A Solution of the Clock Paradox

by

G．CONTOPOULOS

A Solution of the Clock Paradox

by
G. CONTOPOULOS

(Received May 25, 1958)
In connection with Prof. Dingle's arguments that there is no asymmetry in the case of the celock paradox we show the difference between relativity and symmetry. Then a complete solution of the problem by the Special Relativity is given. Many opponent views are discussed and their errors are found. In the solution of the problem by the General Relativity an abridged exposition of Möller's calculations is given. Finally the experimental verification of the asymmetric ageing of mesons is discussed.

1. THE PROBLEM

One of the most discussed and controversial subjects of the Theory of Relativity is the so called «clock paradox». This problem may be stated in its usual form as follows: Suppose that we have two identical clocks A and B near each other, showing the same tinie. B moves away from A until it reaches a third point C and then it returns near A. It is known that, according to the Special Theory of Relativity B's time will go slower, as measured by A, while it moves away or to the clock A. «Therefore» it will show a smaller time when it will return near A. But, as the motion between A and B is relative, we may regard B at rest and A moving with exactly the opposite velocity of B at every moment. Then, according to the previous argument, A will be younger than B. This constitutes the paradox. What of the two descriptions is right? Or rather will A and B give the same reading at their meeting and no one will be younger than the other?

The above problem is not a new one. Einstein already in his original paper on the Special Theory of Relativity (a, p. 904) has stated that a clock moving in a circular orbit will show on its return a retardation. A nice illustration of this retardation was given by Lan-
gevin's (i9y I) «voyageur» who returns after a long travel much younger than his brother that stays at home. Eddington (a, p. 24r; b, p. 28) gives a «justification» of the retardation of a moving clock based on the fact that only this clock suffers a real reversal of his motion, a disturbance, which is not relative, but absolnte (see also M. v. Lane, $\mathbf{a} ; \mathbf{b}$, p. 59). He makes a distinction between acceleration which is relative, and disturbance, which is not ; however this distinction is not quite clear.

A proof of the retardation of the moving clock was given in 1934 by Tolman (p. 192-197). His proof is based on the General Relativity, but it is only approximate. The discussion continned after some years (Dingle $\mathbf{a}, \mathbf{b}, \mathbf{c}$, Cambell) but no final conclinsion was reached.

It seems a little strange that the problem of the clock paradox is not definitely settled as yet. The discussion continues even to day, more than 50 years after Einstein's original paper, and many people are not quite sure if the theory of Relativity implies or not an asymmetry between two sinilar clocks and whether travelling has any effect on the ageing of one person relative to another.

A few years ago McCrea (a) was writing that «it has never benn made quite clear that there really is no (clock) paradox». The discussion that followed this paper, which we shall see presently, has proved that indeed the problem in not quite clear yet.

The general interest on the clock paradox has been revived these last years on account of the possibilities now arising of space travel. In some popular books on this subject the suggestion is made that space-travel may involve a lengthening of the life of the spacetravellers. Of course the velocities likely to be attained in interplanetary flights are quite insufficient to give any significant timedilatation; however the perspective of a lengthening of one's life is so much attractive! This is perhaps one reason why the problem of the tinue dilatation has become so popnlar to-day.

A long exchange of opposing views on this controversial subject has taken place these last two years. We mention mainly the papers that followed an exchange of views on the clock paradox between Professor Dingle and Professor McCrea in 1956-1957 (Dingle $\mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{g}, \mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{1}, \mathbf{m}, \mathbf{n}, \mathbf{o}, \mathbf{p}, \mathbf{q}$), McCrea ($\mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{g}, \mathbf{h}$), Crawford (\mathbf{a}, \mathbf{b}), Singer, Cochran, Fisher, Halsbury, Weston, Builder ($\mathbf{a}, \mathbf{b}, \mathbf{c}$), Fremlin, Darvin, Cnllwick etc.). Of course the discussion is confined to the theoretical problent only, and especially in clarifying the impli-
cations of the theory of Relativity on the problem of the clock paradox. On the one side are Professor Dingle, Professor Cullwick and others. Dingle maintains in a very clear way, it must be admitted, the view of the exact symmetry of the motion of the clocks, which, he says, is an immediate consequence of the theory of Relativity. It is strange that although a great deal of authors have taken an opposite view, no one succeded in convincing him that he is wrong. In fact, if we except two replies, one by McCrea (h) and another by Crawford (b) which give a reasonable reply to Dingle's arguments, no one replied satisfactory to Dingle's basic argumentation, which is set forth in the form of a syllogism ($\mathbf{k}, \mathbf{1}$) :
I) According to relativity, if two bodies (e. g. two identical clocks) separate and reunite, there is no observable phenomenon that will enable one to say, in an absolute sense, that one rather than the other has moved.
2) If, on reunion, one clock is retarded by a quantity depending on the motion and the other is not, that phenomenon would enable one to say absolutely that the first had moved and not the second.
3) Hence, if relativity is true, the clocks must be retarded equally or not at all : in either case their readings will agree ou reunion if they agreed at separation.

Iu this paper we shall point out first the weak point of this syllogism and show the basic difference between relativity and symmetry. Further we shall discuss the clock paradox by the Special and, separately, by the General Relativity, pointing out some errors of Dingle and others in this connection. Finally we shall refer to the experimental verification of the asymmetric ageing described by Crawford and give a reply to Dingle's objections to this.

2. RELATIVITY VERSUS SYMMETRY

It is evident that the motion of the two clocks in the case of the clock paradox is relative, i. e. we may regard either A moving relative to B, or B moving relative to A; there is no absolute motion of course. However we must distinguish between $t h e r e l a-$ tive motion of the two bodies irrespective of therest of the world, and the relative motion of one body with respect to therest of the world.

If the only objects existing in the world were the two clocks of the clock paradox problem, then evidently there should be exact symmetry between them and Dingle should be right. In fact any force separating them should act symmetrically to them and any cause that should make these clocks to reunite (e.g. if the two clocks are connected by an elastic string which contracts after it is streched) it should again act symmetrically; no case of asymmetry should arise.

But in the real world there exist more than two objects of course. Therefore it is quite possible that the motion of the one clock with respect to the rest of the world is not symmetric to the motion of the other clock with respect to the corresponding rest of the world. We shall illustrate this by a simple example.

Suppose that there are tliree objects in the world on a straight line, say $A B C$, and that A and C are connected in such a way that no change of distance between then is possible. The «moving» clock B goes from A to C, where its motion is reversed by a collision and it returns to A. B is moving with respect to the system AC; therefore we may regard B at rest and $t h e$ system AC moving with respect to B. This motion is exactly symmetric to the previous notion of B with respect to AC , i.e. B is symmetric to AC as regards their motions. But AC is not anything similar to B . It is composed of a clock A and a third object C . Therefore no conclusion about the equality of the readings of the clocks A and B can be drawn. It is seen on the contrary that A and B are not symmetric in their motion with respect to the rest of the world. Namely A's motion with respect to BC is not at all symmetric with B's motion with respect to AC. Therefore there is no apriori reason, based on the theory of Relativity, that the two clocks A and B should show the same readings on their reunion. As we shall see further, it is possible to prove, by the General Theory of Relativity, that B and not A will be retarded. In the following paragraphs we shall show how some specific «proofs» of Dingle and Cullwick about the equality of A^{\prime} 's and B 's readings on their reunion are invalidated. For the present we notice that Dingle's postulate of symmetry can be proved in general false, when three or more bodies exist in the world.

In a recent reply to Crawford (b) Dingle (\mathbf{k}) denies the asymmetry because the assumed asymmetric ageing is «a quantity depending on their relative notions» namely $2 T\left(1-\sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}\right)$. This however
is no objection at all to our syllogism. The asymetric ageing is a function of v, where v is the velocity of B with respect to $A C$, or the velocity of $A C$ with respect to B. This shows that we cannot say if B or AC has moved in any absolute sense. But this does not change the fact that B 's motion is not synmetric to A's. In fact the asymmetric ageing is a function of the velocities of A and B with respect totherest of the world (here the point C).

3. THE CLOCK PARADOX IN SPECIAL RELATIVITY

In the case of the Special Theory of Relativity the clock paradox may be formulated as follows (Ives 195I) : $\underset{B}{\overrightarrow{~ C}}$

Two clocks A and B are moviug with respect to each other with uniform velocity v. At some instant $t=0$ the two clocks go by each other and are then synchronized. At a later moment B meets a third clock C approaching A with velocity v; then B and C are synchronized. When C will meet A, will it show a smaller reading than A or not? It is evident that the motion of the system $B C$ with respect to A is not symmetric to the motion of $A C$ with respect to B. The corresponding symmetric experiment, when B is regarded at rest, should involve a fourth clock D moving toward B with velocity v and meeting A when A shows the same time that shows B when it meets C; theu D will be slow with respect to B, on meeting it, by the same amount as C is slow with respect to A when it meets it. It is seen in this experiment that an asymmetry does not want necessarily an acceleration to occur. However in the case of a returning clock an acceleration is necessary, and a athird boby acceleration», as Crawford (b) calls it, introduces the asymmetry in the problem.

The clock paradox in the case of the Special Relativity has been solved in first approximation by Ives. We shall give a complete solution here: When B and C meet, their times are $t_{B}=t_{C}=t_{A} \sqrt{1-\frac{v^{2}}{c^{2}}}$ where t_{A} is the reading of a clock at rest with respect to A and synchronous to it at the point of B's and C's meeting. When C and A
meet, C's time is $\bar{t}_{c}=\mathrm{t}_{\mathrm{C}}+\left(\bar{t}_{\mathrm{A}}-\mathrm{t}_{\mathrm{A}}\right) \sqrt{1-\frac{v^{2}}{\mathrm{c}^{2}}}=\overline{\mathrm{t}}_{\mathrm{A}} \sqrt{1-\frac{v^{2}}{\mathrm{c}^{2}}}$. If now we regard B at rest, then A and C are moving in the same direction. C 's velocity with respect to A is v, i.e. its velocity with respect to B is $u=\frac{2 v}{1+\frac{v^{2}}{c^{3}}}$. When B and C meet, their readings are $t_{B^{\prime}}=t_{c}{ }^{\prime}$. When C and A meet, their readings according to B are : $\left.\overline{\mathrm{t}}_{\mathrm{C}}{ }^{\prime}=\mathrm{t}_{\mathrm{B}}^{\prime}+{\overline{\left(\mathrm{t}_{\mathrm{B}}\right.}}^{\prime}-\mathrm{t}_{\mathrm{B}^{\prime}}\right) \sqrt{\mathrm{I}-\frac{\mathrm{u}^{2}}{\mathrm{e}^{2}}}$ and $\overline{\mathrm{t}}_{\mathrm{A}^{\prime}}=\overline{\mathrm{t}}_{\mathrm{B}^{\prime}} \sqrt{1-\frac{\mathbf{v}^{2}}{\mathrm{c}^{9}}}$, i.e. both run slower than B. Further : $v \overline{\mathrm{t}}_{\mathrm{B}}{ }^{\prime}=\left(\overline{\mathrm{t}}_{\mathrm{B}}{ }^{\prime}-\mathrm{t}_{\mathrm{B}}{ }^{\prime}\right) \mathrm{u}$, hence :
$\mathrm{t}_{\mathrm{B}}^{\prime}=\frac{\overline{\mathrm{t}_{\mathrm{B}}}}{2}\left(1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}\right)$. It is also $\sqrt{1-\frac{u^{3}}{c^{2}}}=\frac{\left(1-\frac{v^{2}}{c^{2}}\right)}{\left(1+\frac{v^{2}}{c^{2}}\right)}$. Therefore:

$$
\overline{\mathrm{t}}_{\mathrm{c}}^{\prime}=\overline{\mathrm{t}}_{\mathrm{B}} \cdot\left(1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}\right)=\overline{\mathrm{t}}_{\mathrm{A}} \cdot \sqrt{1-\frac{\mathrm{v}^{8}}{\mathrm{c}^{2}}}, \text { q.e.d. }
$$

The same result is found if either B or A is supposed moving ; the motion is relative hut the phenomenon is not symmetrical.

4. CRITJCISM OF OPPONENT VIEWS

Dingle (g) thinks that he can prove, by means of the above example, that A 's and $\mathrm{B}^{\prime} \mathrm{s}$ times will be the same at their meeting. His argument is: «Consider three clocks, $\mathrm{B}_{1}, \mathrm{C}_{1}, \mathrm{D}_{1}$, which at the common reading $t=0$, are together and such that, if D_{i} is regarded as being at rest, B_{1} and C_{1} are moving in opposite directions, each with uniform speed v with respect to D_{1}. If these clocks are resfectively at the origins of co - ordinate systems of which the x-axes all lie along the line of motion and are positive in the direction towards which C_{1} is moving, then these systems are related by the Lorentz transformation. There is a fourth clock A_{1}, at rest at the point $(x, 0,0)$ in the D_{1} system and at the event $E_{1}^{\prime}=(x, 0,0-x / c)$ in that system let it emit a beam of light which, on reaching D_{1}, is reflected back again to A_{1}, clearly reaching it at the event $E_{3}{ }^{\prime}=$ ($\mathrm{x}, 0,0, \mathrm{x} / \mathrm{c}$) in the D_{1} system. By the Lorentz transformation, $\mathrm{E}_{1}{ }^{\prime}=(\mathrm{xb}, 0,0,-\mathrm{xb} / \mathrm{c})$ in the B_{1} system and $(\mathrm{x} / \mathrm{b}, 0,0,-\mathrm{x} / \mathrm{cb})$ in
the C_{1} system, where $b=\sqrt{\frac{\left(1-\frac{\mathrm{v}}{\mathrm{c}}\right)}{\left(1+\frac{\mathrm{v}}{\mathrm{c}}\right)}}, \quad$ while $\quad \mathrm{E}_{3}^{\prime}=(\mathrm{x} / \mathrm{b}, 0,0$,
$x / c b)$ in the B_{1} system and ($x b, 0,0, x b / c$) in the C_{1} systenı. Hence, by Einstein's criterion, the time of the event $\mathrm{Eq}_{\mathrm{g}}{ }^{\prime}$, at which the light falls on D_{1}, will be 0 in the D_{4} system, $\frac{1}{2}\left(-\frac{x b}{c}+\frac{x}{c b}\right)$ in the B_{1} system and $\frac{1}{2}\left(-\frac{x}{c b}+\frac{x b}{c}\right)$ in the C_{1} system. Since D_{1} is at rest witlı respect to A_{1}, D_{1} is synchronized with A_{1} if it actually reads 0 at this event. Let this be so. Then, by hypothesis, B_{1}, C_{1} and D_{1} will be coincident and will all read 0 at the event $E_{q}{ }^{\circ}$. Hence B_{1} will be slow and C_{1} fast by the same amount, viz. $x(y / b-b) / 2 c$ at the event $\mathrm{E}_{2}{ }^{\prime}$ ».

Crawford (b) pointed out clearly the main error in this argument, which invalidates Dingle's «proof». Dingle's calculations are based on a misunderstanding of Einstein's definition of synchronization. Two distant clocks can be synchronized only if they belong to the same inertial system, i.e. if they are at rest with respect to each other (Einstein a, p. 894 f ; b, p. $\mathbf{1 6}$, c, p. 18, d, p. 26). This is forgotten in the application of Einstein's criterion for the event $\mathrm{E}_{\underline{2}}$ ' of the reflection of the light. In the moving system the time of the event $\mathrm{E}_{\underline{2}}{ }^{\circ}$ is the mean between the times of departure and returning of the light to the s ame point (in the corresponding system) namely $x b$ in B_{4} and x / b in C_{1}. Then, as it is expected, the times of the event $\mathrm{E}_{\mathrm{q}}{ }^{\prime}$ are found to be all zero.

Dingle did not try to refute Crawford's criticism but stated his theorem in anotier way (Dingle, \mathbf{k}) :
«Let B_{1} and C_{1} be two observers-cum-clocks moving with the same velocity v away from and towards, respectively, a distant object A_{1} regarded as stationary. Then the events on A_{1} which B_{1} and C_{1} regard as simultaneous with their meeting are respectively before and after, by equal amounts, the event on A_{1} which an observer on A_{1} regards as simultaneous with that meeting. To prove this, introduce as an intermediary an observer-clock D_{1}, stationary with respect to A_{1}, and coincident with B_{1} and C_{1} at their meeting. Let all three clocks, B_{1}, C_{1}, D_{1}, read 0 at that event so that their co-ordinates are related by the Lorentz trasformation. If x is the distance between A_{1}
and D_{4} in their common rest frame，the event E_{0} on A_{1} which is simultaneous in the D_{4} co－ordinate system with the meeting of B_{1} ， C_{4}, D_{1} ，is（ $x, 0$ ）in that system．Hence，by the Lorentz transforma－ tion，its time in the B_{1} system is $\frac{v x}{c^{2} \alpha}$ and in the C_{1} system， $-\frac{v x}{c^{2}(t}$ ．Now let A_{1} be a clock identical in working with B_{f} and C_{1} but set at random，so that its reading at the event E_{0} is T_{0} ，which may be anything at all．Then clearly the readings of A_{1} which B_{1} and C_{1} respectively，regard as simultaneous with their meeting are $T_{0}-\frac{v x}{c^{3} a}$ and $T+\frac{v x}{c^{2} a}$ ．A_{1} will obviously regard the meeting of B_{1} and C_{1} as occuring at T_{n} ，for that is his reading for the event which D_{1} times at zero．This proves the proposition．It is easily ve－ rified that $\frac{v x}{c^{2} a}=\frac{1}{2}\left(-\frac{x}{c b}-\frac{x b}{c}\right)$ of the former proof»．

Dingle＇s results are correct in this case，but they have no con－ nection with our problem ：they prove no proposition about the clock paradox．In fact we are not at all interested to what B_{1} and C_{1} re－ g ard in A_{1} as simultaneous with their meeting．The proplem is what were the readings of A_{1}, B_{4} ，when they have met and what will be the readings of A_{1} and C_{1} when they will meet．From Dingle＇s own description it follows that，as B_{1}, C_{1}, D_{4} ，show at their meeting the same time $0, B_{1}$ was fast with respect to A_{1}（if A_{1} is synchronized with $\left.D_{1}\right)$ when it met it，by the amount $\frac{\mathrm{x}}{\mathrm{v}}(1-\alpha)$ ， （where $\alpha=\sqrt{1-\frac{v^{2}}{c^{2}}}$ ）while C_{1} will be slow with respect to A_{1} when it will meet it，by the same amount．In the general case A_{4}＇s readings when it meets B_{1} and C_{1} are ：$T_{0}-\frac{x}{v}$ and $T_{0}+\frac{x}{v}$ ，while B_{1}＇s rea－ ding at the first moment is $-\frac{x}{v} \alpha$ and C_{1}＇s reading at the second moment is $+\frac{x}{v} \alpha$ ．The time interval is $\frac{2 x}{v}$ according to A_{1} ，while it is $\frac{2 x}{v} \alpha$ according to the $B_{1} \cdot C_{1}$ time（i．e．the time transferred from B_{1} to C_{1} ）．It is therefore seen clearly that Dingle＇s example gives the usual asymmetric effect，if rightly described．

A similar case is treated by Dingle geometrically（g）and the same conclusions from irrelevant data are drawn．Fig．I illustrates the previous description（only the subscripts of ABC have been ommitted）．

Fig．1．Geametrical solution of the clock paradox．

The world－lines of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ ，are $\mathrm{T}_{\mathrm{A}}, \mathrm{T}_{\mathrm{B}}, \mathrm{T}_{\mathrm{C}}$ respectively； T_{B} and T_{C} form the same angle with T_{A} ．It is seen that the reading of A when B and C meet（simnltaneous with the event P in the system of A ）is OL．In the systems of B and C however the readings of A simultaneous with P are OM and ON respectively．It is evidently $\mathrm{L} M=\mathrm{L} N$ ，«i．e．，says Dingle， C will regard A as being fast by the same amount that B will regard it as being slow»．This however again las nothing to do with the problem of the clock paradox． The problem is not if B of C will regard A as being fast or slow， but if C＇s reading when it meets A ，at the event S ，is equal or not with A＇s reading．It is evident that if A and B have the same rea－ dings 0 at O ，and if at the event P, B transmits its time to C ， then C＇s time at S is represented by the length（OP）$+(\mathrm{PS})$ ， which is greater than（OS）；therefore as the time axis is imaginary C＇s time is smaller than A＇s at S．This conclusion
is absolute, because the four-dimensional space is absolute.

The symmetric experiment for B involves a fourth clock D which meets A at the event P^{\prime} (where OP ${ }^{\prime}=\mathrm{OP}$) and moves with velocity v with respect to B (i.e. T_{D} makes the same angle with T_{B}, as T_{B} with T_{A}). If D is synchronized with A at P^{\prime}, it will show a time represented by $\left(O P^{\prime}\right)+\left(P^{\prime} S^{\prime}\right)$ at S^{\prime}, which is smaller than B^{\prime} s time, which is represented by (OS^{\prime}).

Cullwick has made an errror similar to that of Dingle in his description of the clock paradox (p. 70-73 and 283-289). He assigns a time t_{q} to a distant clock which is moving with respect to our clock, through the relation $t_{z}=\frac{t_{1}+t_{9}}{2}$ where t_{1}, t_{3} are the times of emission and returning of a light ray which is reflected at this distant clock. This again is not consistent with Einstein's definition of synchronization ; as it is known, only two possibilities to synchronize two clocks exist: either they belong to the same inertial system, or they gothrough the same point when they are synchronized. Cullwick's t_{z} time has no physical meaning, if the distant clock is moving with respect to us; it would give the right time only if it belonged to our own system. ${ }^{*}$ Therefore the so-called «discontinuity» of the coordinate time calculated by A, which according to Dingle (\mathbf{i}, \mathbf{q}) and Cullwick takes place when the receding clock B meets the approching clock C , is due only to the fact that these authors try to synchronize two moving distant clocks.

Dingle (q) has tried to give another justification also to his claim that no asymmetric ageing will be present when two identical clocks R and M will re - unite after «M's» travel to a certain distance (without using the discontinnity of the time mentioned above). He considers a train M moving from a station A to another station B. The length of the train at rest is equal to $(A B)=L$. Then

[^0]Dingle adds : «We may then regard the outward journey as ending when the guard's van, G, at the rear of the train arrives at A. This is obviously not the case. A's time, when M arrives at B, is $t=\frac{L}{v}$; then G's coordinate x is given by the Lorentz formula : $\mathrm{x}^{\prime}=\frac{\mathrm{x}-\mathrm{vt}}{\alpha}$ where $\alpha=\sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}$, and $\mathrm{x}^{\prime}=-\mathrm{L}, \mathrm{t}=\frac{\mathrm{L}}{\mathrm{v}}$, therefore $\mathrm{x}=\mathrm{L}-\mathrm{L} \alpha$, i.e. G is beyond the point A . Thus when the jonrney ends, G does not arrive at A. Dingle's description is referring to two symmetric experiments: I) The front of a train MG (of length L in its own system) moves from A until G reaches $A, 2$) The front of a train $A B$ (of length L in its own system) moves from M nntil Breaches M (or M reaches B). These two cases are symmetric, i.e. the corresponding time readings are connected by inverse functions in the two cases. But in is not the same experiment described from two points of view, as thinks Dingle.

We have seen that the arguments of Dingle and his followers are not right. How then is the controversy still continuing ? One reason is, I think, that many of Dingle's opponents are also wrong. Dingle's criticism of most of his opponents is in many cases right, because his opponent's argnments are not proving, in general, the asymmetry of the motion of the one clock with respect to the other ; they find, in general, only the usial contraction of time of a moving observer. Some inadequate expositions have been set out recently by Fremlin (1957), Darwin (1957) and Builder (a, b, c). Dingle's criticism to them ($\mathbf{m}, \mathbf{n}, \mathbf{o}, \mathbf{p}, \mathbf{q}$) is justified because no one gives a convincing argument for the asymmetry between the two clocks *.

5. THE CLOCK PARADOX IN GENYRAL RELATLVITY

In this paragraph we follow in general Möller's discussion of the clock paradox, which gives a complete solution of this problem by the General Theory of Relativity.

The clock C_{1} is supposed at rest in the origin O of an inertial system $\mathrm{S}(\mathrm{X}, \mathrm{X}, \mathrm{Z}, \mathrm{T})$, while C_{z} moves along a straight line to a certain point C of S and then it retnrns to O . At time $\mathrm{T}=0, \mathrm{C}_{2}$

[^1]begins to be accelerated by a constant force F along the positive X -axis. After the time $\Delta^{\prime} \mathrm{T}$ it reaches a point A with a certain velocity v ; then F is eliminated and C_{2} continues its motion with uniform velocity for a time $\Delta^{\prime \prime} \mathrm{T}$, until it reaches a certain point B . Then an opposite force F brings C_{2} at rest to $\mathrm{C}_{\text {, after a time }} \Delta^{\prime \prime} \mathrm{T}$, which is equal to $\Delta^{\prime} T$, for symmetry reasons. The return travel is just the opposite of the above. The total time lapse of the travel according to C_{1} is $\Delta \mathrm{T}_{1}=2\left(2 \Delta^{\prime \prime} \mathrm{T}+\Delta^{\prime \prime} \mathrm{T}\right)$. The corresponding proper time interval of C_{q} is : $\Delta \mathrm{r}_{\mathbf{q}}=2\left(2 \mathrm{r}_{\mathbf{g}}{ }^{\prime}+\tau_{\mathrm{q}}{ }^{\prime \prime}\right)$. For the first part of the journey OA it is : $F=m_{0} g=\frac{d(m u)}{d t}=m_{0} \frac{d}{d t}\left(\frac{u}{\sqrt{1-\frac{u^{2}}{c^{2}}}}\right)$,
where u is the velocity at the time T. Hence $g T=\frac{u}{\sqrt{1-\frac{u^{2}}{c^{2}}}}$, as the initial velocity for $T=0$, is $u=0$. u increases antil it becomes equal to v at time $\Delta^{\prime} \mathrm{T}$; therefore : $\mathrm{g} \Delta^{\prime \prime} \mathrm{T}=\frac{\mathrm{v}}{\sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}}$. The corresion-

then it is found $\frac{g \Delta^{\prime} T}{c}=\frac{\frac{v}{c}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\sinh \frac{g \tau_{2}}{c}$.
Further $\tau_{g}^{\prime \prime}=\Delta^{\prime \prime} \mathrm{T} \sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}$. It is easily seen that for $\mathrm{g} \rightarrow \infty$, $\Delta^{\prime} \mathrm{T} \longrightarrow 0$, and $\tau_{2}^{\prime} \rightarrow 0$, i.e. $\Delta \tau_{1} \rightarrow 2 \Delta^{\prime \prime} \mathrm{T}$ and $\Delta \tau_{g} \longrightarrow 2 \tau_{\varepsilon}{ }^{\prime \prime} \rightarrow$ $\rightarrow \Delta \tau_{1} \sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}$.

If now C_{2} is supposed at rest, C_{1} is regarded as moving along the negative X axis. While C_{1} is accelerated, until it reaches the velocity $-v$, a gravitational field acts on C_{1} and C_{g}, and C_{1} is falling freely in it. In order to find the potential of this field, we start from C_{1} ' s inertial system ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$). With respect to it C_{z} moves with velocity $\mathrm{u}=\frac{\mathrm{gT}}{\sqrt{1+\left(\frac{\mathrm{T}}{\mathrm{c}}\right)^{2}}}=\frac{\mathrm{dX}}{\mathrm{dT}}$, hence $\mathrm{X}=\frac{\mathrm{c}^{2}}{\mathrm{~g}}\left(\sqrt{1+\left(\frac{g^{T}}{\mathrm{c}}\right)^{2}-1}\right)$,
bacause for $T=0$, it is $X=0, u=0$. Further if t is C_{2} 's proper
time，then $: ~ d t=\sqrt{1-\frac{u^{2}}{c^{2}}} d T=\frac{d T}{\sqrt{1+\left(\frac{\mathrm{g}^{2}}{c}\right)}}$, ，hence
$t=\frac{c}{g} \sinh ^{-1} \frac{g T}{c}$ or $T=\frac{c}{g} \sinh \frac{g t}{c}$ ．For a point x on the C_{2} system （i．e．for a system with origin C_{2} and moving together with C_{2} ） we have：$\quad X_{1}=X+\frac{x}{\sqrt{1-\frac{u^{2}}{c^{2}}}}=\frac{c^{s}}{g}\left(\sqrt{1+\left(\frac{g^{2}}{c}\right)^{2}}-1\right)+$

$$
+x \sqrt{1+\left(\frac{g T}{c}\right)^{2}}=\frac{\mathrm{c}^{2}}{\mathrm{~g}}\left(\cosh \frac{\mathrm{gt}}{\mathrm{c}}-1\right)+\mathrm{x} \cos \frac{\mathrm{gt}}{\mathrm{c}}
$$

and $T_{4}=T+\frac{u}{c^{2}} \frac{x}{\sqrt{1-\frac{u^{2}}{c^{2}}}}=\frac{c}{g} \sinh \frac{g t}{c}+\frac{g T x}{c^{2}}=\sinh \frac{g t}{c}\left(\frac{c}{g}+\frac{x}{c}\right)$ ．
Hence：$\quad \mathrm{ds}^{2}=\mathrm{dX}_{1}{ }^{\mathrm{q}}-\mathrm{c}^{2} \mathrm{dT}_{1}{ }^{2}=\left[\left(\frac{\mathrm{c}^{2}}{\mathrm{~g}}+\mathrm{x}\right) \frac{\mathrm{g}}{\mathrm{c}} \sinh \frac{\mathrm{gt}}{\mathrm{c}} \mathrm{dt}+\right.$ $\left.+\cosh \frac{g t}{c} d x\right]^{2}-c^{2}\left[\left(\frac{c}{g}+\frac{x}{c}\right) \frac{g}{c} \cosh \frac{g t}{c} d t+\frac{1}{c} \sinh \frac{g t}{c} d x\right]^{t}=$ $=d x^{2}-c^{2} d t^{9}\left(1+\frac{g x}{c^{2}}\right)^{2}$ ．Therefore the rate of a proper clock at a distance x from the clock C_{2} is given by $\mathrm{d} \tau_{1}=\mathrm{dt}\left(1+\frac{\mathrm{gx}}{\mathrm{c}}\right)$ ．
C_{1} is falling freely in this field；for the acceleration period it is $\mathrm{x} \simeq \mathrm{O}$ and its proper time increases by $\mathrm{r}_{1}{ }^{\prime}=\tau_{a}{ }^{\prime}=\frac{\mathrm{v}}{\mathrm{g} \sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{\prime}}}}$ ． During the constant velocity period it increases by $\tau_{1}{ }^{\prime \prime}=\tau_{2}{ }^{\prime \prime} \sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}$ ．During the decelaration period it is：

$$
\begin{gathered}
\overline{\mathrm{x}} \simeq-\frac{\mathrm{c}^{\mathrm{a}}}{\mathrm{~g}}\left[\left(\sqrt{1+\left(\frac{\mathrm{g}_{2}^{\prime}}{\mathrm{c}}\right)^{2}}-1\right)+\left(\sqrt{1+\left(\frac{g \tau_{c}^{\prime \prime \prime}}{\mathrm{c}}\right)^{\mathrm{p}}}-1\right)\right]-{\mathrm{v} \mathrm{t}_{2}^{\prime \prime}}^{\text {and } \tau_{1}^{\prime \prime \prime}=\tau_{g}^{\prime \prime}}\left(1+\frac{\mathrm{g} \overline{\mathrm{x}}}{\mathrm{c}^{2}}\right) .
\end{gathered}
$$

Then ：$\Delta \tau_{i}=2\left(\tau_{1}{ }^{\prime}+\tau_{1}{ }^{\prime \prime}+\tau_{1}{ }^{\prime \prime \prime}\right)$ and $\Delta \tau_{\underline{2}}=2\left(\tau_{q}{ }^{\prime}+\tau_{\underline{2}}{ }^{\prime \prime}+\tau_{\underline{g}}{ }^{\prime \prime}\right)$ with $\tau_{q}{ }^{\prime}=\tau_{g^{\prime}}{ }^{\prime \prime \prime}$ for symmetry reasons．When $g \rightarrow-\infty$ ，then ：

$$
\begin{aligned}
& \tau_{1}{ }^{\prime}=\tau_{q}{ }^{\prime}=\tau_{q}{ }^{\prime \prime \prime} \rightarrow 0, \bar{x} \rightarrow-\tau_{\tau_{2}{ }^{\prime \prime}}, \\
& \tau_{1}^{\prime \prime \prime} \rightarrow-\frac{\mathrm{g}_{\tau^{\prime}}}{\mathrm{c}^{2}} \cdot \mathrm{v} \tau_{2}{ }^{\prime \prime}=\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}} \frac{\tau_{2}^{\prime \prime}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{aligned}
$$

Hence $\Delta \tau_{2} \rightarrow 2 \tau_{2}{ }^{\prime \prime}$ and $\Delta \tau_{1} \rightarrow 2 \tau_{2}{ }^{\prime \prime} \sqrt{1-\frac{v^{\prime}}{c^{\prime}}}+2 \tau_{q^{\prime}} \frac{\frac{v^{\prime}}{c^{3}}}{\sqrt{1-\frac{v^{2}}{c^{3}}}}=$ $=2 \frac{\tau_{2}^{\prime \prime}}{\sqrt{1-\frac{v^{2}}{\mathrm{c}^{2}}}}$, i.e. $\Delta \tau_{2} \rightarrow \Delta \tau_{1} \sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}$ which is the same result as above.

This constitutes a complete solution of the clock paradox. It involves a third body acceleration, since the clock C_{1} is supposed at rest with respect to the rest of the world, while C_{z} is moving with respect to it. If we want to regard C_{1} as inoving, a «gravitational» field is needed to be introduced, which acts on the whole universe. All the bodies fall freely in this field except C_{2}, which is supposed at rest. After the period of the uniform motion, when again au inverted field is introduced, the bodies C_{1} and C_{1} are separated. The action of this new field upon C_{1} and C_{2} is not synmetric. Therefore an asymmetry arises, which is reflected in the asymmetric ageing of the two clocks.* Another similar discussion of the clock paradox by the General Theory of Relativity has been made in the case of circular motions around a central mass, by Prof. McCrea (f). This problem includes a discussion of the gravitational red - shift at the same time. The results concerning the time dilatation are similar to those found above, i.e. the effect is not symmetric between the two clocks.

6. EXPERIMENTAL VERIFICATION

In 1957 Crawford (a) described an experiment which proves the asymmetric ageing of two clocks: It is already known that mesons moving with great velocity have a greater mean life-time than mesons at rest. Many authors (Rossi, Hilberry and Hoag, Rossi and Hall, Rasetti, Rossi and Nereson a, b) have found a mean life-time of about $2 \times 10^{-4} \mathrm{sec}$ for μ-mesons at rest (see also Thorndike p. 95-108) which, owing to the relativistic time dilatation,

[^2]becomes up to $30 \times 10^{-8} \mathrm{sec}$ for fast mesons i.e. 15 times greater. These experiments do not prove of course the asymmetric ageing, because the observer measures the life-time of the mesons, which lie in another inertial system than his own.

Crawford refers to an experiment made by Ticho at II.5ooft (Ticho, 1947) and at 600 ft (private communication to F. S. Crawford) with the same apparatus on decelerated mesons. Fast incident mesons acted as triggers for the counter system, which measured the delayed decays of mesons that were decelerated to rest by an absorber. Ticho could measure the percentage p of the mesons which stopped at the absorber. We may describe his experiment as follows: Suppose that T sec is the half - life of the mesons at rest and that n T seconds after the impact of a pack of mesons on the lower station there remains a percentage of pq mesons (which may be measured from the number of mesons decaying in T seconds after the first nT seconds). Then $q=\frac{1}{2^{2}}{ }^{-}$where n^{\prime} is the increase of the proper time of the mesons during the n seconds of deceleration. If the mesons want mT seconds in our system to move from the higher to the lower station, then the percentage of the remaining mesons is $\frac{p}{2 m^{\prime}+a^{\prime}}$ of the initial flux, where $\mathrm{m}^{\prime}=\mathrm{m} \sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}$.

The same initial flux of mesons arrives at the high altitude station. In $n T$ seconds these mesons have lived $n_{1}{ }^{\prime} T$ proper seconds and remain afterwards at rest. Then after m more seconds there remains a percentage of $\frac{p}{2^{m}+n_{1^{\prime}}}$ mesons: this number must be equal to $\frac{\mathrm{p}}{2 \mathrm{~m}^{+}+\mathrm{n}^{\mathbf{0}}}$ if no asymmetric ageing exists. But m is much greater than m^{\prime} if v is great enough. Therefore n^{\prime} must be greater than n_{4}^{\prime}. In Ticho's experiments it should be greater by a factor of about 40 . No such effect has been observed; on the contrary it has been found, to the limit of the accuracy used, that $\mathrm{n}^{\prime}=\mathrm{n}_{1}{ }^{\prime}$. Therefore there exists an asymmetric ageing of the mesons, as their proper time increases by ($\mathrm{m}^{\prime}+1^{\prime}$) T and ($m+n_{1}$) T respectively. The above experiment is equivalent to a return travel of the mesons; because after the mesons have been brought to rest in the same inertial system, they may be brought together with an infinitesimal velocity, so that they should not change their times any more.

In a brief reply to this experiment Dingle (h) remarked that a returning meson should lose as much time as it gains in its outward
journey. However we may find a sufficiently small velocity, so that if a meson moves with this velocity, the supposed loss (although, as we have seen, it is rather a gain) of time is smaller than any given number, without necessitating an infinite duration of the journey, as fears Dingle (h, postscript). Dingle has made two further replies to Crawford (\mathbf{i}, \mathbf{k}); he does not question the accuracy of his experiments, but he thinks that an experimental proof of the asymmetry would require that the postulate of relativity must be rejected». We have seen, however, why such a view is not right, and how Dingle's attempts to describe symmetrically the motion of the two moving clocks have failed.

Some authors have proposed experiments in order to verify the asymmetric ageing of the moving mesons (Martinelli and Panofsky, Herman, Cochran) *. They refer to artificially produced mesons which are made to move in circular paths by special accelerators in magnetic fields. Such experiments are now possible, so that it is probable that the asymmetric time dilatation will be soon confirmed. However the experiment descrihed by Crawford is the first that proves that there is really an asymmetric ageing effect in the moving mesons ; this result is a confirmation of the theory of Relativity, and a rejection of Dingle's principle of symmetry.

[^3]| 2 | A．S．Eddington | （a） | The Mathematical Theory of Relativity，Cambridge 1937. |
| :---: | :---: | :---: | :---: |
| 29） | A．S．Eddington | （b） | Raum，Zeit und Schwere，Braunschweig 1923. |
| 30） | A．Einstein | （a） | Zur Elektrodynamik bewegter Körper，Ann． Physik 17，891， 1905. |
| 31） | ＊ | （b） | Uher die spezielle und die allgemeine Relativitäts－ theorie，Braunschweig 1922. |
| 32） | ＞ | （c） | Vier Vorlesungen über Relativitätstheorie，Braun－ schweig 1923. |
| 33） | ， | （d） | The Meaning of Relativity，London 1950. |
| 34） | | （e） | Relativity，London 1954. |
| 35） | R．Fisher | | Space Travel and Ageing，Discovery 18，56， 1557. |
| 36） | J．H．Fremlin | | Relativity and Space Travel，Nature 180，49：＇， 1957. |
| 37） | Lord Halsbury | | Space Travel and Ageing，Discovery 18，174， 1957. |
| 38） | R．Herman | | Suggested Experiment on the Relativistic Contra－ ction of Time，Nature 178，689， 1956. |
| 39） | E．L．Hill | | The Relativistic Clock Problem，Phys．Rev，72， 236， 1947. |
| 40） | H．E．Ives | | The Clock Paradox in Relativity Theory，Nature 168，246， 1951. |
| 41） | P．Langevin | | Scientia，10，31， 1911. |
| 42） | M．v．Laue | （a） | Zwei Einwande gegen die Relativitatstheorie und ihre Widerlegung，Phys．Zeitschrift 13，118， 1912. |
| 43） | \bigcirc | （b） | Die Relativitätstheorie 1，Braunsweig 1921. |
| 41） | E．Martinelli | W．K． | A．Panofsky，The Lifetime of the positive $\pi-M e-$ son，Phys．Rev．77，465， 1950. |
| 45） | W．H．Mc Crea | （a） | The Clock Paradox in Relativity Theory，Nature 167，680， 1951. |
| 46） | \geqslant | （b） | Relativity and Space Travel，Nature 177，784， 1956. |
| 47） | ＊ | （c） | ＞178，680，1956． |
| 48） | ＊ | （d） | A Problem in Relativity Theory：Reply to H ．Din－ gle，Proc．Phys．Soc．A 69，935， 1956. |
| 49） | \rightarrow | （e） | Relativistic Ageing，Nature 179，909， 1957. |
| 50） | 》 | （f） | A Time－keeping Problem connected with the Gra－ vitational Red－Shift，Jubilee of Relativity Theo－ ry，Basel 1956，p． 121. |
| 51） | 》 | （g） | Space Travel and Ageing，Discovery 18，57， 1957. |
| 52） | \geq | （h） | ＞$>$ ，18，175， 1957 ． |
| 53） | \rightarrow | （i） | Relativity Physics，London 1957. |

54）E．A．Milne and G．J．Whitrow，On the so－called «Clock Paradox» of Special Relativity，Phil．Mag．40，1244， 1949.
55）C．Möller
The Theory of Relativity，Oxford 1955.
56）N．Nereson and B．Rossi（b），Further Measurements of the Disintegration Curve of Mesotrons at Rest，Phys．Rev．64，199， 1943. Disintegration of slow Mesotrons，Phys．Rev．60， 198， 1941.
58）B．Rossi and N．Nereson（a），Experimental Determination of the Disinte－ gration Curve of Mesotrons，Phys．Rev．62，417， 1942.
53) B. Rossi, N. Hilberry and J. B. Hoag, The Variation of the IIard Component of Cosmic Rays with Height and the Disintegration of Mesotrons, Phys. Rev. 57, 461, 1940.
60) B. Rossi and D. B. Hall, Variation of the Rate of Decay of Mesotrons with Momentum, Phys. Rev. 59, 223, 1941.
61) S. F. Singer
69)
63) G. Thomson
64) A. M. Thorndike
65) H. K. Ticho
66) R. C. Toiman
67)
B. Weston
(a) Application of an Artificial Satellite to the Measurement of the General Relativistic «Red Shift», Phys. Rev. 104, 11, 1956.
(b) Relativity and Space Travel, Nature 179, 977, 1957. The Foreseable Future, Cambridge 1955. Mesons, N. York 1952. The Mean Life of Mesotrons at an Altitude of 11,500ft, Phys. Rev. 72, 255, 1947.
Relativity, Thermodynamics and Cosmology, Oxford 1946.
Space Travel and Ageing, Discovery 18, 174, 1957.

[^0]: * Further Cullwick bases his arguments on the assumption (p. 73) that if two clocks A and B, belonging to the sane system S, are synchronized, then a third clock O^{\prime} moving from A to B, shows the same tinue $T^{\prime}=T$ as B when meetiug B, if it has been synchronized with A when it met it. This is evidently wrong; in fact, if T is the reading of B (B is synchronized with A) when O^{\prime} meets $i t, O^{\prime}$ s reading is $T^{\prime}=T \sqrt{1-\frac{\dot{v}^{2}}{\mathrm{C}^{2}}}$. This a most elementary application of the Lorentz formulae (see e.g. von Laue b, p. 58) and it is stragge to see how it has been overlooked.

[^1]: * Dingle (d, e, f, g) criticises also a paper by McCrea (a); the weak pont however is not that suggested by Dingle; it is McCr_{r} a's neglect to prove that the R's time increases from $2 \alpha \mathrm{~T}$ to 2 T during the acceleration.

[^2]: * Crawford (b) is essentially right in his discussion of the problem. Dingle (\mathbf{h}, \mathbf{k}) objects to this the example of the apparent diminution of the size of an observer which is moving away. This however is quite irrelevant, since au approaching observer increases in size, while the rate of a returning clock is the same as that of a receding one i.e. slower than the rate of a clock at rest.

[^3]: * Another method is proposed by Singer (a, b) ; he calculates that the difference between the rates of a clock on the earth and on an artificial satellite is $3: 10^{9}$. This effect shonld be measured by atomic clocks. However the technique cf this experiment seems to be so difficult, as to be not realisable for the present.

