. T, makes the same angle with
Ty, as Ty with T4}, If D is synchronized with A at P, it will show
a time represented by (OP) +{P'S’) at §°, which is smaller than
B’s time, which is represented by (OS).

.+ Cullwick has made an errror similar to that of Dingle in his
description of the clock paradox (p.70-73 and 283 - 28¢}. He as-
signs a time ty to a distant clock which is moving with

respect to our clock, through the relation tg:%t_ﬂ

where t,, t; are the times of emission and returning of a light ray
which is reflected at this distant clock. This again is not consistent
with Einstein’s definition of synchronization ; as it is known, only
two possibilities to synchronize two clocks exist : either they belong
to the same inertial system, or they go through the same point when
they are synchronized. Cullwick’s t, time has no physical meaning, if
the distant clock is moving with respect to us; it would give the right
time only if it belonged to our own system.* Therefore the so-called
«discontinuity» of the coordinate time calculated by A, which accor-
ding to Dingle (i, q) and Cullwick takes place when the receding
clock B meets the approching clock C, is due only to the fact that
these authors try to synchronize two moving distant clocks.

Dingle (q) has tried to give another justification also to his
claim that no asymmetric ageing will be present when two identical
clocks R and M will re - unite after «M’s» travel to a certain distance
(without using the discontinnity of the time mentioned above).
He considers a train M moving from a station A to another station
B. The length of the train at rest is equal to (AB) = L. Then

* Further Cullwick bases his arguments on the assumption (p.73) that
if two clocks A and B, belonging to the same system S, are synchronized,
then a third clock O moving from A to B, shows the same time T'=T as B
when meeting B, if it has been synchronized with A when it met it. This
is evidently wrong; in fact, if T is the reading of B (B is synchronized with A)

when O’ meets it, O”s reading is T'=T vl_g. This a 1nost elementary

2
application of the Lorentz formulae {(see e.g. von Laue b, p. B8) and it is
strange to see how it has been overlooked,
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Dingle adds : «We may then regard the outward journey as
ending when the guard’s van, G, at the rear of the train arrives
at A». This is obviously not the case. A°s time, when M arrives

at B, is t= %; then G’s coordinate x is given by the Lorentz
formula : % = *—¢ where o — Vl —L:, and x’ = — 1, t= L,
o C v

therefore x = I, — La, i.e. G is beyond the point A. Thus when the
jonrney ends, G does not arrive at A, Dingle’s description is referring
to two symmetric experiments: 1) The front of a train MG (of
length L in its own system) moves from A until G reaches
A, 2) The front of a train AB (of length T, in its own system)
moves from M nntil Breaches M (or M reaches B). These
two cases are symmetric, i.e. the corresponding time readings are
connected by inverse functions in the two cases. But in is not the
same experiment described from two points of view, as thinks Dingle.

We have seen that the arguments of Dingle and his followers
are not right. How then is the controversy still continuing ? One
reason is, I think, that many of Dingle’s opponents are also wrong.
Dingle’s criticism of most of his opponents is in many cases right,
because his opponent®s argnments are not proving, in general, the
asymmetry of the motion of the one clock with respect to the other;
they find, in general, only the usual contraction of time of a moving
observer. Some inadequate expositions have been set out recently by
Fremlin (1957), Darwin (1957) and Builder (a, b, ¢). Dingle’s criticism
to them (m, n, 0, p, q) is justified because no one gives a convincing
argument for the asymmetry between the two clocks *.

5 THE CLOCK PARADOX IN GENERAL RELATIVITY

In this paragraph we follow in general Moller’s discussion of
the clock paradox, which gives a complete solution of this problem
by the General Theory of Relativity,

The clock C, is supposed at rest in the origin O of an inertial
system S (X, Y, Z, T), while C; moves along a straight line to a
certain point C of 8 and then it retnrns to O. At time T =0, C,

* Dingle (d, e, §, g criticises also a paper by McCrea (a); the weak
point however is not that suggested by Dingle ; it is McCrea’s neglect to
prove that the R’s time increases from 2aT to 2T during the acceleration.
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begins to be accelerated by a constant force F along the positive
X -axis. After the time A’ T it reaches a point A with a certain
velocity v; then F is eliminated and C, continues its motion with
uniform velocity for a time AT, until it reaches a certain point B.
Then an opposite force F brings C, at rest to C, after a time A" T,
which is equal to A'T, for symmetry reasons. The return travel is
just the opposite of the above., The total time lapse of the travel
according to C; is ATy =2 (2 A"T 4+ A"T). The corresponding pro-
per time interval of Cg is: Ary = 2 (2 v’ +1,""). For the first part
of the journey OA it is: F —= myg — diditu) = m, d—dt(V_u—E?)'

cl

where u is the velocity at the time T. Hence gT = , as the

Vi

initial velocity for T =0, is u =0, u increases until it becomes

Vi- ! |
AT
ding time 1y’ = f Vl _Jé; dT va — © ginh—t gA T,

equal to v at time A'T; therefore : gA"T = The correspon-

1+ g‘ 1

gaT_ ¢
Vi-x

c

Further "= A"T VI —-%. It is easily seen that for g — oo,

then it is found

A'T — 0, and Ig, — 0, e, Ay —2A"T and Awu— 21" —
—_— A'l.'{ VI “—7.

If now C, is supposed at rest, C, is regarded as moving along the
negative X axis, While C, is accelerated, until it reaches the velocity
--v, a gravitational field acts on C; and C,, and C, is falling freely in
it. In order to find the potential of this field, we start from C,” s iner-
tial system (X, VY, Z, T). With respect to it C; moves with velocity

y— gT = 92X yence X=% (V@)’ - 1)'

RICI

bacause for T =0, it is X = 0, u = (. Further if t is C;’s proper
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_— , hence

time, then : dt = |/ dT— —_
]/1 +( )
2t For a point x on the C, system

or' T = ig sinh &
for a system with origin C; and moving togetler with C,)
T H
(V) )

o

t =— ginh— &~
c
(i.e. i
we have X=X+ —— = —
Vi-g f
gl‘)'=ig(coshg—t—1)—}—:1;:(:03g—ct
— % ginh & —|—ng sinh %t( +i—)

and Ty T 4 & X
[ u?
Vi-%
2 L _&_ gt
4T, —[( +x) A sinh = dt +
1 . t
©

= coshg—ctdt—}-—? sinh & dx

c X
+o) %
) Therefore the rate of a proper clock at a
gX
o

for the acceleration period it
v

=dx? - tae (
distance x from the clock C; is given by dr, = dt ( +
2 7"2.
g Vl —

C, is falling freely in this field
is x ~ O and its proper time increases by ;" = " =

During the constant velocity period it increases by
Vl — —. During the decelaration period it is
e ——

(( +(’“‘) —1)+(1/1 t(g‘c' ) )] — v

Ti rr —
- c?
X~ —
g
and '[”” = '[.3”’ (1 + EC—}:)‘
Then: Auy=2(y"+ 1" " + 1) and A, =2 (1" + 1.7 + ')
with 14" = 1,""" for symmetry reasons. When g — — oo, then
‘L'{’ = 'I!g' == '[g’" — O, ;‘——ﬁ — Vis ,
. B v? e
Eb . Vig * >
c V )
.

1 T S
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Hence Aty = 2 1, and Ay —» 2 1" Vl ——‘;—: + 21" v—*? =
1>
ci

T " - ? . -
=2 '"T,—, ie. A= At VI ——Z—,; which is the same result
1 - X
cs

as above,

This constitutes a complete solution of the clock paradox. It
involves a third body acceleration, since the clock C; is supposed at
rest with respect to the rest of the world, while C; is moving with
respect to it. If we want to regard C, as mnoving, a «gravitational»
field is needed to be introduced, which acts on the whole universe.
All the bodies fall freely in this field except C,, which is supposed at
rest. After the period of the uniform motion, when again au inverted
field is introduced, the bodies C, and C, are separated. The action of
this new field npon C; and C, is not symmetric. Therefore an asym-
metry arises, which is reflected in the asymmetric ageing of the two
clocks.* Another similar discusston of the clock paradox by the Ge-
neral Theory of Relativity has been made in the case of circular
motions around a central mass, by Prof. McCrea {f}). This problem
includes a discussion of the gravitational red - shift at the same time.
T'he results concerning the time dilatation are similar to those found
above, i.e. the effect is not symmetric between the two clocks.

6. EXPERIMENTAI, VERIFPICATION

In 1957 Crawford (a) described an experiment which proves
the asymmetric ageing of two clocks: It is alreadv known that
mesons moving with great velocity have a greater mean life - time
than mesons at rest. Many authors (Rossi, Hilberry and Hoag,
Rossi and Hall, Rasetti, Rossi and Nereson a, b} have found a mean
life - time of about zx 10 sec for p-mesons at rest (see also
Thorndike p. 95 - 108) which, owing to the relativistic time dilatation,

* Crawiord (b) is essentially right in his discussion of the problem,
Dingle {h,k) objects to this the example of the apparent diminution of the
size of an ohserver which is moving away. This however is quite irrelevaut,
since au approaching observer increases In size, while the rate of
a returniog clock is the same as that of a receding one ie. slower than the
rate of a clock at rest.
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becomes up to 30 x 10™® sec for fast mesons i.e. 15 times greater.
These experiments do not prove of course the asymmetric ageing,
because the observer measures the life-time of the mesons, which lie
in another inertial system than his own.

Crawford refers to an experiment made by Ticho at 11.500ft
(Ticho, 1947) and at 6ooft (private communication to F. S. Craw-
ford) with the same apparatus on decelerated mesons. Fast incident
mesons acted as triggers for the counter system, which measured the
delayed decays of mesons that were decelerated to rest by an absorber.
Ticho could measure the percentage p of the mesons which stopped
at the absorber. We may describe his experiment as follows : Suppose
that T' sec is the half - life of the mesons at rest and that nT seconds
after the impact of a pack of mesons on the lower station there
remains a percentage of pq mesons (which may be measured from the
number of mesons decaying in T seconds after the first nT' seconds).

-Then q = 2+ where n’ is the increase of the proper time of the

mesons during the n seconds of deceleration. If the mesons want
mT seconds in our system to move from the higher to the lower

P

station, then the percentage of the remaining mesons is o —

of the initial flux, where m’=m VI — Z—:

The same initial flux of mesons arrives at the high altitude
station. In n'T' seconds these mesons have lived n,”T proper seconds
and remain afterwards at rest. Then after m more seconds there

remains a percentage of ?ﬂﬁ!}:—r mesons ; this number must be equal
1
to BTP*—n—. if no asymmetric ageing exists. But m is much greater

than m" if v is great enoungh. Therefore n° must be greater than n,’.
In Ticho’s experiments it should be greater by a factor of about 4o.
No such effect has been observed: on the contrary it has been
found, to the limit of the accuracy used, that n’ = n;’. Therefore
there exists an asymmetric ageing of the inesons, as their proper
time increases by (m’4+ u') T and (m 4 n,’) T respectively. The
above experiment is equivalent to a return travel of the mesons ;
because after the mesons have been brought to rest in the same
inertial system, they may be brought together with an infinitesimal
velocity, so that they should not change their times any more.

In a brief reply to this experiment Dingle (h) remarked that a
returning meson should lose as much time as it gains in its outward
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journey. However we may find a sufficiently small velocity, so that
if a meson inoves with this velocity, the supposed loss (although, as
we have seen, it is rather a gain) of time is smaller than any given
nuniber, without necessitating an infinite duration of the journey, as
fears Dingle (h, postscript). Dingle has made two further replies to
Crawford {i,k); he does not question the accuracy of his experiments,
but he thinks that «an experimental proof of the asymme-
try would require that the postulate of relativity must be rejected».
We have seen, however, why such a view is not right, and how
Dingle’s attempts to describe symmetrically the motion of the two
moving clocks have failed.

Some authors have proposed experiments in order to verify the
asymmetric ageing of the moving mesons (Martinelli and Panofsky,
Herman, Cochran) *. They refer to artificially produced mesons
which are made to move in circular paths by special accelerators in
magnetic fields. Such experiments are now possible, so that it is pro-
bable that the asymmetric time dilatation will be soon confirmed.
However the experiment descrihed by Crawiford is the first that
proves that there is really an asymmetric ageing effect in the moving
mesons ; this result is a confirmation of the theory of Relativity,
and a rejection of Dingle’s principle of symmetry.

* Another method is proposed by Singer {a, b): he calculates that the
difference between the rates of a clock on the earth and on an artificial
satellite is 3: 10% This effect shonld be measured by atomic clocks. Howcver
the technique cf this experiment seems to be so difficult, as to bc not
realisable for the present,

WYnoeiakn BiBAI0BAKN Oed@pacTog - TuAua MNewAoyiag. A.lNM.O.



1)
2)
3)

4)
5)

6)
1)

8)
9)

10)
11)
19)
13)
14)
15)
16}

1
18)
19)
20)
21)
29
23)
24)
25)
26)

27)

G. Bailder (a)
> {b)
> (c)

J. W, Campbell
W, Cochran

F. 8. Crawford (a)
» (b)

E. G. Cullwick

C. G, Darwin

H. Dingle (@)
> (b)
> {c)
> ()
’ (e)
> ()
> (2)
» (h)
» (i)
L (1
» (k)
» (8]
» {(m)
> (n)
» )]
» {p)
» Q)
» )

REFERENCES

The Clock Paradex, Bull. Inst. Phys, 8, 210, 1457.

The Clock Paradoxz, Bull. Inst. Phys, 8, 344, 1957,

The Resolution of the Clock Paradowx, Austr, Journ,

of Physics 10, 246, 1957.

The Nature of Time,Nature 145, 426, 1940,

A Suggested Experiment on the «Clock Paradox»,

Nature 178, 977, 1957.

Experimental Verification of the <Clock Paradozs

of Relativity, Nature 179, 35, 19567.

The «Clock Parodoxe: of Relativity, Nature 178,

1071, 19567,

Electromagnetism and Relativity, London 1957.

The Clock Paradox in Relativity, Nature 180, 976,

19567.

The Relativity of Time, Nature 144, 888, 1939,

The Nature of Time, Nature 145, 427, 1940.

The Rate of a Moving Clock, Nature 148, 371,1240

RBelativity and Space Travel, Nature 177, 1£2,1956
> » IS > 177, 78b, 1556.
» > > » 178, 681, 1056.

A Problem in Belativity Theory, Proc, Phys. Soc.

A 68, 92b, 1955.

What does Belativity Mean?, Bull. Inst. Phys. 7,

314, 1956.

The Clock Paradoxr of Relafivity, Nature 178, 865,

1966.

Relativity and Space Travel, Nature 178, 1129,

1957.

The Clock Paradoz of Relativity, Nature 179, 1242,

1967,

Space Travel and Ageing, Discovery 18, 174,1957.

The «Clock Paradox», Bull. Iust, Phys. 8, 212, 1957.

The Clock Paradox, Bull., Inst. Phys. & 345, 1957,

Relativity and Space Travel, Nature 180, 500, 1957,

The Clock Paradox in Relativity, Nature 180, 1275,

1957,

The Resolution of the Clock Paradoxm, Austr. Journ.

of Physics 10, 418, 1967.

The Special Theory of Relativity, T,ondon 1VEb,

Wnoeiakh BiBAI0BAKN Ocd@paaTog - TuAua MNewAoyiag. A.lNM.O.



40

28)

21
30)

31)
32)
33)
34)
35)
36)
a7
38)
139)
40)

41)
49

43)
41

46)
46)
17
48)
49)
50)

51)
52)
53)
54)
55)
56)

57}

b68)

A. S. Eddingten (a}

A. S. Eddington {b)

A. Einstein (a)
> {b)
> {c)
» (d)
bd ()

R. Fisher

J. H. Fremlin

Lord Halsbury

R. Herman

E. L. Hill

H. E. Ives

P. Langevin

M. v. Laue (a)
> (b)

E. Martineli and W. K.

W, H. Mc Crea {a}
> ()
3 (c)
> (d)
» e)
» (f)
> (=)
> (h)
» (i)

The Mathematical Theory of Relafivity, Cambridge

1937.

Raum, Zeit und Schwere, Braunschweig 1923,

Zur Elektrodynamik bewegter Korper, Ann,

Physik 17, 891, 1905,

Uber die  spezielle und die allgemeine Relativitdts-

theorie, Braunschweig 1923,

Vier Vorlesungen dber Relativitdfstheorie, Braun-

schweig 1923.

The Meaning of Relativity, London 1960,

Relativity, London 1964,

Space Travel and Ageing, Discovery I8, b6, 1057,

Relativity and Space Travel, Nature 180, 492, 1957,

Space Travel and Adgeing, Discovery 18,174, 1957

Suggested Experiment on the Relativistic Contra-

ction of Time, Nature 178, 689, 19566.

The Relativistic Clock Problem, Phys. Rev, 72,

236, 1947,

The Clock Paradox in Relativity Theory, Nature

168, 246, 1951, '

Scientia, 10, 81, 1911,

Zwel Einwdnde gegen die Relativitdtstheorie und

thre Widerlegung, Phys. Zeitschrift 13, 118, 1912,

Die Relativitdfstheorie I, Braunsweig 1921,

A, Panofsky, The Lifetime of the positive & - Me-

son, Phys. Rev. 77, 465, 1950,

The Clock Parador in Relativity Theory, Nature

167, 680, 1961.

Relativity and Space Travel, Nature 177, 784, 1956,

> » » > 1 78‘ 680, 1956.

A Problem in Relativity Theory: Reply to H. Din-

gle, Proc. Phys. Soc. A 69, 986, 1956,

Relativistic Ageing, Nature 179, 909, 1957,

A Time - keeping Problem conneclied with the (ra-

vifational Red - Shift, Jubilee of Relativity Theo-

ry, Basel 1966, p. 121,

Space Travel and Ageing, Discovery 18, b7, 1957,
> > > > 18, 176, 19567,

Relativity Physics, London 19567,

E. A. Milne and G. ]J. Whitrow, On the so - called <Clock Parador» of

C. Mdller

Special Relativity, Phil. Mag. €0, 1244, 1949,
The Theory of Relativity, Oxford 1956,

N. Nereson and B. Rossi (b), Further Measurements of the Disintegration

oo

F. Rasetti

B. Rossi

Curve of Mesotrons af Rest, Phys. Rev, 64, 199, 1943,
Disintegration of slow Mesotrons, Phys. Rev. 80,
198, 1941.

and N. Nereson (a), Experimental Determination of the Disinie-
gration Curve of Mesotrons, Phys. Rev. 62, 417, 1942,

Wnoiakn BiBAI0Brkn Oed@pacTog - TuAua MNewloyiag. A.MM.0.



41

53 B. Rossi, N. Hilberry and J. B. Hoag, The Variation of the ITard Compo-

nent of Cosmic Hays with Height and the Disinte-
gration of Mesotrons, Phys. Rev, 57, 461, 1940.

60) B. Rossi and D, B. Hall, Variation of the Rate of Decay of Mesotrons

61) S. F. Singer

62) >

63) G. Thomson

64} A, M. Thorndike
65) H. K. Ticho

66) R. C. Tolman

67 B. Weston

(a)

{b}

with Momentum, Phys. Rev. 58, 223, 1941
Application of an Artifieial Satellite to  the
Measurement of the General Relativistic «Red
Shift>, Phys. Rev. 104, 11, 1956.

Relativity and Space Travel, Nature 178, 977, 1957,
The Foreseable Future, Cambridge 1966.

Mesons, N, York 1952,

The Mean Life of Mesotrons at an Altitude of
11,500ft, Phys. Rev. 72, 256, 1947.

Relativity, Thermodynamics and Cosmelogy, Ox-
ford 1946,

Space Travel and Ageing, Discovery 18, 174, 1657,

Wnoiakn BiBAI0Brkn OedppacTtog - TuRua MewAoyiag. A.l.0.





