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Abstract: An «eract»y expression for the functional derivative of the distribution func-
tion of a A-nuclesn pair in muclear matter is derived. An approzimate expression is
also derived by means of Kirkwood superposition approzimation. The latter expression
is subsequently used in order to obtain the Euler equation for the correlation function
f(ria} of @ A-nucleon pair in nuclcar matier.

1. INTRODUCTION

J. C. Lee and A. Broyles! have developed a variational method for
the ground state of a many-particle spinless Bose system, using e Bijl*
- Dingle® wave function ¥ = exp [} Z u(r;;)].

i<j

They gave first an exact expression for the functional derivative of
the pair-distribution function p®. This functional derivative is given in
terms of p® and also in terms of p® and p®.By using subsequently the
snperposition approximation they obtained an approximate expression
for the radial distribution function g and also an Euler-Lagrange equa-
tion for this function. The Euler equation is similar to a result derived
by Hiroike!, who, however, considered an arbitrary variation of 3g in-
stead of SV

Becker® and Pokrant & Stevens® have adopted, more recently, the
technique of J. C. Lee and A. Broyles in their treatment of the electron
gas.

in the present paper a variational approach for a system, consi-
sting of many identical particles, to which an «impurity» has been
added will be developed. A typical example of such a system is the in-
finitely and uniformly extended nuclear matter (A-»w, Q-—>m®, in such

A

a way that g =°= constant}, to which a A-particle has been attach-
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ed. In the present treatment this system of «(infinite) hypernuclear
matter» will be considered although the formalism may be applied
equally well to other impure similar systems. The problem of impure
nuclear matter has also been studied?? by using the «closed form»ap-
proximate expression® for the A-nucleon pair distribution function py, .
In the recent development of this study, Edelen’s’® formalism which
involves «nonlocal» Euler-Lagrange operators was found appropriate
to be used. In the present approach no approximate expression for
Prna P 18 initially employed.

In the following section the energy functional, which is derived
if a Jastrow'' type many-body wave function is used for the «impure
system» (hypernuclear matter), will be considered and «exact» expres-
sions for the functional derivative of the distribution function of a
A-nucleon pair: py, ‘¥’ and related functions will be obtained. In the last
section approximate expressions for these lunctions will be given and
the corresponding Euler-Lagrange equation for the A-nucleon correla-
tion function f(rj,) will be derived.

2. THE ENERGY PUNCTIONAL AND THE EXACT EXPRESSION FOR THE
FUNCTIONAL DERIVATIVE OF pi,.

The following trial many-body wave function will be used, for the
total system (hypernuclear matter):

A
Yiir =¥ il;‘[lf(riA ) (1)

where V', is the exact ground-state wave function of the «pure system»

(nuclear matter) and f(r;, ) is the Jastrow correlation function between

thei-th nucleon of nuclear matter and the impurity particle (A-particle).
The Hamiltonian operator of hypernuclear matter is

Hyin = Hy + Hy (2)

where T A and H » are the Hamiltonian operators of nuclear matter and
of the A-particle, respectively.

Use of (1) and (2) leads to an expression for the binding (or separa-
tion) energy: B, of the A-particle upon which either, a cluster expansion
may be immediately performed or integration by parts may be applied
in such a way that B, is written in the form®1*-1 (for spin and i-spin in-
dependent potentials, which are assnmed)

WnoiakA BiBAI0BAKkN OedppacTog - TuAua MewAoyiag. A.MN.O.



83

B, — —[d?,]d?, W, (s p8R(EE,) 3)

where Wy, is the «effective potential»

Wi, (¢ M)—(hm“)a[v“"m r_(h/ﬁ”) V2(ry, L+[Vfr:r )] } + Viea (13a)

Zpnp | Flriy) 4M, f(ry, )
(4)
and p‘” is the A-nucleen pair distribution function, defined by
AflF ., |2d,...dT
12y -lg — A+p|T00g. Ul 5
Puathfa) = g edE L de, dF, (5)

Since the nuclear system is assumed to be expanded isotropically,
the number of nucleons being increased proportionately to the volume,
p$aA(f,F, ) 35 a fuction only of the distance between nucleon 1 and the
A-particle: pyy=p@(ry, ).

Formula (3) is smtable in deriving Westhaus’ approximate expres-
sion in closed from for B, and will be also adopted in the present analy-
gis.

Application of the variational principle requires the calculation of
the functional derivative of the pair distribution function pffi (7,,%, ).
At this point it 18 useful to define the j-th NA distribution function
P& (fhyenstjopy Ty ) a8 follows:

AL W, | MdEdE, )
(A—j+ 10! [¥asa | 2dhy..didE,

P (Fy,FgyeensFrmsa ) =

For j =2 we obtain the previously quoted expression for
p{&(fy,t, ). It should be noted that in the various expressions of the dis-
trlbutlon functions, that we are using, the symbol for integration im-
plies also summation over all spin and isospin coordinates.

The distribution function p{, is obviously different from the u-
sual distribution function p®, which is defined as follows:

Al S| 2Ry, dF,

(§)} = — T T awr 533 Az
pO(t ) = (A—J) |V, 13dt,...de, @

By considering expression (5) we may easily calculate the first va-
riation of 3p{] in the usual way. We find

8f af .
(2)(1'1,\)— 2 f(g.:t\)) }J‘R L\H‘f f(l(‘l'm)) P (21,T,8 )dTy
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3f(ry, )
f(r,)

P (ria) P (11, ) diydi, (8}

In order to obtain the expression for the functional derivative
8p‘”’()
ia)

, we must write 8p®(r) as follows:

SpO(r
& = [ gy ()))Sf( )t ()

The result is

Spalm) _ [p®(r, )8, —— ) & PO + Fartiattarfa) —
o VR Pl TR
—Qp(Ea IpGA(F)] (10)
SpiAr) . . _
We see that _8?( ) is expressed in terms of f(r,,) and the distri-
Tia

bution functions p® and p{h. If we compare the above result for the

functional derivative of p{® with the corresponding result for the pair
distribution function of the Bose system, we observe that in the present
case the expression for the functional derivative is simpler.

In the case of a system consisting of identical particles, it is custo-
mary to define the so-called g-distribution functions, which are closely
related to the p:

Al J[F AR dE

) Y — — AmiptD 2
g (?DfZ"'r]) PJ(A—j)! ]'|IFA|2df1---de PJP (?1"‘1.]) (11)

In the case of the system, with the impurity, which we are discus-
ging, we may define the following gy, ¢ distribution functions:

0.A! §1W a4, |2dE,..0F,
e HA—) + 1)U J[Wa 44l dr1 df,df,

(J (it _| 1?? ):

Q
pJ 1 pNA(?U 7?1 11[',\) (12)

The function g@) is the radial distribution function gy, (ry,). We
may further define the related Gy, distribution function as follows:
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Exna (Tra ) = T3(ry, )On, (Tra) (13)

The «exact» expressions for the functional derivatives of gy, and
Gy, are easily obtained from the formula (10). We find

3 r 2 . R N N S
Tgf% :T"(H\_) [gna (P1a ) 3 (B —F) + pgQUT +7, 10 T4 T, —
—02xa (114 )8xa (1) ] (14)
and
8Gya (1) 2p

ﬁ(rm ) == fz(r)f(rl.\ )[g;‘?(f—l_?mrl.\_*'f.\ 111.\)—_fz(rl,\)GNA(I‘IA)fz(P)GNI\(P)] (15)

3. APPROXIMATE EXPRESSIONS FOR THE FUNCTIONAL DERIVATIVES
AND THE EULER EQUATION FOR THE CORRELATION FUNCTION f(ry,).

It 18 advisable, for practical purposes, to obtain approximate ex-
pressions of the functional derivatives of the distribution functions gy,
and Gy, , which were derived in the previous section.

We shall use the Kirkwood superposition approximation, which is
written in the present case as follows:

g:‘?(?l:fm-f.\) ~ g(fg)glﬂ,\ (PIA )gNA (PZ,‘\} (16)
where g1 is given by (11) with j=2 and |¥,,,[*d?, instead of|'¥,}*
We may therefore write:

dgn, (1) 2

~

Sf(rm ) ~ f(rl.\ ){gN,\ (rl,\ )B(flA_-f)+PgNA (rl,\ )gNA (r)[g(.\)(ﬁh\ _ﬂ)-i]} ( 17 )

and

3G, (1)
3f(ry, )

The variational principle may now be applied to the energy functio-

= zpf(rlA)GNA(rlA)GNA(P)[fNEN(If‘L\ —HGllty, — F)-—1] (18)

. nal. The variation will be performed, by imposing also the integral

constraints
pfif3(r,, )Gn, (1, ) — 11dE,, = D), = linite . (19
pI(ry )y —11Gy, (1, )dEy, = b, = finite {20
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The first has its origin to the denominator in the distribution functi-
on, while the second is a «healing condition»,
" Owing to the above constraints, two Lagrange multipliers appear
in the variational problem. The first Lagrange multiplier (A, is due to
(19) while the second (?) is due to the healing condition.

The Euler equation of the variational problem is:

_(h/2m)? dfrlA) Gy, (ri,) ] i)
2!"‘NA {GNA (rIA [ \’NA( 1A )+ d:‘l.\ ] drlA I+

+ {_(hjzn)fl{ AGra(ryy) | %Gy (1)

{(h/2m)® [di z h/2m) d2f 2 df
o e s a2t

A

1 3 13
V080 g e G i) -+ fatiie) g Sl

., 1 3Gy, (r) o
-+ )\z{GN,\ (ra Y LK) —1] +J‘dl‘[f(r)—1] 5 W}— 0 (21)

LSt
31(ry,)

where the functional derivative is given by (18), or by other

approximate expessions.

The study of the asymptotic behaviour of this equation at large
destances r,, leads either to ;, = 0 or to a condition similar to that
which has been previously obtained (see formula (14) of ref 8)but with
G, y(ryp) mstead of Z,;P(r,).

The above equation is an integrodifferential equation for the un-
known function f(r,, } and may be solved numerically.
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IEPIAHYIZ

EYNAPTHXIAKH ITAPATQIOE THX ETNAPTHIEQX
KATANOMHE ZEYTOTZ ZOMATIOT A-NOYKAEONIOY EIX THN
ITYPIINIKIIN TAHN

T w b

BATTAEIOY K. KAPTA «ai MIXAIIA EA. T'PYIIAIOY
Zrovdaotipwr Gewpntinfs Tvoodis Havemarnuiov Grogalovisos

(28.2.1975)

Eig ™ épyactay tadtyy Stdetar ple dngific Experoie THe ouvapthate-
®Tg TapHY@YOU THE ouvapthazwg xatavouts Ledyoug copwrtlou A-vouxheo-
viou, sic v mupnviedyy Odv. "Emimposfiétee 8idstal pla mpossyyionixd x-
ppaoig Th¢ awvaptrozas Tadne T Porlely thg «msoazyyioceg tmepliozwen
7ol Kirkwood. "1 tehevtaia abty Exgpaotc ypnoomorzitat axorodfug Sk
va knobi 7 Elowme Euler 8w viy ouvapmyow auoyetiozwg f(ry, ) dvog e~
Tovg swpation A-vouckeoviou eig Thy mupyvuchy Ghny,
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