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Abstraet: In this paper a model operator-variatioral approach is considered for the
determination of the two-particle eorrelations in finite nuclel. The essential difference
from sorne other work is that the model operator is not assumed to be (left) unitary. Two
different expressions for the two-body part in a cluster expansion of the energy functio-
nal (AE), are firstly obtained ard a variational method with a separation condition
is subsequenily applied. Finally, a formula is derived, which can be used directly in
order to obtain numerical results for the ground state energy of the He* nucleus.

1. INTRODUCTION

It iz well known that two basic approaches have been developed
for the nuclear many-body problem. The first is the reaction matrix
theory developed mainly by Brueckner, Goldstone and others 2. This
approach is the most fully explored and has been simplified with the
Moszkowski and Scott separation method ® and the reference spectrum
method of Bethe, Brandow and Petschek ¥. The second is the varia-
tional approach 9. '

In the present paper we follow the latter approach and we use a
model operator, which however is not assumed to be (left) unitary,
as it has been done in some other investigations -9,

In the second section, the factor-cluster expansion '@ for the ener-
gy expectation value of a finite nucleus is employed and two general
expressions are given for its one body and two-body part. The varia-
tional principle is also applied and the «eparation condition» is used.
In this way coupled Euler equations are obtained for the correlated,
relative two-nucleon wave functions. Finally in section 3t he simplest
possible case, that is the calculation of the binding energy of the He*
nuecleus, is discussed.

* A preliminary report on this work was contributed to the Physical Society
Conference on «Nuclear Structure and high energy physicss, Glasgow (March 1974).
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2. TWO GENERAL EXPRESSIONS FOR <{E>> AND APPLICATION OF THE
VARIATIONAL PRINCIPLE

If we denote the model operator, which introduces short-range
correlations by F, an eigenstate ® of the model system corresponds to
an eigenstate

¥ == FQ (1)
of the true system.

We can choose the operator F in such a way that the model
eigenfunction ® may be well approximated by a single Slater determi-
nant (or a linear combination of a few Slater determinants). Short-
range correlations are introduced by the model operator F.

Several restrictions are also made on the model operator, as for
example that it depends only on the spins, isospins and relative coor-
dinates and momenta of the particles in the system, it is a scalar with
respect to rotations e.t.c. 7. The {left) unitarity requirement, however,
is not made in the present investigation. Because of the various restric-
ions on F, ¥ is no longer the true wave function of the system, but can
only be considered as trial wave function.

The correlation operator will be determined in this paper by vary-
ing the energy expectation value:

<VH¥>  <O/FFHFO>  <oH0>

<E>="—"9ws T ZoF o>  <oFFe> &
where
A A
H= >t + 2uy (3)
i=1 1<)

e 3 (—2 o)
= — 5 Vi
1 i=1 2m

vij is the two body interaction, which is assumed to be central and

T — FYHF the effective Hamiltonian for the model system.

We shall use a factor-cluster expansion for the energy expectation
value <<E> of a nucleus, consisting of A nucleons and we shall apply
the variational principle by keeping in the cluster expansion the one-
body and two-body terms. Two general expressions will be obtained,
which will be varied.
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The first expression is obtained if we consider the generalized nor-
malization integral

I(8) = < W|epH— < T =) |P > (4)

corresponding to the quantity (H —<T>) where <T> is the ex-
pectation value of the kinetic energy of the ground state in the inde-
pendent particle model, which is chosen to be the oscillator shell meo-
del.

From equations (2) and (4) we obtain the formula

<E>=<T> } a%lnl(p) )

B=0

The cluster analysis of (5) begins with the definition of subnormali-
zation integrals, analogous to (4) for the subsystems of the A-nucleon
gystem 19
L) =< i‘ F+19XP{{3(t1 — ti>)}F1|i>
@) =< ijlwlzexp{ﬁ(iﬁ 4t F v —<ti> —<t> )}leij — >
Lik(f) =< ijk‘F+1239XP{B(t1 + by 4 b5 + Vi 4 ey + Vg — <t —

— <ty — <)) Fiplifk — ikj + jki —jik 4 kij — kji>

(6)

Iy 14— 1)

Next, a factor-cluster decomposition of the above subnormalization
integrals is made 11

L—Y;
Iij = Yinij
e =Y1Y i YeYiY e Yiei Yigee {7

111...1A:I:HY1’HYH' II Yiik"'Yil"'iA
i i< i<j<k
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Inserting the last of the relations (7) into (5) we obtain the factor-cluster
expansion for the energy expectation value:

<E>—<T> | (AE), + (AE), + ... + (AE)4 8)
where
A 2 A . ‘
wm=dgm | = e -
B=0 |B=0
0 1 ol 1 a3l A ol
AE), — InY;, _ oy (_ﬁ__ 4__0 _
(AB), = 1%) e i 1§]|‘IIJ aﬁ I; a8 + I o8 ]
L % <[ F by b + vy — <> — <<ty >) Fogfij — jix> 9)
i<j <Hj| Py Fpofij — ji>

We do not write the expressions of the three-body and many-body
terms, because it is assumed that these terms will give small contri-
bution to the energy expectation value. This assumplion would he
reasonable provided that the correlations introduced by F are of short
range.

Calculations of the two-particle matrix elements of the two-body
part (AE), of the effective Hamiltonian can be simplified by making a
transformation to relative coordinates of the two interacting nuecleons.
We can write

t, 4 by =—t; + tr (10)

where tr, is the relative kinetic energy operator of the two nucleons and
tr, their centre of mass kinetic energy operator.

Substituting, now, (10} into {9), we get the following expression
for (AE),

A sl e .- P— .
<ij|v’ersllj — ji> + <ij| FibnFyyiij — ji>>
AE), — = - = 11
(B, igj <ij[ P, Foofij — ji> (1)
where
E E
verr == F+12 (tr + v — 2111 %L)Fu (12)
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Finally, following a procedure similar to that of reference 7, we
can write the expression for (AE), as follows:

alsc? s <n15|ue”|n15>
(AE)E — 2 nisS n +
t<jl 2, C <¢n15|¢nls>
nig nls
sic <y W > <y ]
+ alS| (my n+1)18 nls  n+1,18 + oy n—1)18 nls HJ11—11IS> (13)
nls nls M) >

The notation in this formula is mostly as in ref. 7. The coefficients
Cllyis are expressed in terms of Clebsch-Gordan and Talmi-Moshinsky-
Smirnov coefficients 12-19 ;

i) n,l,m NLM n,l,m; | NLM
Cl _ s < 1410, L 2 o, ; 62|SMS>2[/ 1l1My >_
nis NII'\I;I n,l,m, nim”” \n212m2 nlm
! m
> B
m, | NLM
— (e P ] (14)
\n111m1 " nlm” '7?

Similar are the expressions for the coefficients Clig, nsyns and
CY @, n—11s. These contain also matrix elements of the centre of mass
kinetic energy operator in the oscillator shell model.

The effective potential very is given by

E
vetr = F¥iltr + via— = ) F1a (15)

Before we proceed it is worth-mentioning that the expression for
(AE), goes over the expression for the expectation value of the two-
-body part of the effective Hamiltonian used in ref. 7, if the operator
F is taken to be (left) unitary.

If we vary (AE}, with respect to the trial relative wave function
¢mis (whieh 1s taken to be real) we find :
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1 1 1

C +
A
3(AE); =2 S}f 8 <nlS|vesrnlS> + —& nﬂu%” O < Ymsdniias> +
i<j
1 i} o1
4 C C N 16
+ (n, n—l)lsi:)ij {n—1, n)lss< l!-‘nlsl ¢n—1,1s> __](]%j)T8< ‘«Pnls‘ q}ms> ( )

where the factors NY and DU are the numerator and the denominator
in expression (13).

The condition for the stationarity of {(AE), is therefore the follo-
wing:

3 < nlS{vertnlS> <+ Bny s < Unis|dnsg18> +Bn 18 <bmis|dn-1,18> —
— enls <Unis|Pnrs>] =0 (17)

where the quantities:

1j i)

+C, /DY

{ny n+1)18 {(n+14 )18

A
2 (C

1<(j

Boipas = (18a)

A
iéj(c’ﬂs/D k

A C!j Cil Dij
1]
IZ( (ny» n—1)18 + {n—1, n)18 )/

) (18b)

S« /pu
lz,l( nlS/ )

Bn-118 =

A il 1y .

2 [C N /(DU .
Enls = ‘<’A : (19)
Z (C_ /Dl

i<j

are considered to be constant in the wvariation.

It should be noted that each of the quantities Bniq,15, Bn—ys and
ems depend on the correlated wave functions of the other relative states
as well. These quantities are assumed to be calculated initially with
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given correlated wave functions. Their values should be determined
self-consistently.
The first matrix element in equation (17), can be written:

% )Fyy[nlS> =

T < ] il

<DIS|Ue”]I’lls> - <nlS|F+12(tr Jr U12+

In the variational method with the separation condition, we assume
that there are no correlations beyond a separation distance d == dps.
In other words, we assume

fms{r) = pm(r) for r>dms (21)

Using this restriction and equation (20) we can write the bracket in
equation (17} as follows:

M nis==<nlS|verenlS > + Bniins<dms|dnriis> + Bapis <$ms|dn-10s > —

st () 0 L)

r? nls

Enl

+ vis(r)§*ms — —- 4’ + Brsymsdnas + Boepisdmisdn-ias —
B s/ dem \* . M4 1) 2
— enisd 15] dr + f dnls[ M (( dr ) + r (Pnl) + UIS(r)q’nl -

E
2nl ¢, T Brruls @nl #n+11 + Bnois oni fn-p1 — ems @ ] dr  (22)

We shall find the tationary values of (AE), by varying the rela-
tive two-body wave functions $ys with boundary conditions

$nis(c) =0 and  dms(dns) == em{dms) (23)
The first is due 1o the existence of the hard core in the internucleon

potential while the second 18 due to restriclion (21).
The Euler equation of our variational problem is
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5 d%ms w1+ 1) Fml
M d:z Moo v1s(r) “—Tn — 51115] $n1s =
B, Bu—1,
—_ IH; 18 borry1s — ,_nz_lli Ynyy15 (24)

It is clear that in the present approach the Euler equations, for
the correlated, relative, wave functions are generally coupled.

Multiplying equation (24) by {uis and integrating from ¢ to dnis
we obtain the following expression for the Mys-= <InlS|vers|nlS>,which
appears in {AE),:

B2 , , Ent pdns
Muis == wc Pni(dnis) | ¢'nis(dnis) — @'ni(dms)| — —m [ ™ dr +
1\/1 2 0 nl

dnis 2 dus )2
+ —ﬁ F fo T dI' + f qJ d]‘ £nls fc anlSdr —_—

(nIS

Bat1, d Bu-gas  pd
— R [ madngasdr — S [ M g agde (25)

where b = (2h/Mm)1/2 is the harmonic-oscilator parameter of the re-
lative motion. -

The second expression for <{E>, which we mentioned in the intro-
duction is obtained by writing the Hamiltonian of the system in a dif-
ferent form. This is achieved by adding and subtracting the single par-

A
ticle potential > wvj, where
i=1

R rg o 1
TOM By (b (Mm) ) 26)

Therefore, we have:

H—= Zt1+ Z vij + Eul— Zui— Eh + wae“ (27}
i=1 i<j i=1 i=1 i=1 i<j

where
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ICs

A
hy = Zi(ti + w) and v, =i {v1 - vy) (28)
i=

1
(A—1)
We consider subsequently the generalized normalization integral

~ A(H-E }
1(B) =<¥e ° |¥> (29)

corresponding to the quantity (H-— E;), where E, is the ground state

energy in the chosen independent particle model:

Hd -FEd , H,—Th
1

From equations (2} and (29} we obtain the formula

<E> =E; + a% InT (8) (30)
: B0

The cluster analysis of (30) begins with the definition of subnormali-

zation integrals, analogous to {29}, for subsystems of the A-nucleon
system

Ti8) = <i Fexp{B(h; — &) }Fyfi>
o~ . + res - .
I35(B) =<11|F128XP{5 [h1 +hy v s — s,-]} Fphj —ji>

~; .. + TER IC8 5]
IipdB) :<IJk|Fmexp{B[h1 +h, +h, + v +v 4+ v ‘*Ei—Ej‘;Ek]}-

23 23 1

- Fyglijk — ikj + jki— jik + kij — kji>

Tow=T

Th e 1a =

(B) (31)
where ¢; are the single particle energies in the chosen independent

particle model.
Following the same steps as before we find
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<E> =E, + (AE), + (AE)y + ... + (AE)a (32)

where

P~

(AE), =0

R res . ..
~ A <ij|F 2(hz +h, + v, T T Ei)FmilJ —n=
(AE)‘Z z‘z . ! s 4+ )
b=l <ij| Fyy Fiplij — ji>

(33)

Calculations of the two-particle matrix elements of the two-body

part (AE), of the effective Hamiltonian can be simplified by making,
as in the previous case, a transformation to relative and centre of mass
coordinates of the two interacting nucleons. We can write

h, +h,—h; + by (36)
& T &j == enyl; T+ Enjlj‘: Em + Exp (35)

where hy, E;; are the relative Hamiltonian and energy of the two nu-
cleons while hg, Exy, their centre of mass Hamiltonian and energy (in
the oscillator shell model), Also

__h* r? . __{2h \%
ur—ﬁﬁwmh h*(Mm) (36)
__h* R* . _f{ b \%

If we substitute (34) and (35) into (33), the contribution arising
from the centre of mass Hamiltonian cancels with Exy, because of the
restrictions made on the model operator F. Therefore the matrix elem-

ent which is the numerator of (AF.E‘)11 becomes
et Tes . I
<1.]|F12(h1 +h,; b e — ) Fplij —ji> =

P Vr co s
:<1_]|Fu(hr TV — Enl) Fpolij—ji> —

_<ij|F; g Fudlij — ji> (38)
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Following a procedure similar to that of reference 7, we arrive at
the following expression:

. %c“ls<nls|”ﬁen|nls>
(AB), — > [-"o—

i< >C K
=
o nlS<\vnls|wnls

+

n%[ {(n;n+1}18 <\l’nIS|\I’n+1;IS> T (myn—1)18 <\PnlS|\l’n o1~
-+ - 1 - 9
2 0 <yms|yms >
nls nls
where
~ + 1 1 E
Vet = Fm(hr + upfr) — A_1rTT A1 % o Em) P (0

The coefficients are of similar structure with those in the previous case.

The Eﬂ(n,nﬂ)ls and héii(n,n_l)ls contain now a matrix element of the
centre of mass potential energy operator in the oscillator shell model.
Finally, following the same procedure as before we get the follow-

ing condition for the stationarity of (AFE)Z:

8[<n18|oe“|n15> + Bn+1,1s<‘¥nlsl\|’n+1als> +

4 Bo1,18 <Wns|Wn-108> — emis<<Wmg|¥us>] =0 (41)

where the quantities ﬁnﬂ,ls, En—nls and ’;nls are given by expressi-
ons similar to those in the previous case.

Using restriction {21) we can write the bracket of the equation (41)
as follows:

M'ms =<nlS| v ennlS> + Brty18<Wnig/Wnrps> +

+ Bn—1als<\vnlsl\vn—1,15> — E£nli8 <\ans]\vms> =

_ (dms [ B? frdymg\? | 11 +1) 2 A-—2 8
_fo [ﬁ(( )t v )+T—T”f"’ms+

nls

2 ENL 2 =
+ UIS(Pans — (Em + m) Vo T Briiisynis¥ntls +
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o~ ~ L] s o] dcpnl
+ Bn—p18¥nis¥n—11s — smsV dr 1 f G +
I

1) ¢ A—2
P Yy

e A1 r‘P + vs(r)e — (Enl +

Exy, R
+ m) (Pm + Bntp,isfni®ntpt +

~ ~ 2
+ Bn—nlS‘PnlﬁPn—nl — EnlSCPnl:l dr (42)

We shall {ind the stationary value of (AE), by varying the relative
two-body wave functions {ms with boundary conditions (23). The
Euler equation is

e d%as [hﬂ W1+ 1) A—z h 12
M dre Moo= A M op s
E ~ Busy,
(Em + Z(ANL )) — £n J\vms =— wmz;ls Yn+1,18 —
Byyis d 43
— 5 Vnuis {c<<r<Cdms) (43)

i~

and the expression for the HP?Inls = <DIS|’-;eff|n]S>WhiCh appears in (AE),
is

—~ h2
Mus = ‘Pnl(dnls){ ¥ ms(dns) — qﬁ'nl(dnls)J —

1 | A2 1 pdois | e
- - I O S 2
e LR Dy e ol Vi i PR LR
ENL dms 2 dnlS 2 dr —
+ Z(A_i))' fO d + fd Uls dr + Enlb fC- wnlS
§n+1)15 fdnls En’lals fdnls
— Yais¥npisdl ——5"— J = ¥msWn-gsdr (44)

3. REMARKS ON THE CALCULATION OF THE ENERGY OF THE He® NucLEUS
In the case of He! the energy expression is quite simple. This ex-
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pression is the following, if we take also into account the centre of mass
correction, which is quite important for a light nucleus like He?.

3 1 1
= 3hw — —— h 2 M
® 4 - [ < Wooo| Wono = - (<< Wooo| Wooo ™ 1+ < Woo1|Woo1 =) } wo -
12 ! 4 ! M (45)
[ < Wou1| Woor > (<< Woo|Wono™> + <‘I’u?1‘\l’m1>) } ot

In the present case there are only two equations, one for Y, and
another one for {4, which are not (directly) coupled and can there-
fore be solved more easily.

The procedure in computing E g% is the following:

For a given potential and harmonic oscillator parameter b, = %,
the Euler equations are solved numerically with arbitrary values of
£q90 ANd €y, and the corresponding values of My, and My, are computed
for various values of the separation distance. The appropriate value
of d in each case is the ¢variational Moszkowski and Scott separation
distance» at which the wave function has also continuous derivative.
This separation distance is named after the corresponding separation
distance in the reaction matrix approach . If the initial values of gy {or
£oo1) @re such that there are no dy.s,, another suitable choice is made. Usu-
ally more than one dys. appear and in such a case it may be chosen the
one al which M becomes mimmum with respect to variations of d.
This is particularly desirable in view of the variational nature of the
present approach, provided, of course, that such a choice is compatible
with the requirement that the correlations are of sufficiently «short
range». The usual criterion for the fulfillment of this requirement is the
smallness of the value of the corresponding <healing» {or ewound») inte-
gral:

[¢ o]
s = f Unts — Qmiftdr (46)
Q

The wave functions, which are obtained in the previously described
way may be used in calculating new values for gy and go,-

From the detailed variational treatment of the problem, it turns
out that the expression for gy i8
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[ Moo + (Mopgo + Mgoy)
- < dogo| Voo =2 (< %ooolbooo™ + <boos|Yoor>> )" ] (47)
ouo 1 1

[ < Lgoo|Yoo0 > - { <<Dooo|Pooo > + <oor|Poor =)

Analogous is the expression for gy,. 1t results from the above ex-
pression of ey by putiing for the last quantum number (S) the value 1
wherever 1t is 0 and the value § wherever it is 1.

The dependence of the quantity ey, on the correlated wave fun-
ctions g and dy,, 18 quite simple in the present case,

The above expression for gy and the corresponding one for =g,
may be used in obtaining their new values and this procedure is repea-
ted until the values of each of the € do not change. These quantities
are therefore determined in the present approach self-consistently.

Computations based on the prescribed approach are in progress.
In our computations the Kallio-Koltveit potential 1® is used.

One of the authors (MEG) would like to thank Drs G. Ripka
and D. M. Brink for useful suggestions and discussions.
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MIA MEGOAOXZ AIA TAY AAAHAOZTZXETIZEIE
ATO ZOMATIQGN EIZ IIEIIEPAZMENOTYZ IITPHNAZX
TH BOH®EIA MH MONAAIAIOY TEAEZTOY TIOAEII'MATOXZ

‘Twd

Z. H. MAZEN x«i M. E. UTPYTIAIOY
(Znovdactiigioy Bewenrixiic Pvowiic Havemornuiov Geooalovixns)

Eic vhv mapoloav épvaciav Bewpelpsy plav pélodov petafordy jj Poxy-
Ocla «redeorol Gmodelyuatogn {(model operator) mpéc waBopiopdy TéGv dh-
Anroouayeticewy dlo-cuwpatinv elg memepasuévoug muptvas. ‘H obotaotind
Srapopd dmd dAhag Epyastug elvar &1t & Tehesmg brodeivuarog d&v Omorife-
Tor &t elvar povadualoc €€ dapiorepiv (left unitary). Kat® deydv Stdovran
dbo SrapopeTinal Exppdosg Sid 16 (AE );, Hrou ia thv dpov o cwpdrwy slg té
xata «clustersn avamrtuyna tig évepyelag, dpapuéletal 3¢ &v ouveyela
uebodog petaforddv pd piav cuvbieny Staywptopol. Téhog, eEdyetar elg -
mog & brolog dbvatan vi ypyorpomon 0 &n’ elbelag Suk tov dpibpnTindy Gmo-
Aoylopdv i Evepvelas Bacixdc ratastdoewg Tol mupFvog fitou (llet).
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