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Abstract: Transforming directly the post-Newtonian Eulerian equalions of hydro-
dynamics we prove that the most general posi-Golilean trensformation resulting
wn their functional form invariance is identical with the corresponding transforma-
tion, dertved indcpendently by precious authors, whieh leaves unchanged the
furctional form of the metric tensor. In this way we generalize the mcaning of the
post-Galilean invariance by estoblishing its uniqueness and by eztending the range
of its validity.

§ (1): INTRODUCTION - THE POST-GALILEAN INVARIANCE OF THE
METRIC TENSOR

The post-Newtonian general relativistic perfect-fluid metric ten-
sor has been derived by Chandrasekhar (1965) with the aid of the
so-called method of the post-Newtonian approximations {PNA), which
consists in solving the field equations for the metric tensor in the form
of a power series of ¢~ (¢ is the veloeity of light), and is based on the
assumption of weak fields and low wvelocities.

The metric tensor so obtained is invariant under linear time transla-
tions, three dimensional linear translations, and three dimensional ro-
tations.

The above symmetries, however, are not encugh for the metric
tensor, obtained as a solution of the field equations, to be a «physi-
cally accepted» metric tensor. A further and equally important sym-
metry must be guaranteed for the metric tensor, and this is its post-
Galilean invariance (PGI), namely its functional form invariance un-
der the most general pest-Galilean transformation (PGT).

As it is well known [Chandrasekhar and Contopoulos (1967),
hereafter abbreviated as CC)], a PGT is a transformation of the spa-
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ce-time coordinates, which reduces to a Lorentz transformation of
(constant) wvelocity much smaller than ¢ in the asymptotically flat
region of space time far from the source generating the metric fensor,
and which preserves the post-Newtonian mefric tensor in its stan-
dard from. In view of this deflinition, we can explain the physical
meaning of the PGl as follows (Will 1971, see footnote 1): Each one
of two observers, who set out to calculate the metric tensor due to
the same bounded perfect-fluid source, uses a global coordinate frame,
which becomes inertial asymptotically at large distances from the sour-
ce. If the form of the metric tensor is preserved in these two approxi-
mately inertial frames, then according to the above definition they
are related by a PGT. If furthermore the two observers compare the
metric tensors, as each one computes it using the fluid variables de-
termined in his own frame, it is obvious in view of the covariance prin-
ciple that the results of their physical measurements must be physi-
cally equivalent. Also it is obvious that the results of the physical mea-
surements can depend only on physically measurable velocities, like
the velocities of the fluid elements relatively to each other or to the
fluid’s center of mass or the velocity of the fluid’s center of mass rela-
tively to the Universe’s mean rest frame (for more on this frame
see Will (1973)). In any case, the results cannot depend on the arbi-
trary velocity of the observer’s frame, and the only way to guarantee
this is to demand that the metric has the same functional form inde-
pendent of the velocity of the frame, in which it is calculated, (and
hence independent of the relative velocity of the two observers). In
other words, since the two frames are asymptotically inertial, the
metric tensor must be functional form invariant under an asymptoti-
cally Lorentzian transformation of low wvelocity. The above property
of the metric tensor has been called its PGIL. '

Now it becomes apparent that in order to find the form of the
PGT, we have to expand the usual Lorentzt ransformation in powers
of the quantity (relative velocity) /¢, and then adding properly ar-
bitrary functions, to generalize it, so that to take into account gra-
vitation-induced deviations from the pure Lorentz transformation. The
arbitrary functions finally are evaluated with the aid of the usual
transformation law for tensors.

Footnote I: This explanation is not restricted to the PGI of to the posi-Newtonian
limit of the general thecry of relativity, but applies also to the PGI of the
post-Newtonian limit of every meitric theory of gravity.
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The form of the most general PGT, so derivable, resulting in the
functional form invariance of the metric tensor (this transformation
is abbreviated here as Tm) has been given for the first time in CC in
the case of a system of point-masses. The same method was applied
later by Will (1971) in the perfect-fluid case in the context of the pa-
rametrized post-Newtonian formalism.

§ (2): THE POST-GALILEAN INVARIANCE OF THE POST-NEWTONILAN
EULERIAN EQUATIONS OF HYDRODYNAMICS

The post-Newtonian Eulerian equations of motion have been de-
rived directly from the vanishing of the covariant derivative of the
perfect-fluid energy-momentum tensor (Chandrasekhar 1965).

In spite of the fact that these equations are very complicated
functions of the metric tensor and its derivatives, it can be proved in
a straightforward manner that the transformarion Ty leaves unchan-
ded their functional form as well. This result, however, although, un-
fortunately, it is commonly accepted so, does nof mean at all that the
equations of motion are post-Galilean invariant. It means simply that
they are functional form invariant under the most general PGT, which
leaves unchanged the metric tensor. Obviously, this property of the
equations of motion does not prove their PGI, because 1t does not
answer to the following cruecial gquestion: Which is the most general
PGT resulting in the functional form invariance of the Eulerian equa-
tions of hydrodynamics (this transformation is abbreviated here as
Ts) and, if such a transformation exists, how is it related to the trans-
formation Tn?

In attempting to answer questions like these, one might argue
on purely physical considerations. Thus we consider two different fra-
mes in which the post Newtonian Eurelian equations have identically
the same form. Then physical systems (like a bounded perfect-fluid
mass) with identically the same initial conditions in the two frames
will evolve in identically the same way. Now, since all aspects of the
metric are probed by and measurable in terms of geodesic motions,
and since furthermore the geodesic motions are a subset of hydrodyna-
mical motions, the metrics, from which the motions in the two phy-
gical systems are derived, must be the same {to post-Newtonian or-
der). In other words, the transformation T, leaves unchanged the fun-
ctional form of the metric tensor. Since, moreover, as it has alerady
been said, the transformation Ty leaves unchanged the functional
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form of the metric, we conclude that the transformations Ty and T,
are equivalent.

Now a mathematical answer $o0 the above questions, which would
prove not simply the equivalence but in fact the identity of the trans
formations Ty and T, is not so obvious. Most important, it requires
a direct transformation of the Eulerian equations of motion themsel-
ves, in the sense that any indirect method for proving the functional
form invariance of equations of motions (not necessarily only the per-
fect-fluid ones) cannot be used. Such a method is deseribed for exam-
ple in part 7 of CC, where use is made of the following theorem in a-
nalytical dynamics: «a necessary and sufficient condition for the e-
guations of motion to have the same forms in two sets of variables is
that the corresponding Lagrangians in these two sets differ by a total
time derivative». In using this theorem the above authors trans-
form the point-mass Lagrangian (their eq. (7)) from (in our notation)
the unbarred to the barred variables and deduce that the Lagrangians
in the two sets of variables differ by the total time derivative with
respect to the barred time-coordinate of a certain funciion (given
by their eq. (132)). To this end, however, it is necessary to assume that
the conservation laws and the conserved quantities in the barred fra-
me are of exactly the same form as the corresponding ones in the un-
barred frame. But this means that the metrics and consequently the
equations of motion in the two frames are of the same form. We con-
clude therefore that in this way the PGI of the equations of motion
is not proved, but that, as it is clearly stated in CC, again it is simply
cerified that under the similar invariance of the metric tensor, the equa
tions of motion are also invariant. In this sense, wo cannot use for
our purposes the perfect-fluid Lagrangian derived by Plebanski and
Bazanski (1959) or the Eulerian variational principle developed for re-
lativistic hydrodynamics by Tam (1966) and by Tam and O’Hanlon
(1969).

The main results of the direct transformation of the Eulerian
equations have been reported in the form of a note (Spyrou 1976). It
is the purpose of this paper to consider the whole problem of the PGI
of the Eulerian equations in some defail and at the same time to pro-
ve mathematically $he identity of the transformations Tm and T
This identity means that the metric tensor and the equations of motion
independently of each other, are functional form invariant under the
same most general PGT. This property of the post-Newtonian limit
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of the general relativistic hydrodynamics we shall call posi-Galilean
invariance of the post-Newtonian hydrodynamics.

We believe that this property of the post-Newtonian limit of ge-
neral relativity (and more generally of every metric theory of gravity)
is as fundamental as the PGI of the metric tensor alone, and that it
generalizes the meaning of the post-Galilean invariance by establishing
its uniqueness on the one hand, and by extending its range of vali-
dity on the other hand. )

In the next paragraph we shall find the form of the transforma-
tion To.

§ (3): OUTLINE OF THE METHOD

In this paper we shall consistently use the standard notation used
in the theory of the PNA. Thus in the approximately inertial frame
O(x=, x*=ct) (set up by the one of the two previously mentioned ob-
servers) the Eulerian equations of hydrodynamics are provided by the
relations

—bto i My —
R=" 4 2 (%) = 0, (3.1)

and

du= 2U ] 3U
X = *_,__ ok P —_
=t pbx“+bx“[(1+ c%)p]

U B(D
+ bpvf —F — p( v+ p) Bx“]_ (3.2)

In equations (3.1) and (3.2) Greek indices run from 1 to 3 corre-
sponding to the three spatial coordinates, and the Einstein summa-
tion convention is assumed to hold over repeated indices. Also p, p,
1I and

dxe d d 2
U:E,(ﬁ—‘g-’—u *DE (3.3)
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are the proper density, pressure, internal energy density and the com-
ponents of the coordinate three-velocity, respectively, of a fluid’s e-
lement, while the post-Newtonian density ¢* is defined by the relation

174
p*(X,t)=p(X,'b){1+—02—[702(1,t)+3U(X,t)J] (3.4)
with U, the Newtonian gravitational potential, and further the «po-
tentialsy Uy, Ugpy and © being given in integtal form by the follo-
wing well-known relations, respectively,

U (x,t):(}fp(x',t) | x-x'7 dox,
v
Ua(x,t)szp(x’,t) vr (X') | X-X'|7 dox’,
v
Uspy (x,8)= GIP(X,‘(.) ve (X,6) (xP-x'F) (x7-x'7) |x-x|° d3x
v

and

D(xt)=G [p(x5)[0(® 1) + Ux 1) + LTI t)

P 2

3 p(x' )
+I”I

] | x-x'|-* dox’.
In these relations G is the gravitational constant, X and x' are the
«field-point», and «source-point» respectively, d?x’ is the coordinate
three-dimensional volume element and the integrations are carried out
at time t over the three-dimensional volume V occupied by the fluid.
Now let O(x*, x%=ct) be the approximately inertial frame asso-
ciated with the second observer, and let the observer in the frame O
move with a uniform velocity V with respect to the one in the frame
O (see footnote 2). Expanding the pure T.orentz transformation con-
necting the variables x, t and x, t in powers of V/c, retaining terms
of order 1/c?, and generalizing the result by adding arbitrary functions,
we write, in accordance with the reasoning of § (1), the required PGT
in the form

x=x—Vt -+ % —-%VWEJF% (xVIV+Y(x,t) ]

1

Footnote £ : For a discussion on the role played by V see part 3 of CC.
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t=t+ %— % Vi—x. V+Z (X,t) (3.6)
3 . .
where Y and Z are the arbitrary functions of X, % to be determined,
describing the gravitation-induced deviations from the pure Loreniz
transformation. Equations (3.6) are the same as equations (19) and
{20) of CC. ,

For the evaluation of the explicit form of Y and Z we shall use
the functional form invariance of the rest mass element and of the Eu-
lerian equations of motion. However, no assumption concerning PGI
of the metric tensor will be introduced. Hence the transformation T,
which will be evaluated in this way, is independent of the transforma-
tion Tm.

§ (4): THE SOLUTION FOR THE FUNCTIONS Y AND Z

In what follows all the barred quantities are assumed to be ex-
pressed in terms of the barred variables X and t in exactly the same
way as the corresponding unbarred quantities are expressed in terms
of the unbarred variables x and t. Especially, we notice that, since
by definition the fluid variables ¢, p and Il are measured in a frame
comoving with the fluid-element, they will be equal to their corres-
ponding barred analogs irrespectively of the transformation of the
coordinates.

4.1 The invariance of the rest-mass eloment and its con-
sequences,

The invariance of the rest-mass slement allows us to0 write (Lan-
dau and Lifshitz (1971), Robertson and Noonan (1963))

p¥dsx=c*d%x=amount of rest-mass in the corresponding volume
elements d*x and d%x, (4.1)

where in analogy to equation (3.4)
ot (X, ) =p (X, t‘)[i+i[%~32 (x,£)+ 30T (E,t)” (42)

with
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(Total time derivarives with respect to t will be denoted by a dot

. © s d d
and parbial derivatives by a comma, namely, .= Sxa1 0= 5 et.c.,

d -
so that Fra (b= (o 0% (o)

The relation between the velocities v and v is easily found, with
the aid of equations (3.3), (3.5), (3.6) and (4.3), to be

Ua:Ka_'Vu
1
'JI" F Ta:() + Ve ZJO

+ [Ya,g + VoZ,5 — 8287, — % (V23ab - VaVe) | e

— (Zy—Ve )3“3"} (4.4)

while the relation between the volume elements in equation (4.1), as
it is deduced from the invariance of the four-dimensional volume ele-
ment {Landau and Lifshitz (1971)) with the aid of equations (3.5)
and (4&4) (in its Newtonian limit), is

Vz

daX = {1 + —:-é'[ Ya,a: + VaZm - T - (Zm - Vu. );“]} dai (45)

A direct consequence of equations (3.4}, (4.2), (4.4) (in its Newto-
nian limit) and (£.5) is the relation '

p*dsx — p*dox = ci pd?x (Yo, VaZ — 37, ) (4.6)

Comparing now aquations (4.1) and (4.6} we see that the demand
of the invariance of the rest-mass element is equivalent to

Yo A VZ —ueZ =0 (4.7)

Since furthermore equation (4.7) must be identically satisfied, na-
mely for all values of v, we finally obtain

Yo, =0, (4.8)
Z,.= 0. (4.9)
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4.2 The transformation of the Eulerian equation of hydrodynamies.

In order to reexpress equations (3.1) and (3.2} in the frame O,
we have to transform into the barred variables the potentials U, U,,
Usay and @. The required transformation is provided by equations
(52)—(56) of Will (1971). With the aid of these equations aswell as of
equations (3.4), (3.6) (4.2) and (4.4)-(4.6) and following steps ana-
logous to the ones for the derivation of equation (4.8) we find that
the demand of the functional form invariance of equations (3.1) and
(3.2) is equivalent to

1 —d

R—R="Fre gy

( Yo, +VeZ,, —us z,a) =0 (4.10)

and
Se _gz :%_G;( Qdﬁiﬂ —+ Qﬂ- ) = 0, (411 )

where Q*® ans Q¢ are functions of X, t and v (but not of ;), defined
by the following relations, respectively,

b = YooY P —23BZ, - VBZ, 4 VOZ o —u¥(Z 3er . 27 8eB), (4.12)
0

and

Q% = Y0 + [G f - ?_, =) (F=Y")]d=x’ }

Rx
v

+ VmZ:CNZJ + (;ﬁao - ?)O)Z:a

— [ G f F3 LX) F-NET )dax'},,
v

+ UB (2Ya:ﬂ +- ZVGZ)B - SGBZ:B):B
- ubuy(Ye,, — 22,87 + ViZg) )y
T, (443)

with a primed quantity under the integral sign beign evaluated at the
«source-point» X' at the time t.

Now, conditions (4.10) and (4.11) can be considerably simplified,
if uge is made of the invariance of the rest-mass element. Thus, it is
obvious in view of equation (4.7) that equation (4.10} is identically
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gsatisfied. In other words the invariance of the rest-mass element is suf-
ficient for the incariance of the continuity equation (3.1).
Furthermore, since equation (4.11) must be satisfied identically,

namely for all the values of G, both Q% and Q*® independently of each

other must vanish identically, namely for all the values of v. Thus
using equations (4.8) and (4.9) we first prove that the vanisbing of
the contracted version of equation (4.12) reduces fo

Z,o = O, (4.14)
and then we easily find the relations
Y4 YP,,=0 (4.15)

and

YasBO = Ov
Yo,y =0. {4.16)
We observe that the pair or equations (4.9) and (4.14) is equiva-
lent to equation (3.9) of CC the solution being
Z=0 (4.47)

Similarly equation (4.15) is exactly the same as equation (4.8)
of CC. Tts solution is

Y(x,t) =a(t) +-x x b{t).

and equations (4.16) can now be used in a straightforward manner
to prove that this solution can finally be put in the form

YE$)=C+xxB+At, (4.18)

where A, B and C are certain constant vectors. Equations (£.17) and
(4.18) provide the required solutions for the unknown functions Y and Z.

§ (5): CONCLUDING REMARKS

In this paper 1t is pointed out that the post-Galilean invariance
of the Eulerian equations of post-Newtonian hydrodynamical motions
can not be considered as a consequence of the corresponding invari-
ance of the metric tensor, and that it has to be proved independently.
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The direct transformation of the equations of motion revealed
that they are functional form invariant under the same most general
post-Galilean fransformation as the metric tensor. In fact equations
(3.6) supplied with equations (4.17) and {4.18)} are exactly the same
as equations (40) and (59) of CC.

The identity of the above two transformations, which have been
derived independently of each other, generalizes the meaning of the
term post-Galilean invariance, so that the latter applies to the wider
range of the post-Newtonian general relativistic hydrodynamics, and not
simply to the metric tensor.

However, it has to be particularly emphasized that, unlikely to
the method followed in CC, in the context of the method followed
here it is not possible to evaluate the term of order 1/c* in the second
of equations {3.6). Obviously this is due to the fact that the fransfor-
med equations (3.1) and (3.2) contain terms of order at most 1/c2
If, therefore, the evaluation of the above term isnecessary in the con-
text of the same method, we must transform the Eulerian equafions
of motion in the 2nd PNA, given by equations (52)- (54) of Chan-
drasekhar and Nutku (1969). In this case, of course, the term of order
1/ct in the first of equations (3.6) could also be evaluated.
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IIEPTAHYH

META-TAAIAAT'TKH AMETABAHTOTHTA
THZ METANETTQNEIAZ TAPOATNAMIKHZ

Trd
N. ZIITPOY
{’ Epyaariipte *Aazpovouias voi Iavemornulov Gcogalovizng)

Mg dr’ edlelag petacynpatiopd tév odoewy Euler thg 58goSuve-
pxiis oy petaveutdveta mpoadyyiey the Levixie Gewplag the Lyertindry-
Tog dmodeuxvierar STt & MO vevide pertayahihaiixds peTaoynpaTiopds mob
Ggrvel &peTdBAinT) TH cuveptnotexh uopph TéY isdozwy wdtdv slvar b
{8iog pd Tov dvtiotoiyo petaoynuatiopd mol dpRvel dpetdflinTn TH guvep-
oLy poppl Tob uetpol tevuath. M abté Tév Tpbmo yeviredetar ) Ev-
vole THE uetayahalinic duetafinrémiTag, dmefenwidetar # povadixdTnTa
™ %l dxtelvetar ) meproyt), Smou abry laydet.
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