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Abstract: In this paper we summerize the basic con-
clusions of a new variational method for the determination of
the correlation function f, beiween two nucleons in the wnfiniten
nuelear matter. The first step inthis approack is to put the
denominator in the expression of the energy per particle: E/N in
a suitable form. By using subsequently the variational principle
we obtain a non - linear integrodifferential equation for the
function f. By studying the behactour of this equation for large
distances we are led lo the following integral constraint:

20 f[1-r (1 - Bker) | dra=1,  lkeryy) = kst

kgryy

It should be pointed cut that no use of arbitrary condition
is made in the proposed approach. It seems therefore that this
method can be the appropriate way of facing a problem, which
has existed for a long time and is known as «Emery difficalty.

Finally, the results of some preliminary numerical calcula-
llons are given.

1. Introduetion

Variational calculations of the energy per particle in nuclear

matter! are based on a cluster expansion of the type:
E
f:‘al‘i‘ﬁa‘f‘sa‘i‘"" (1)

where =, is the Iermi energy, e, the two - body cluster terms (pro-
portional to the denmsity p), e; the three- body terms e.t.c. The &,
and higher terms are functionals of the nucleon - nucleon correlation
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funection f, which appears in the well - known Jastrow trial many - body
wave function %2,

In practice, expansion {1) is usually truncated at z,. Such a trun-
cated cluster expansion, however, has the deficiency that normalization
is absent from it, with the effect that too much energy per particle might
be obtained. In order to avoid this difficulty, known as «Emery diffi-
culty» ! a restricted variation of E/N has to be performed. This varia-
tion is either functional (with respect to f) or with respect to parameters,
which are contained in the [, if a given analytic form for this function
is assumed. In the calculations performed so far, quite a few types of
restrictions %45 have been used, but the imposition of them has been
done in an ¢ad hocr manner and it is not clear which the appropriate
condition is that should be satisfied by f.

In this paper we summerize the basic conclugions of a new varia-
tional method for the calculation of E/N and give some preliminary
numerical results. Details of the formalism will appear elsewhere.

In the present approach a suitable expression for E/N is functio-
nally varied and the initial (general) constraint, which is introduced,
hag its origin to the denominator appearing in this expression. The
specific condition, which f has to satisfy, is subsequently derived by
studying the Euler equation of the variational problem. No ¢ad hoce»
constraint 18 imposed.

2. Summary of the formalism

We start from the general expression for E/N, as this is given by
Aviles (see expressions (100) and (101) of ref. (3).), which we rewrite
in the form:

7

21

vkr | (N—1) f% { [% ((Vf)n—fwr) + V(rlz)tﬂ] GFit) — g V- F(ru)} dr,,

2m P ffa(rlz:' GF(ry) dry

This novel form follows from the definition of functions Gy and F
{formulae (11) and (12) of ref. (3))}.

Since we are interested in the limit N— w0, Q— w0, the ratio N/Q
remaining constant =g, variation of (2) with respect to f, is equivalent
to variation of the numerator (divided by (N-1)) of the second term
in this expression, provided that

p f (2Gr (ry5)—1) dry, == finite constant 3
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The Euler equation of the variational problem is the following
non - linear integrodifferential equation :

(_—_ [Pm Gr(r) 7 (2 Ty Ge(Tyg) + 1yt SCF Tl (%]-I-

dry

+ { ryo? (V(I'lz) + 7\) Gr(ry) - % Tz (%: ' F(rm)) +

-+ ( zt:n I'12{(1(}1:‘: tia) -+ i T1g ( dEGd:I(.;M) drl-, . F(rra)))]}

T2
af 2 1 9GF{ry)
+ r12 l: ((drlz ) dln rlg dlp )) (V(ru) + A)fgjl T af &
d[ 1 0 I,
+ (_ Im dr-lzq T ,.1: F (1'12)) =0 (4)

This equation must be solved with boundary conditions :
f{c)=0 f{o)y=1 )
where ¢ is the hard core radius of the internucleon potential. .

We may note that if instead of nuclear matter, which is a many -
fermion system, we consider a many - boson system, then in the resulting
integrodifferential equation the terms with the function F(r;;) do not
appear and instead of Gr(r,) we have the function G{r;;) given by
expression (5) of ref. (3).

Taking into account the three - body terms in the cluster expansions

G . L . .
of Gr, 0 and the other functions appearing in equation (4), it can

be shown that the following condition must be satisfied for the proper
behaviour of this equation for large distances:

| 3j1(kp1'12)
2o f 1 (1—f Plor))dra =1, ke =1 (6)

This differs from the well - known «first order normalization
condition» by a factor of 2.

3. Preliminary numerical results

Sinee it is a very complicated task to solve equ. (4), we performed
numerical calculations, assuming the following form for the f:
0, 0=Zr,<ec

f(ry) = M
{1_3XP[“51'1(|'12_0)]} {1—|—vexp[—‘p.2(r12—~c)]} €=y ®
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and we fixed the value of v by condition (6), while we determined
the wvalues of p; and w, (for each value of Kr) by minimizing
E/N=—¢;+¢e, with respect tothem. This was done inthe same way as in
the case of «irst order normalization condition», which was shown?
to be the appropriate one for the «@mpure nuclear matter problems
(e.g. of a A - particle in nuclear matter), and in fact the program of
ref. 6) with a slight modification was used.

Our computations were performed with the hard core potential
of Iwamoto and Yamada ®:

o, 0<r,=06fm

V(rp) = \ - (8)
— 397.3 exp [—2.627 (r;,—0.8)], 0.6 <r,<w

,which acts only in even states. The results for - E/N are shown in fig. 1.
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Figure 1. The b.indr.'fzg energy per particle ( as function of K.

- N
The minimum of the saturation curve (E/N as function of Kg) is at
Kr= 1.376 fm~!, which is very close to the experimental value. The
minimum value of E/N is:

E

N = —9.26 MeV
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This value is closer to the experimental one, compared to the
corresponding results of certain other calculations %8 The inclusion,
however, of three - body terms in E/Nis expected to make the difference
between our results and those of the above references, smaller.

The values of w,, py and v, which correspond to the minimum, are;

b = 0.987 fm_l, 2 = 1.425 fl'[l"l, v = 353

The above results are close to those obtained with the normali-
zation condition .

We should finally point out that the present analysis suggests
that one - parameter correlation functions, which have been frequently
used, are not appropriate.

I would like to thank E. Mavrommalis for computational assi-
stance.
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MIA MEGOAOZ METABOAQN TIPOX KA®QPIZEMON
THE ZTYNAPTHZEQE EYEXETIZEQEZ ATO NOYKAEONIQN
THXZ NMTPHNIKHZ TAHZ

Hrh
MIXAHA EA. TPTITAIOY

Zrovdastipoy Ocwonrixic Pvowiic avemornuiov Begoalovixng

Ei¢c v mapoloav dpyasiav, &xBéropev v mepidfder T& Paowd cupme-
paopata i véag nebédov petafordv, mpds xaboplopdv THE ouvapThseec
ouoyetiozwe I(r;) dbo vounheoviwv ¥ «imelpoun mupnvixdc Uine. T
npdTov BApa el v &v Adyw wébodov, elvar va Béowpev Omé wataiinrov
RopPAv TOV TapOVOURSTHY TNS Exppacewe THS Svepyelus dva sopdriov E/N.
Xenarpomorolivreg &v guveysta Tiv dpyhv TV petaBordv, AauBdvopev piav
i - ypappody Shoxknpodiapopv eilomov Sk THv ocuvdprnowy f. Meke-
TEVTES TNV supTmeptpopay TAS €v Abyey Eiiodoswg dia peydhag &mosTacsis,
&dvyodpelu elg Tov EERc ShoudmpuTinév meploploudy Sk THv I

31 (kprye)
kgpPyy

2p [ [142 (1—%12(1(1@12))] drp=1,  I(kerp) =

Qo mpimy va dvapeplF, &te el Thv mpotewvopdvry péBodov, dtv yiverar
roForg adBaipbrov auvbixene. L2 2w TodTou f) wébodog ality Sdvartar b pai-
vetar va dmotehéoy Tov Evdedawypévov tpbmov dvtiustwniccng, Tol émi pa-
xpdv Sprotapévoy mpoPAfuartos, yvwotel d¢ «Emery difficulty».

Eic 16 téhog g dpyaoctas didopev Ta droTerbopaTa Oplouévey mpoxa-
TapxTixdiv  dplpnTiév  SmoloyLopdv.
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