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Summary: A reciew s given for the up today proposed theories for the ferroma-
gnetic Hall effect.

1.1. In 1879, during one of his investigations on the nature of the
forces exerted on a conductor carrying a current in a magnetic field,
E. H. HaLL | 1| observed that a voltage is developed across the speci-
men in the direction perpedicular to both the current and the magnetic
field, in the way shown in fig. 1.
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Fig. 1: Schematic representation of the Hall effect.

This voltage is called HaLL voltage and is produced by the accu-
mulation of the charges on a face of the specimen until the electric field,
thus resulting, is large enough to counter-balance the force exerted by
the magnetic field.

The effect was attributed to the action of the LorenTz force on the
moving electrons.

If we consider a rectangular sample as in fig. 1 the LorexTtz [orce
on & charge carrier is

- - 1 - —
F=e|E+?v><H\ )

26
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The HaLy electric field in the y direction results from the condition:

1
F,=0=¢|E, — - v H|
which becomes
Ey = Eg = vxH|c = jxH|Nec
given that
jx ] Ner
where jx is the current density and N the carrier concentration.
The quantity: '
Ry = EnljxH = 1|Nec

is called the HaLr coefficient. In current bibliography one finds the
following quantities:

HaLL resistivity pg, defined as the ratio of the HaLL electric field
per longitudinal current density i.e.

ey = Balix = RgH

Harr angle 6, defined by its tangent:
tanf = Rpol = u H
where ¢ is the conductivity of the material,

P’l[ _ RHG = RH'P

is the HaLL mobility and ¢ is the electrical resistivity.

1.2, THE HALL EFFECT IN MAGNETIC MATERIALS

The Hall effect is metals which show appreciable magnetization
exhibits quite unexpected features from the ones appearring in other
metals. It would be reasonable to be expected that due to the LorenTZ
force the Harwy effect should vary linearly with the magnetic induction.
The typical behaviour of the Hary effect in a ferromagnetic sample is
shown in fig. (2). .

A rapid linear increase in HaLL voltage is observed by increasing
B, followed by a linear section having a relatively smaller slope. 1t is
evident that in this case, the HaLr effect could not be the simple result
of the action of the LorEnTz force on the conduction electrons. It was
for this reason that the effect was called vanomalous». It is now known
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that the effect is not restricted to ferromagnetic materials only, but it
could appear in any material in which localized magnetic moments are
present, as in the case of paramagnetic or aniferromagnetic materials
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Fig, 2: Hall pesistivity px1 vs magnetic induction B in o ferromagnetic material.

A. W. Surre and R. Sears | 2| and E. Pucs | 3| - working inde-
pendently - tried to explain the anomalous behaviour of the Havy effect
considering two contributions to it: the one beeing the result of tbhe ac-
tion of the LorenTz force, the second beeing a strongly temperature de-
pendent contribution added to the first. They proposed a semi-empi-
rical formula to explain the curve of fig. (2)

eg = RowoH + Ryl (Giorgi system)

(2)
oy = BoweH + Rybnlyg (C.G.S. system)

where @, 1 the magnetic permeability of vacuum.
H is the intensity of the magnetic field.

-.fs is the spontaneous magnetization of the sample.

The first term in the right member of equation (2} is attributed to
the action of the LorenTz force and is characterized by the constant Ry,
which is called ¢normal» or «usual» beeing indetical with the one of the
Havrwn effect in non magnetic metals.

The second term of the right member of eq. (2) is met only in the
case of magnetic metals. It could be also present in a ferromagnetic
domain even if an external magnetic induction is not applied.

It is evidently a «wpontaneousy contribution to the HavLL resisti-
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vity and it is characterized by the constant R, which is called «anoma-
lous» or «pontateous» HarLL constant.

R, was found to be a strongly temperature dependent quantity,
attaining its maximum value just below the Curie temperature of the
materials.

R, exhibits also a temperature dependence though it is found to be
rauch weaker.

In a ferromagnetic domain in the absence of an external applied
field the following relations hold |4 |

|
! 3)

In this case in the ferromagnetic domain, we have a spontaneous
Harr resistivity equal to R,Jg, the HaiL effect beeing macroscopically
and for a large number of domains, zero.

When an external field is applied the randomly oriented magnetic
moments tend to align parallel to each other and to the apllied field
with increasing induction, and then the HaLru effect is macroscopically
observable.

When the applied induction is not Jarge enough to saturate the

sample, the sample has large magnetic permeability, the product p.gﬁ

18 negligible, the magnetic induction B is practically equal to J (B ~1)
the first linear section of the curve of fig. (2) having slope equal to R;.

When the external field become large enough to saturate the sam-
ple, since J does not change, the second linear portion of the curve
has a R slope. The two linear portions of the curve intersect at a point
having an abscissa equal to spontaneous magnetization Jg, and an
ordinate equal to R,Js.

In current bibliography there are many differences in the defini-
tions of the various coefficients, e.g. application of the empirical equa-
tion (2) implies that

B—= Fuﬁ + Ta
(4)

(=l

e P‘UHe i
and that also

i

po-l:l ﬁe —NT (5
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where B is the magnetic induction.
0 is the intensity of magnetic field.
Js is the intensity of magnetization inside the sample.

(Both supposed to be uni-
form at a large distance
H,, the intensity of the magnetic field | from the sample).

4

B, the magnetic induction

where N is the demagnetizing factor which is equal to 1 for a rectangu-
lar thin sample on which an external induction B is applied normally.
Smit writes equation (2} in the following form

pH —_ HoB + RBJS

(6)
where Re=R, — R,
E. Pucn and S. Foner | 6| write the equation (2)
P — RolpoH + als) = RyByy, (7)

where a=R,R,

The coefficient a is called «field parameter» and it is considered that
the material is behaving as if an effectives induction B was acting upon
the conduction electrons instead of B.

The field parameter a is usually much larger than unity and in some
cases is negative, which means that the two linear portions of the HaiL
curve have opposite slopes.

2.1. PHAENOMENOLOGICAL THEORY OF THE HALL EFFECT

In 1939, Meixner | 7 | presented a theory combining, in a very ge-
neral way, the various transverse thermomagnetic and galvanomagne-
tic effects in an anisotropic conductor, and the corresponding currents
giving rise to them.

According to this theory

L 1
Ei = pikjx + eixGx + - a_xl

i} (8)
wy = — Tikjx + AxGx + % i

where
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E; is the electric field

ji 18 the current’s density

Gy=— dT|0x; is the negative temperature gradient
wi is the heat current density

pik 18 the electrical resistivity tensor

nik 18 the thermal conductivity tensor

zjx 18 the absolute thermoelectric power tensor

mix 19 the Pertier tensor

£ is the chemical potential or Fermi energy

The current and field vectors are represented by their components
in a Cartesian coordinate system (x;, X5, X,).
Callen | 8 | modified the above equations writing:

. 1 o

B=h— T

e (9
w, =W — -]

where — e is the electronic charge
Thus equations (8) become:
E’ = onjx + enGx {
(10)

wl.* = — Tk + rikGx

The coefficients appearing in equations (10) depend on the magne-
tic induection and obey the Onsager reciprocal relations:

pie(B) = pia(— B)

. . (11)
Mi(B) = hi(— B)

In the case of an isotropic medium, with the magnetic induction
directed along the x; axis we get:

pu(B) = pu(— B) P11 == P2z
Pii(ﬁ) = piy(— _ﬁ) Pz = — P (12)
Piz = Paz =~ 0

WnoeiakA BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.MN.O.



407

1.e. the diagonal elements of the transport tensors are even functi-
ons of magnetic induction, the off-diagonal elements beeing odd.
Thus equations (10) become (taking into account only the galvano-
magnetic effects)
E: = puj1 + prada + £1G1 + 212Gy
E; = pmly + Puda + enGy + &Gy (13)
E; = pmls T SmGs
In the case of an isotropic medium with completely isothermal

conditions, i.e. in the absence of thermal gradients (G, == — oT/¢x; =
== 0}, equations (13) take a more simple form:

E; = pujy — P”jn
Ey = pas + pus (14)
Ea = P:l&ia

or according to Jan’s notation |4 |
E,=pli— Psz
E,= PHjl + Plljz
Ey= Plljs

(15)

where p; = py; = E{|j, is the resistivity in a transverse field
P1| == pas — E4fjs is the resistivity in a longitudinal field
pH = pa1 = E;lj; = RuB is the isothermal Hair resistivity

The two quanttiies E’ and E; are equal under the assumption of
isothermal and homogeneous conditions.

In many texts, the current densities are expressed as functions of
the components of the electric field given that the tensors of resistivity
and conductivity obey the relation:

—
' 0 1s#k
P101k = Btk (16) Bik

|—

1 i=k

Hence equations (14) become
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h= U'uE: - O'zlE;
*

o= 521E: + ouE, 17

Ja= U&E;

which implies that the components of the resistivity and conductivity
tensors are connected with the relations

P11 Pz
Oy = Gy =
" PuPes — P12Pm 1 Pr1Psz ~ P12Pu1
(18)
P11 — Piz
or Gll —_— T a G12 - T
i plz fh 1 e

Provided that the symmetiry relations (16) hold.
In the case of a sample of rectangular geometry fig. 3 with the
current parallel to Ox, direction, equations

Fig. 3.
(15) simphiy to
E, = P1j
E, = P}Ij

since jy=] and Jy=J;=0
The potential difference V. is equal to:
Vi— Ve = Eb = pgib (19)
where b =— AB is the distance between A and B.
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Thus the HaLL effect formula results from very general considera-
tions. Now it is easy to define the HaLL angle as:

tand = E|E, = pylp — RB|p = uB {(20)

where p = Rg|p is the HaLL mobility.
Many authors use the quantities «Harn conductivity» defined as

PH .., _PH :

assuming it to be a measure of the HaLr effect |4 |.

2.2 SEMICLASSICAL THEORIES OF THE HALL EFFECT.

1t is easy to explain the Hawvr effect according to the semiclassical
theory of the motion of the electron in a magnetic field.

An electron with Fermi energy E, moving with velocity v in a
magnetic field is subject to the action of the Lorenz force
e

VX H (22)

—E.::-

where e 18 the electron charge
¢ the velocity of light

—

H the intensity of the magnetic field
The equation of motion of the electron in momentum space is evidently

—-

n_dp 23
F= it {23)

where E; is the crystal momentum.

It is evident from equation (22) and (23) that the representative
point which represents the electron in the momentum space p, under
the influence of the magnetic field is perpendicular to the direction of

vector ﬁ, the motion taking place on the Fermi surface.
The point describes a cyclotron orbit |9 which is defined by the

intersection of the Fermi surface and the plane normal to _ﬁ, Figs. 4,5,
If we assume that the electron is not subject to collisions then it
describes a complete orbit defined by equation:
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=®

Ffig. 4: Showring a cyclotron orbit in momentum space {a) and in real space (b) when

- .
only H 1s present.

_“E____ — —_— -
o :
H
(b)
Fig. 5.
2r eh dk
w, :-5;_; Sv—i (24)

where v, is the component of ¥ in the plane normal to H at k.
we 1s the cyclotron [requency, which is given by

2= eH

¢ R
‘Tc m*c

(25)

[V}

2

where m* :QL %) is the cyelotron mass, delined for the particu-
7T £

lar orbit which encloses the area A in p space and 1 is the time taken

by the electron to complete one orbit {10].
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The equation of metion in real space results substiluting

!

d

-

V=g (26)
In equations (22) and (23).
Thus obtaining
dp e dr =
ET U (1.3) 27)

1t is obvious that when the motion of the electron is taking place

in a direction parallel to ﬁ, its motion is not affected by the external
magnetic field. 11 an external electric field is added then the energy of
the electron is disturbed and its representative point in p space no lon-
ger moves on a surface of constant energy.

If we consider an external electric field acting along the x axis,
normal to the magnetic field which acts along the z axis, then after
gome computation* we get the equation ol motion

de cE, dpy

ST @

(28)

where £ is the electron’s energy.
The orbit of the representative point in p space 1s displaced from
the Fermi surface (on which ¢ = zy) by an amount

el
Ar=cz—g,-— pry+c (29

If Apx and Ap, are the displacements of a point on the perimeter of the
section of the Fermi surface in the xy plane we get

* iy = eBEy
} evyll
Fy= ;‘
dex o ey _ewxH ¢ dpy
dt x dt c X7 TH " dt
de L ¢ d cEx d
a— = FXVX = EEXVX = e]i‘x e— -—ptl = Hx _pti
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Az
Ap, =
Y vy
(30)
Ae
Apx = v

A displacement of the Fermi surface in p space results in producing
a net electric current. It is easily found that the currert densities along
the x and v axes are correspondingly:

. 2e 2e cE
Ajy =5 8p, v, Ap,Ap, — T Ap, X Alz)
(31)
. 2e eE
ij = Hs— Apz S_Bx pydy = 0

where Ap, is the thickness of the intersection of the Fermi surface and
xv plane, A(z) being its area.

The Hall effect is thus resulting from the classical theory of the
combined action of an electric and magnetic fields.

M. KouiLer |11 | used the free electron theory to compute
the HaLL coeflicient for which he obtained the very known expression

= ni_e (32)
where n i1s the number of the conduction electrons per unit volume, Ry
being negative, since e is negative.

The application of this formula is quite doubtful [12|. In the case
of an one band model it is applicable only for spherical energy surfaces
and for relaxation times depending on energy alone.

This simple theory was replaced by a more elaborate theory intro-
duced by SonpHEIMER and WiLson |12 |, which includes conduction
in two bands and has dominated for a long time.

According to this theory there are two overlapping bands, the s
and d bands partially filled. It is assumed that s-d transitions can be
neglected. Furthermore, for the sake of simpicity, it is assumed that
the behaviour of the electrons in one band is not influenced by the e-
Iectrong of the other band and that quantum effects of the orbits - or-
bit's quantization - due to the application of a magnetic field, can be
also neglected.
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The energy levels in the two bands are assumed to be proportional
to the square ol the wave vector. Thus for the s band we gei:

__ hefkpe

2ms

E (33)

where K is the wave vector ﬁkl, k,, k,) and m;g the effective mass of
the electrons in the s band.
Similarly for the d band we have

_ ek

E—=A 2m,

(34)

where A is the overlapping energy of the two bands.

SonNDHEIMER and WiLson solved the BoLtzmany equation for this
model using classical transport theory and obtained for the HaLL coel-
ficient:

o o |
R__ 1 M ma 1 E(U_S)z_Q(ﬁ)z (35)
e (o, + oy) e | n.\g ng \ o {

where ¢ — o5 + a4
6y and oq the conductivities in s and d bands respectively
ng and ng the number of carriers in s and d bands respectively

E. M. PugH |13 | remarked that the experimental results for the
ordinary HaLvL coeflicient in ferromagnetics, which coincides with the
one given in classical theory, could not be explained either with the
simple [ree electron model or with the SoNDHEIMER - WiLsoN model
from which differed by a [actor of two. On the other hand no provision
was made in this latter model for the ferromagnetic character of the
metals Fe, Co, Ni.

PoucgH extended the SoNpHEIMER - WILsoN model assuming that
both 3d and 4s bands are divided into two sub-bands in which the spin
of the electrons are aligned either parallel or antiparallel to the magne-
tic field.

Thus the SowpHEmMER - WiLsoxn formula for the HaLr coeffici-
ent transforms to

2 2 2 2
R=_ﬁig_1_(ﬂ) +L(%) _i(h)i(%) (36)
Ne ng\ a Dgg \ O Dgp\ @ Dgg \ O
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The indices p and a divide the 3d and 4s bands into two bands in
which the spins of the electrons are aligned either parallel or antiparal-
lel to the magnetic field. Only above the Curit temperature of the ele-
ments the two sub-bands are indentical and the PucH model is equiva-
lent to the SONDHEIMER - WiLsoN model.

This model proved to he very successful in explaining numerous
experimental results of ferromagnetic metals and alloys.

3.1 QUANTUM MECHANICAL THEORIES OF THE ANOMALOUS HALL EFFECT

Till 1954 it had not been possible to explain the anomalous beha-
viour of the Hall effect in ferromagnetics by classical conduclion theories,

In that year R. Karrrus and J. LurriNgEr |14 | proposed a new
model based on safe quantum mechanical reasoning and their formalism
became henceforth the background of all later theories.

It is for this reason that this theory will be given here is some extent.
In this model a «gas» of magnetic electrons, which correspond to the
vacancies of d band, is moving through the periodic potential of the non
magnetic ions.

In order that the spontaneous magnetization is taken into account
it is assnmed that the carriers with spin up electrons are more numerous
than those with spin down electrons,

The temperature dependent difference in occupation spin slates
is responsible for the spontancous magnetization in ferromagnetic ma-
terials. In this model the itinerant carriers are thought to be responsible
for the electric and magnetic properties of the material. The carriers
moving under the influence of the external electric field through the
periodic potential of the ions, suffer spin orbit type coupling between their
spin and their angular momentum. Since the number of the carriers
having spin of different directions is unequal, this fact is capable of
producing transverse current which according to K and L has the right
order of magnitude, in such a way that one could think it, as being
responsible for the anomalous Hall effect. The quantum mechanichal
formalism is based on the fact that as a result of the spin orbit intera-
ction, the stationary states of the system acquire a left - right assymetry
and when an external electric field is added, a current results which
is perpendicular to both the field and to the mean direction of spin i.e.
10 magnetization.

The Hamiltonian of the system is considered as a sum of three
terms
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H,—H, + Hy, + Hb (37)

where Hy = p?/2m + ;Zr) is the Hamiltonian of an electron in the

crystal potential energy v(_I:) and

5 x yv{r)| - D
Hso = l Lmtc? (h= 1)

where Hg, is the spin orbit interaction * and o the Pauli spin operator.
The usual representation of the Pauli spin operator o is:

. 0 1 . 0 - 1 0
°x=(1 0) i (i 0) "z:(o —1)
and H"” =F——e]_3? 18 the Hamiltontan of the electrons in the external

electric field E.

To compute the effect of the spin orbit coupling on the transverse
conductivity, the wave functions @, corresponding to stationary so
lutions of the Bloch type of equation:

HP = (Hy + Heo)dy = Py (38)

are introduced (v{r) periodic and p tramslationally inwvariant).

* Since the magnitude of the motional magnetic field of an electron i

— =
B PXE
mdae

—_—
Where _}; is the momentum of the electron, E is the electric tield strength at the

e
electron and B is the resultant magnetic field seen by the moving electron.
The interaction gives rise to a new term in the HaMiLtonian:

1 — —> —
Hy, = AmieE a.{yvx p)
It is easily found that [15 |
[} — —»
Hy = — M.L

where M is the localized magnetic moment, taken at the origin of the coordinates
and L is the angular momenfum of the charge carriers about the origin.
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The functions ®; are orthonormal in the volume of the crystal
Q.

—>

((Dl,(Dl‘) == fg (Dl*(blf(l')da X — 811’, (39)

The classical computation’s techniques using the solution of the
Boltzmann equation give |16 | for the average velocity of an electron
in a crystal subject to an electric field:

asl

2 Yl (40)

<v,>=—eE 1 Filpo’(sl)

where v(l) and ¢ are the diagonal elements of the velocity and Hamilto-

nian operators, including spin - orbit coupling in* the 1 state. It is

shown that this expression could never contain a Hall effect and thus

classical computation fails to explain the effect. It is therefore necessary

to obtain an extention for the interaction of Hil with the electric field.
The computation of the off - diagonal elements of H!! gives:

- — — - lib'_; ii‘; ’;’
mk H'In'K) = [ e w*xH"e wpkd?x =
Y o : ’ d > e T
—-—eE (nk |x, n'k") = — eEb{18nn m Skx” + 18 Ip (k) (41)
o . T D =
where Ip (k) = [qwnk(r) A @B k(r) dix
’ (42)
) = 1, # 0 }
Koo
and P, —e wnk(r)
given that in the general case we have:
= g — — il_;' .-:
N Wy — e—lk-r . ik-r Sy — | “1k-r . 1 e
(Il |xa|n ) = I q W pk3 ae W k — Jjne W nk ; ak’a

* The current‘s dependence on the spin orbit coupling comes through the velo-
city of equation (40).
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., ik-r 1 ’ F ik.T ., KT Qeon’ i’
-on'x d¥x = fqge m*nk‘i‘ga{f—a(e on'x) —® ak'a |d3x:
i et £ e AL S (43)
- ak;a hn Okk 1 ¥ nk akfa

Taking into consideration that wpx are orthonormal the above
equation (41) simply becomes:

(0 % |0'K') = idnn’ o B’ + 1027 (K) (44)
a ok,

K and L proved that the second term in equation (44) is entirely

responsible for the anomalous Hall effect. They introduced time depen-
dent methods in evaluating the average velocity due to the periodic
Hamiltonian * including a regular periodic perturbation with matrix
elements '

—ied iy B, Ji" (K) (45)

The computation of the average velocity is effected using the known
|18| relations

<v,>=Tr{p, v, } and Tri{p }=1 {46)
The average velocity is then given by the formula
<v,>=—IieE, }1: p;(sl)vb(])Ja(l) (47)

in which the current J«{l) is included.

It is also proved that the current is perpendicular to both the ele-
ctric field and magnetization and that it vanishes in the absence of a
spin orbit coupling.

Their final formula for the average velocity in vector notation is:

¥ Periodic Hamivroniaw defined as
Hp = Hq + Hsp + Hy + Hy

H; is a singular operator responsible for usual conductivity effects.
Hj perturbing HamiLtoniaN with matrix elements described above. The velocity
tensor is defined as

v':l =i |H 3 xﬂ. |
with [ ] meaning as usual the commutator [A, B]= AB—BA
27
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— e ,
<V —— mA”HEd) po(s])

E-¥() .F’(l) (48)

where A? is some mean square energy separation between different d
bands for the same k at the top of their Fermi surfaces.

Replacing in the above expression .,15(]) *nf(l) being the spin orbit
force - with

) = {—’?(1) x H| (49)
and
H =H§;:ﬁ
we finally get:
—- e? = T e v M
<V =— g H R 1(53) Ve (e vl | x yp (50)

which-for a cubic crystal transforms to

— e? ﬁ X B ' 2
V= Ame Moo M 1(2(1} ACRAY (51)

B8
Thus the resultant transverse current is
J, = Ngev, —tM_E, (52)

where Ny is the total number of magnetic electrons contributing to the
current ¥,
Since the Hall voltage iz proportional to current density

E,——pl, (53)
the Hall resistivity finally becomes:
E, : .
Py = ] = perEx/]x = —p'tM, (54)
X

# Their assumptions to their own opinion anyway, were quite «crudes leading
to the oversimplification of the situation and to the critisism of Smir |17, 18 [
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Thus the anomalous Hall coefficient Rg=——p*M,* depends
on the temperature, varying as the square of the resistivity.
R; is resulting by integration of the physical quantities on a band,
taking averages as
2e?

m =
RB: m HSOS < ﬁ > davpz (35)

where m* is the effective mass

3 13 the number of the non complete bands.

K and L using the experimental results of Jax [19] and Jan and Gi-
1MAN |20| as an application of their theory, concluded that a law of the
form

Ry~ Ap" with n~2 (56)
does hold.

In a subsequent paper Smit |21 | remarked that K and L did not
estimate rightly the consequences of the spin orbit interaction and that
its action leads to a modification of the Bloch functions but not to the
scattering in a perfectly periodic lattice **. Such a scattering could be
caused only by impurities or lattice imperfections.

To his opinion such a scattering combined with spin orbit intera-
ction could cause a Hall field, being assymetric.

He also remarked that the off - diagonal elements of the current
density could not contribute to the Hall effect as K and 1. assumed in
their theory.

In a succesion of papers LuTTiNGER and Ssmir |22 | argued on the
above matters and it seems that this has not be settled. Both of the
above theories (Smit’'s theory of lattice imperfections and impurities
and K and L’s of spin orbit interaction) have the same disadvantage***:
they are not applicable in the case of the rare earth elements, for which
it is quite well established from experimental measurements - specific

3
* ris given by the detailed formula r = — Fn_rl—i——da— Hmi—: l?dl;o( e)vx?(l)
** The charge carrier beeing scattered asymmetrically with respect to a plane
defined by the carriers incoming direction and the direetion of its spin.

**¢ 3miT’s theory suffers from an additional drawback: the equation obtained
for the anomalous HarL angle changes sign according to whether the perturbing
potential of the impurity is atfractive or repulsive. This prediction is disproved by
his own experiments with impurities in Ni. The HaaL effect remained negative al-
though the impurities atomic numbers were lower or higher than Ni's (Al or 8i for
the first case, 8n or W for the second).
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heat and magnetic susceptibility measurements - that they consist
of tri - valent ions and localized 4f magnetic electrons with almost free
conduction electrons.

StracHAN and MuaRaY {23] argued that K and L's results concern-
ning the qualitative behaviour of the extraordinary IHatL coefficient
was not the product of a detailed theoretical analysis but a direct con-
sequence of its definition.

StracEaN and Murray calculated the anomalous Havr coeffi-
cient taking into account not only the spin orbit coupling but defining
in detail the wave Functions of the electrons as well, and regarding
the final states of the electrons after their collision with the lattice as
a superposition of Brocm functions with arbitrary phases.

They caleulated the Brocu functions for the s and d bands for
Ni and gave the formula

(o x 1092 T )2;
J— —14 —_
Ry =-—3,25 x 10~ S f ol M o+ 0,089( 0. ]zze 57)

where p the resistivity of Ni.

My(T) the saturation magnetization of Ni.

T the temperature in absclute grades.

0 a constant = 1.

z energy diflerence between s and d bands.

IrkmIN and Savrov |24 | obtained a similar expression for R as
K and L considering the scattering by phonons which becomes important
as temperature is raised from absolute zero. Their theoretical treatment
is based on second quantization methods.

Their result for the average velocity of the carriers is in close a-
greement with the one of K and L, but it differs substantially when the
scattering is effected by impurities |22 |.

Their calculation of the anomalouz HaLv coefficient is based on the
calculation of the o,, element of the conductivity tensor, starting from
the expression of the average velocity, which is:

: i , | P
v =ieE T -8
< B > o ] 851 ‘l I

they calculated J E(I{b) and gave in the first approximation of pertuba-
tion theory
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. B {KYHE, (K
mEM k) — (k)
using the symmetry relations
introduced by K and L,
B,
By —— Dy —— PO
mony (k) (60)
0, — — Hiy |

where m the mass and p the momentum of the electron and @' — ez —
e they obtained
_) so B B pso
Jlﬂl(k) :'Ii; 5 an’ Po'n Ponflnn (61)

' 2
n Wap

substituting (61) into (58) we get .

en<<v, > 2 2,0 L '8
— < . en E Opl as Hgo , | 2
“Ba F, T mA®Y B¢ Vit N (62)

where n is the number of current carriers in unit volume and calcula-
ting*

* The calculation is effected replacing o by relative magnetization M/My in
(62a) which then becomes

50 _"B_ﬁv_,iff DMl Y 2 i
juso, 7 —m,c,MS’(IpoI o IR (63a)

The diagonal bloch matrix elements are

i Heo, p . | = — TmicM, [kx M|Y fu"‘nk{r) upk(r)dre (64)

oty
Ory Org
substituting equation {65} and taking into consideration Poisson’s equation we have

a

B 7 ein S LT e 65
T8y — 3 mPcPATM, I ¥1 der vll k X M| (63)
—= = —_
where Ve = J Whik(r) p(rhup{r)dr, {66)

—

p(r} is the density of the charge responsible for the potential v. Finally setting M =

=M, and integrating over k averaging over all bands n we find equation (63).
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—_— —_ — |

1
HSD = W VY |[PXo | (623)

finally (62) becomes

T e‘n<_\:> M 1
Oy = T iRt M, <% (63)
Thus the anomalous HaLL coefficient is
1 1 etny 3

1
By = — < e et (67)

2 —— B
POyx 5nM, 12 mic?A? Mg

InkHIN and Smavrov replacing the corresponding physical quanti-
ties in (67) with their numerical values

A~ 1012 erg n ~ 1022 ¢cm—3 m* ~10m
Mg ~ 10° Oe p(300 %K) ~ 7.10-°Q-cm

estimated Bg to be

'\‘.Cm
ot —11 _" .
Rg =~ 10 AL G’

which is in close agreement with the experimental results, under the

assumption that—\: = 10%? cm—?, which means that there is a localiza-
tion of the electron density in small regions of linear dimensions 10~ cm.
Furthermore a comparison of the Rlg for scattering by impurities to the
BP" for scattering by phonons, results to the conclusion that even at
high temperature the contribution of impurity scattering in the total,
is very small, and that the total Hadr coefficient

Ry = — pt oyx/4nM, ~ R, (68)

remains proportional to p%

Finally Irkmin and Suavrov concluded that the experimentally
observed deviations from the square law might be due to magnetic
inhomogeneities which can lead to the appearance of a linear term in
the dependence of Rg{p). In a subsequent paper |25 | Irkuin and ABEL’
kI1* discussed the spontaneous Hary effect in ferromagnetic as arising

* The interaction mechanism introduced by Irkuin and Aser skii is the mi-
xed type of s-orbit/d-spin interaction.
This interaction is the one hetween the force which experiences a moving
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from the scattering of conduction electrons by the spin inhomogeneities
taking into acount the intrinsic spin orbit interactions of the magnetic
electrons as well as the interactions between the orbital momenta of the
conduction electrons and the spins of the magnetic electrons.

They obtained a solution for the Kinetic equation for the scatter-
ing, using second quantization methods, the method giving a tempera-
ture dependence of the HarLr coefficient Rg(T) (m (T)
is the magnetic part of the electric resistivity).

Especially for s — 14, they found

~ Pmag (T) (Omag

Re(T) = M (0) — M; (T)

M; beeing the spontaneous magnetization. It is a doubtful procedure
anyway the one which estimates the ¢, using the method proposed
by Weiss and Marotta |26 | i.e. by extrapolating the temperature de-
pendence curve of the phonon part of the resistivity gp, from the inter-
val T>T, to a region of lower temperatures.

GurevicH and YassievicH |27 | considered the case of scattering
by phonons and impurities simultaneously and obtained the same te-
mperature dependence of the anomalous Harp effect as before i.e.
Rs ~ p* which they found to be valid for high and low temperatures as
well. They also examined the temperature dependence of the ratio of
the ferromagnetic HAarLL constant to the ordinary one, due to the tempe-
rature dependence of the relaxation time and magnetization. It was
for the first time that the possibility of a sign change in the ferromagne-
tic Hall coefficient with changing temperature was discussed.

Koxpomsknr |28 | used spin orbit interaction and scattering by
impurities and phonons simoultaneously and was able to ohtain a for-
mula which includes a linear term in p i.e.

Ry =ap + bp? {69)

The spin orhit interaction used here relers to spin orbit interaction
between the conduction electrons and the orbits of the localized electrons
(electrons bound on ions).

In a paper presented in 1969, Konporskir |29 | suggested that all
the above theories using itinerant electrons consider that each electron
has the same magnetic moment M, along the direction of the average
magnetization. Thus, those theories are not taking into account the fact

conduction electron by the magnetic field of a localized magnetic moment on an
ion. '
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that the exchange interaction which is responsible for the properties
of ferromagnetism splits in energy the distributions corresponding to
the two spin directions.

In ferromagnetic state the itinerant carriers occupy states on the
Fermi surface consisting of different sheets for up - spin and for down -
spin orientations. When the splitting is comparable with the width
of the energy gap in the non ferromagnetic state distinction must be
made between the electron and the hole like characteristics for each
of the spin sheets of the Fermi surface.

Konponskir writes for the anomalous Harr coefficient
C vy

Rs = % In (70)

Isdz n

where ¢ 13 a constant

Iy the spontaneous magnetization

o the electrical conductivity

J3 is the contribution of the nth spin zone, for which Koxpor-
skl obtained the following expression

v _ qukx ‘ dSn
Tn=Maf | [GradE] l E —Er

7
S, (71)

the intergal is taken on the Fermi surface Sy of the n - th spin zone My
is the average z component of the magnetic moment of an electron in
the n - th band.

q dimensionless parameter of order of unity

e 18 the energy of an electron with wave vector k and =y the Fermi
energy. The sign of each contribution to the anomalous Hall effect de-
pends upon the signs of My and the integral over S,. Konponskir as-
sumes that the anomalous effect is a result of the scattering from pho-
nons or thermal disorder of the spin system in connection with a spin
orbit interaction of the itinerant electrons. His theory is in agreement
with experimental results in Ni. .

Koxpo |30 ]| proposed a new model in which the charge carriers
{which he calls s electrons) are equally distributed between states of
opposite spin. The ions then have a nonvanishing total spin which ac-
counts for the magnetic properties of the material. This is due to the
spin of the d electrons which are Tocalized on the ions. The spins of the
magnetic ions are disordered by temperature and the charge carriers
are scattered by the non periodic potential which is thus generated and
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which acts on their spins. Periodicity is destroyed by the disorder of
the ionic magnetic moments rather, than by the introduction of impuri-
ties. Konpo introduces the mechanism known as s-d* spin-spin
interaction, which accounts principaly for the resistivity of magnetic
materials in terms of scattering of s electrons by d electrons. The s-d
interaction provides no skew** scattering by itsell, even though kowpo
shows that it is anisotropic if the orbital ground state of the electron
is degenerate.

On the other hand this anisotropy disappears when the groundstate
1s nodegenerate.

It was for this reason that Koxpo introduced a new interaction
mechanigem the intrinsic spin orbit interaction of d electrons within the
magnetic ions *** Konpo thought that the skew scattering is caused by
an anisotropy of the s - d interaction. The [unction of the spin - orhit
interaction on the electrons within the ions is to permitt an odd power
of the s- d interaction proper to a degenerate ground state to appear
in the transition probabilities.

Kowpo's theory provides the correct temperature dependence of
the anomalous HaLL effect in metals.

Konxpo himself made the following remark:

If the intrinsic spin orbit interaction is quenched then in this model
there is no skew scattering and consequently, no anomalous Havrwn effect
results. Konpno |31 | therefore suggested that the intrinsic spin - orbit
interaction is dominated by the s - d mixing interaction***#,

The mixed interaction gives rise to skew scattering of the s electrons

* This interaction is taking place between the spin of the conduction electron
and the spin angular momentum of the incomplete d shell.

** Skew symmeltric in this model is thought to be a scattering producing a
wave function of the scattering charge carrier which is not invariant with respect
to mirroring along a plane defined by the incoming direction of the s electron and
the direction of the spin of the scattering ion.

*** This interaction is taking place between the spin of the electrons and the
apparent magnetic lield-produced when we consider the coordinate system to move
with the valence electrons, since there is an apparent orbital motion of the nucleus
about the electron, It is defined for a specific orbit in an ion and it is clearly zero
for the s part of the wave function.

*#x* This is a covalent mixing between ionic orbitals (incomplete shells) and
conduction electrons. The coupling is always antiferromagnetic (J is negative) since
a conduction elactron interchanged with a d-orbital vacancy, must have a spin oppo-
sed Lo the resident d electron in the state. Beeing basically a resonance effect the s
and d states must have similar energies.
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and hence an anomalous HaLL contribution.

Kagan and Maksimov |32 | computed the anomalous HaLw effect
introducing spin - orbit interaction between non polarized conduction
electrons and the spin system of a ferromagnetic metal. The scattering
process of this model is thought to be the one, of the conduction electrons,
by fluctuations of the spin system and by impurities. They employed
the density matrix method taking into account non elastic scattering
processes.

They found that a
Rg ~ T4

law for low temperatures hold, and a Rg ~ T? law for higher temperatu-
res.

RuYNE |33 | found a Ry ~ T? law for Gd in the temperature range
4.2 =t 0 = 80 K2, which seems to be in direct contradiction with the
above theory.

Ruv~E suggested that the neglect of Gacgan and MaskimMov of an
appreciable anisotropy in the energy gap in the wave spectrum may be
an important factor in their calculation.

IrkHIN et al |34 | found that an Ry ~ T® law holds fer low tempe-
rature region.

Leribaux |35 | examined the case that the electron transport is
limited by electron phonon interactions. His theoretical treatment is
based on Kuso's formalism of current correlation functions. He proved
that to the first order in the magnetization, the off diagonal conducti-
vity is of order zero in the electron phonon interaction and to this order
is equivalent to K and L's results. Leribanx calculated the anomalous
HaLL coefficient for monocrystalline bee Iron, in the low temperature
regime, and found his results to be correct in sign but differring by a fa-
ctor of 1/3 from the experimental results given by DHEEr [36] for
iron whiskers.

Finally Maranzaxa 137 | introduced the following theory: The
ions possess a nonvanishing magnetic moment due to localized d ele-
ctrons which account for the magnetic properties of solids. The charge
carriers (s electrons) are equally distributed between states with spin
up and spin down and they are scattered by the disorder induced by
temperature in the system of magnetic ions. In addition to s - d inte-
raction, which is responsible for the resistivity of the material, another
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interaction mechanism i added a d spin * s orbit interaction.

Manranzana's theory was capable of explaining, the temperature
dependence of the HarL effect, the sign of the anomalous HaLL coei-
ficient but failed to explain the anomalies in the paramagnetic region
of antiferromagnetics. It is quite evident from the dispersion of the va-
rious theories, the various theoretical treatment and the variety of their
conclusions that the HaLL effect in ferromagnetics is not fully under-
stood and that a rather more elaborate or effective theory is needed to
cover all the drawbacks and defficiencies of current theories.

* ManranNzana proved that a term is added to the Hamirtoniaw of the electron
of the type
M.T
& .
H="wMr &

where M ig a magnetic moment placed at the origin of the coordinate system and L
the orbital angular momentum of the charge carrier.
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IIEPIAHYIE

ENIZKOIIHZIIZ NEQTEPQN OEQPIQN EHI TOYT ®AINOMENOY
HALL EIZ ZIAHPOMATNHTIKA TAIKA

Yno
IQANNOT A. TEOYKAAA xoi E. TIATTAAHMHTPAKH - XATXATA
(’ Egyagtijpoy I "Ebpac Pvarxfic)

‘H mapoloa &pyasia dmoterel Exbeowv tév péypl ofuepov ioyvovsdv
Owptdv mepl 0B pavopévonr Hall ele wd otdnpopayvnming péraiia.

WYnoeiakh BiBAI0BAKN Ocd@paaTog - TuAua MewAoyiag. A.lM.O.





