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Abstract: The non-unitary model eperator ap proach which has been previously described,
is applied to the VO nucleus. Approxzimate expressions are given for the ground state
energy of this nucleus, by using both cariational methods with the separation condition
developed tn our previous work. Stmple hard and soft corc potentials are employed in the
cornputations and the reswits obtained with the two methods are discussed.

1. Introduction

A non-umitary model operator approach to two-body correlations in
finite nuclel has been described in references 9 and 10, Two appro-
ximate expresgions for the ground state energy of closed shell nuclei
have been derived in a general form and detailed investigations have
been performed for the simplest case, namely that of the *He nucleus.
The approximate expression for <> in the two methods for this nu-
cleus were given in terms of the matrix elernents of the effective in-
teraction M, and the normalization integrals N, .

The object of the present paper 1s to give the corresponding appro-
ximate expressions for the energy of the '#(} nucleus and to report
the results of the computations based on them. The calculations in the
case of '*Q) are more complicated than in the case of *He, because there
are now additional states in the expression for the energy besides the
states (nlS) = (00S5) and the Euler-Lagrange equations of the states
{nlS} = (00S) and (108) are coupled. These calculations are exhibited
in sections 2 and 3. In section 4, the numerical values of the energy
of this nucleus are given for various values of the oscillator parameter
b, == (h/Mw)'/?, using both approximate expressions. In performing
our computations the potentials of Kallio-Kolltveit (KK){®), Moszkow-
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ski - Scott (MS) (M), Ohmura - Morita - Yumada (OMY)(*%), S1(Y) and
Harada - Tamagaki - Tanaka(?) (HTT) have been used. Finally, some
details on the calculations of the Lwo-body part of the energy expe-
ctation value: (AE), for 0 are given in the appendix.

2. The expression for the ground state energy of %0 in the [irst method

The general approximate expression [or the ground stale energy,
<E> of the closed shells nucler which was found with the non-unitary
model operator approach and with the [irst method has been given in
reference 9. This is the following

B> =«<Tp+ (AE),+ .. ... {1)
where <Tj> 1s the expectation value of the kinetic energy operator ol

the ground state in the independent-particle model, which is chosen to
be the oscillator shell model and {AE), is given by

(AE), = = |22 (2)

T ii ij ‘
N lz[ msMats+ Choartns < Unis | Unpras > 4+ Chhatns < Gais | Potas >]

i< 2 Crhs < Pmis | Puis >
nls
The expressions of the coefficients Cilljs, Ci[];qn.{-l)lg and the matrix
element M, s have been give in reference 9 (formulae 14, 25).

The variation of <E> with respect to the correlated relagive trial
wave function ¥, by using also the separaiion condition has led to
the Euler equation

h?  d*as R 1+1) ‘
alieva 4o (1) — =2 e | s
M dr? ’ M r? E (I) 9 als | ¥nls

Bn+1=lS Bn‘blb

= T ‘~|Jn+1,|s '“ —Z—‘Puﬁms (3)
{c<r<d)

where Lhe general expressicus of the guantities B, ..,s and e, have
been given in reference 9 (formulae 18, 19).

It is clear thai the Fuler equation for the correlated relative wave
functions are generally coupled. This coupling, which does not exist in
the case of the nucleus *He, where the quantum number n is only zero,
exists in the case of the nucleus %0, where n takes the values 0 and 1.

In order to find the expression of <E», in the case of 1¥0 nucleus
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the expression of (AE), must be found. The expression of <Ty> is well
known:

Tp= = (24 1 2 )22~ 18he (4)
, 2/ 2
Illli

For convenience we separate the sum X [ ] in expression (2), into three
il
sums

(AE)zz};‘(j[ =zl J+2l ]+>37[ ] {5)

[i3

where we sum over pairs of nucleons with the following quantum num-
bers:

an =0 15=0n;=01,=0

B) 1’11:0, ]j=0, Ilj=0, 1j=1

V=0 L=1 n;=0 1;=1

After a long caleulation, some details of which are given in the appen-
dix, we arrive at the following expression for the term {AE),:

(AE)Z = AOGUMOOG + AO{]INIGOI + AGlOMDIO + AOUMOII + A020M020 +
_3-
+ A()ZINIIIEI_!_ AIOGMIOO + AIDIMIO] —:\/7 ﬁm(Amo < [']J000| 4"100 >+

+ A]Dl < ¢001!¢101 >) (6)

The guantities A,s, which depend on the normalization integrals
<Ynis | Unis> of the various relative states, are given in the appendix.

Using the expressions of <Ty» and {AE),, the approximate energy
expression of 180, if we include the centre of mass correction and the
Coulomb energy(*), takes the following form

83
V_ “" + E [ADQSMUUD + AQ]SMOJS +

3
+ Austn-aS + AwS(MmS - \/“2“ hw{l‘]JooS ‘ d?wS))] (S =0 and 1) (7)

<E> = 18hew — 3 ey + —— 3

We may note that if the model operator is unitary(*), (and therefore
the correlated wave functions 4,4 are orthonormal) the expression of
<E> will become: . :
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.
B> = 17.25he + El%i fl—Jr 21 (Myyy+ Myp) - 6M,, + 56M,, +
4 T.5(My,, + M) + 1.5(M, + M) (8)

This is indeed the expression of <E» in the case of the unitary model
operator approach(®).

In order to obtain the wvalue of <E> the matrix elements M,s,
<gs | dygs> and the gquantities Ays have to be compubed. The Mgy
are computed from equation (25) of reference 1 and the guantities A,
from equations (A.9) to (A.13) of the appendix, after sclving the Euler
equations for the various states. It must be noted that in the case of
160 the Euler equations for the states (nlS) = (008) and (nlS) = (108)
are coumpled while the states (nl5) = (01S) and (nlS) = (025) they are
not coupled. The expressions of the quantities =4, Buss for the
various states could be found from the general formulae (19) and (18)
of reference 9, following a procedure similar to that for the expression
of (AE),. Such a precedure is however laborious and the expressions of
these quantities were therefore obtained by applying the variational
principle directly to the expression (7) for the energy of 1%0. In this way
we arrived at the following expressions:

=R By — Vf— b T, Bymys = 0 (9)
€08 = 21: , Bl =0 s B = — V% he  (10)
€5 = %:Z s Biips =By =10 (11)
Eags = fi:i v Boips=By_ps =0 (12)

The expressions of the numerators Q.5 are given in the appendix.

3. The expression of the ground state energy of %0 in the second method

The energy expression which was found with the second method of
the non-unitary model operator approach of reference 9 is as follows:

By = Eo+ (Ai)z +... (13)
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. where Ey = 2<Tp» (14)
| and
~ A ?S[Ciriil s+ Cih, ) Sy <! ba—it.15> ]
AR), =% |2 -
( )2 1< j |: EI'S C}]l]s <‘Fnls\1}"ms> }
n

_ ¥
L 1

The expressions of the coefficients C}L,,H_i)ls are similar to those
of the first method(®,*). They differ only in that instead of the matrix

(13)

{ E Gms <buig ] YnIs> }

b) CnlS “Hnls | ‘Pnls>
nls

element <NL|€R|N F1,L> which appears in the coefficients CH],,HHS)
N F 1,0y =

there now appears the matrix element <NL A— -

<NL|tRjN T 1,L>. The coefficients Gmb are similar to  Cps. They
contain also the factor (i % The matrix elements Mms have been
given in reference 9.

The Euler equation for Lhe ¢nlS in this method is:

02 d2,s | [ R ll41) | A2 R ~
M dHIJ‘le + M ( j; ) A1 M bt 4 v () — o —Eais ‘-]Juls =
= Bems By e (16)

where b = (2h/Mw)!/? is the harmonic-oscillator parameter for the re-
lative motion.

~

The expression of (AE), in the case of 180 nucleus is found as {ol-
lows:

The first sum of expression (15), which we call (AE),, is similar to

(AE), of the first method. The expression of (AE),, can be found from
the knewn expres‘ﬁon of (AE), (expression (6)), if instead of M,s and
V—g— fies we pul Mms and 115 V—g—hm. The expressien which is found
is the following:
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~

(AE)EI = AOODMOOO + AUUIN[ODI +- ADION‘[DIU + Al]llMl)ll J:_ A

—~

an Ay M

020 021 t

~ 1v/3 _
+ Awo\’Imn + AIOIMIUI —EVT hm{Amo( (‘POOl}l '*]qu> +A1m< L!Jmn i "P 001>) (1 /)

The second sum of (15), which we call (AE)zb ig found by following
the same procedure as in the case of {AE), ol the first method. This is:

(AE) = i[(AUDDN‘]OO[ AGBINUDI)%hO‘) +- (A010N010+ Aﬂll NOH) h o +

® 730

LQ] o

3.
e

3 .
+ (Aoou oan - A'021 021) h(J—r {A100N100+ Alﬂlwml} — 2hes {13}

where Nous = <dnis| s>

Finally, by using equations (14), (17), (18) as well as the expression
for the correction of the center-of-mass motion and that of the Coulomb
energy, the expression of %0 in the second method becomes:

.o 83 o2 ~ 7
<E> = 35,26he 4 um Tl- + 2t -f- % [ A (M s *Wthoug) +
5. .~ 3 ~
I"AMS(VI - Eahml\ms)T A()25(M025 O thuzb)+ AwS( 108
3 11/3 1
i -6—0-ﬁC'Jng) - E‘V%hQAwS <¢005 ’ "Pwa)J
{5S=0 and 1) (19

The expressions of the quantities =5, B,,..s for the various
states are

~ Q ~ 11/3 . A ~

EOOS ES sz:z B0+1’DS :—E —2- h(}.) T;:-\;L BO""]’OS — 0 {20)

Sns — EOIS B0+1105 - B0—1:15 =0 (21)
018

ForS T %— Bo+1=25 = Bo—1!2S =0 (22)
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~ Q ~ ~ X 1 3_

€45 = A—NZ B,ipw=0 B, s =— 15 Thm (23)
1

The expressions of the numerators Q.5 are of similar form to tho-

~

se in the previous case. They now contain the quantities (M

008

~

7 . 5 . . 3 ~ 3
"ﬁjh(ﬂNuog), (Mys — =0 holNg), (Mg — = holNg), (M — %hw

N,s} instead of the matrix elements Mg, M,s, M, s and the term
19/3, . 1/ 3
ﬁ‘/?hm instead of fozhm.

4, Results of numerical calculations

~

The procedure in computing the ground stale emergy of the 160
nuclens 13 the following:
For a given potential and harmonic-oscillator parameter b, = b/

V72, the Euler equations for the various states are solved numerically
wilh arbitrary values ol e,, and By i, and the corresponding
values of M, and N,,, are computed for various values of the sepaca-
tion distance,

The appropriate value of d in each case 13 the «variational Moszkow-
gki and Scott separation distancen, dys at which the wave [unction has
also continuons derivative. In the case when more than one dys appear
one may choose the smallest one. This choice might be physically inter-
esting, since the shorl range of the correlations makes probable that the
magnilude of the neglected higher terms in <G> is sufficiently small.
The usval criterion for the fulfilment of this requirement is the small-
ness of the value of the corresponding healing integral

/150
Mnls — J | Yris — O ‘Qdf' (243
0.

The wave functions, which have been obtained in the manner,
previously described, are used to caclulate new values for g,5 and By yy,4s
from the expressions (%) to {12) and the corresponding ones of the
second method. This procedure is repeated until the values of each of
the ¢ and B remain nnchanged, These quantities are therefore determin-
ed in the presenl approach self-consislently.
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As it is noted in chapter 2, the Fuler equations for the correlated
relative wave [unctions are pgenerally coulped. These coupled equations
were solved as follows:

The corresponding homogeneous differential equations were solved
and their solutions were taken as the corresponding non-homogencous
parte of the equations. Having kncewn the non-homogeneous parts of
the equations, these were solved and their solutions were taken as the
new non-homogenous parts and so on. Sell-consistency was achieved
after three repetitions.

In the computations we used [or the nucleon-nuecleon interaction
the Serber-type potenfials which were menlioned in the introduction.
The potentials KK, OMY and MS are hard core, while the 51 and HTT
are soft core potentials. The above potentials can be written in the
[orm:

o(r) = 5 (- Phue) 4 5 (1B, (25)

A
Where P is the spin exchange operator and v{r) and v(r) the nu-
cleon-nucleon interaction in the triplet and singlet state, respectively.
The form of v,(r) and v{r) for the potentials KK, OMY and M5 is

the following:

o0 for O<r<c
Vesell) = (26)
—Vi,s eXp(—h,s(r—0c)} for c<re<co

The parameters Vi, V, A, &, and ¢ are given in table 1,

TABLE 1
Parameters of the potentials KK, OMY, MS.

Potential ¢(fm) V. (MeV) V. (MeV) A dim-1) h(frm-1}
KK 0.% 475.0 330.8 2.521% 2.4021
oMY 0.4 475.0%% 235414 2.5214 2.0844
MS 0.4 260.0 260.0 2.083 2.083

The v,(r) and v(r) for the potential S1 have the form

3
Ul:s(r) :"Z“l Vi[:s exp{—“it;apz} (27)
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while for the potential HTT are

() = B Vies exp{—(r /o)) (28)
i=1

i=

The parameters of the potentials S1 and HTT are given in table 2.

TABLE 2
Parameters of the potentiqls SI, HTT,

Potential state ViiMeV) V,(MeV) V,/[MeV) oy oty oy

51 triplet 1000 —143.4 —43.0 54fm-z  0.82fm-% 0.60fm"?
51 singlet 880 — 671 —21.0 5.2fm=2  0.62fm=? 0.38fm-2
HTT triplel 4000 —279.0 — 7.2 0.385fm  0.942fm .1.876fm
HTT singlet 4000 —279.0  — 7.2 0.385fm  0.942fm  1.876fm

The computed values ol <E> for the %0 nucleus, using the above
potentials for some values of the harmonic-oscillator parameter b, and
the first method, are given in table 3 {see also figure 1). The various con-
tributions to the ground slate energy are aslo given in this table, in
which Tey is the correction due to the center of mass motion and E¢
the Coulomb energy, estimated from the oscillator wave funetions.

The results of our computations for various values ol b, show that
for small values of this parameter no acceplable dys appear for the
state (100). These values of by are noted by an asterisk above the value
of <E> in Lable 3 and by a dotted curve in figure 1. [t is seen from table
5 and ligure 1 that there 18 no minimum in the saturation curves for
all the polentials. In order to estimate the value of <E> we may use
the value, by =1.764 fm (or hew =13.33 MeV), which is determined from
the analysis of the experiments of the elastic scattering of electrons
by 904D, For this value of by and for the potentials KK, OMY and
51 the values of <E> which are computed are close enough to the expe-
rimental value (—127.52) MeV. The computed values of <k> for the po-
tentials MS and HTT and for the same value of b, are bigger than the
experimental value.

The results of our computations for some values of by using the
second method and the potentials KK, OMY and 81 are shown in table
4 and in figure 2. The saturation curves for these potentials have mini-
mum corresponding to a negative energy. It should be noted that for
the other two potentials the energy is positive for all the computed va-
lues of by,
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The minimum values of <E> for the potentials KK and S1 correspond
to by =~ 1.6 fm (Ao = 16,194 MeV) while for the potential OMY to b, =~
1.5 fm (hw = 18.435 MeV). The corresponding balues of <E», however,
are too far from the experimental values of the ground state energy.

TABLE 5

The values of the healing integral in the s stares for various values of b, for the potential
KK ard the first method.

b Tioon “igo1 Moo Tio1
1.4 0.0127 0.0113 G¢.0222 ¢.0173
1.5 0.0103 0.0092 0.0167 0.0139
1.6 0.0084 0.0075 0.0133 0.0114
1.7 (.0070 0.0063 0.0109 0.0095
1.764 0.0062 0 0056 0 0096 0 0085
1.8 0.0058 0.0053 0.0090 0.0079
1.9 0.0050 0.0045 0.0076 0.0067
2.0 0.0042 0.0038 0.0065 0.0058
2.5 0.0021 0.0020 0.0032 0.0029

We may finally point out that the chserved descrepancies should
be mostly attributed to the omission of the higher terms in the cluster
expangion and to the simpheity ol the potentials. This is indicated also
by the fact that the values of the healing integrals, 7.s. become large
for small b). This behaviour of the healing integrals is shown in table
5. In this table, we tabulate the values of 7oy, 7001, 7100 M10r Which
were found for the potential KK for some values of by and wsing the
first method. The behaviour of the healing integrals for the other po-
tentials and for the two methods are similar.
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Frg. 1. The saturation curves for 0 nucleus obtained with the potentials KK, OMY,

MS, 81 and HTT and the first method,
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bftm)

25

Fig. 2. The saturation curees for %0 nucleus obtained with the potentials KK, OMY
and 81 and the second method.
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Details on the calculation of the term (AE),

In section 2 the term (AL}, was separated in three sums {expres-
ion (5)).
In the first sum X [ ], we sum over the same pairs with the sum

x

4
Z [ ] of the *He nucleus. Therelore the X [ | is equal to the term

i=<j

(AL), for *He which has been given in references 1 and 2. This is:
S0 = o e Mo | e
=l 1+ == 1 - :
a NOUO NDOO J\_ NI]OJ. 009 N[lOl NOOO + NOOl

Mo, (A1)

In the second sum 2 [ 7], we sum over the set of pairs, which are
p

characterized by Lhe quantum numbers nj =1 =m; =90 and n; =0,
li=1, m;=04 1. The possible states of the relative motion and the
motion of the center of mass can be [ound [rom the known relations

ng+ i+ 2n- 1y =2n+ 14+ 2N+ L {A.2a)

I Py N P S f—L| a4 L (A.2b)
()i = () (A.20)

mi+mj=m+ M=np (A.24)

Using these relations we see that the states of the relative motion
and the motion of the center ol mass are:

Hhn=0,1=0,m=0 N=0,L=1 M=0,4+1 (h=1, p=0,+ 1)
i) n=0, )=1, m=0,41 N=0,L=0, M=0 (@G=1, p=041)

Sinee the quantum numbers n and N are equal to zero, the co-
ellicients Ci(jn,w”.s, of the non-diagonal term of the sum %‘;[ |, are zero.

Therelore this sum 18 written as follows:

% [ Cos Mgis]
Z[ 1=% ["‘f—i. } (A.3)
8 Olié[ C()Jls NO]S]

i<
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The numerator in this expression, taking into account the known ex-
1]

pression of Lhe coefficients Che 9, can be writtenas follows:
(?—é CJOjls Mols - Z;J(Céf% Mous Ja— Cgls Mms} =

=2 ‘L SM 0850 ")_ (SM 1 + _1‘ SM i ‘J" SM ,.71)831 {(00;0].1 ] 01,001 >2
s | 2 s S 2 $ S |

- <00Amy | 14 F (—1)255, . [Myps -+ <00,01 : 100,01 : 152

iy

- <00tm; | 1> T4 (1155, M, (A.4)

Using the known values of the Clebsch-Gordan coefficient and tak-
ing the values of the Brody-Moshingky brackels from tables™, the ex-
pression (A.4) becomes:

i 1 N |
% U(j'l_q Mo, = ‘E@Mso’.{i + 81;] ?Mooo+ (1'78111-‘)1\'1'010]_‘—

U

1 s 1 - . s -
_'_ 7(6M51 + "é“ bl\"isﬂ + sz‘l)[(l>76riTJ )-“\II(]01+ k|-+61irj )NLOILJ (‘A'B)

The expression of the denonuinator of Lhe equalion (A.3) is siroilar
Lo (A.D). It dillers only in that instesd ol the M, appears now the
Nus- Substituting Lhe expressions of the numerator and Lhe denomimator
wbo (A.3) we get the following expression tor Z; N E
I

Moy | Mooy + Moy |

B[] =12 L Mooyt Moy,
B ) NOll NOOO + 1*\1[)11 N()l)]_‘iL N[)ll
+ A;IDOOi 1‘"10}0 - Mﬂpi Myy, (A.6)
Nogo + Nozg 4 Nogy + Nows o

In the third sum [ ], we snm over the set ol pairs which are
Y
characterized by the quantum numbers n; =0, I = |, my=0,4-1, n; =0,
li=1, m;=4,41.
From the relations (A.2} we can get the possible states ol the relalive
motion and the motion of the center of mass. These states are the fol-
lowing:
Nn=01=0 m=0 N=1, L=0, M=0
(r=0, p=0
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Hn=11=0 m=0 N=0, L=0M =0
A=0, p=0
nyn=0,1=1, m=0,+1 N=0,L=1, M=0+1
=0, u=10)
win=0,1=1, m=0,+ N=0, L=1 M=0,+1
=1, u=0,41)
vy n=01=0, m=0 N=0 L=2 M=0,-1,42

0
vijp=0,1=2 m=0,01, -2 N=0 L=0 M=0
0

I
2
vil) n =10 0,41 N=0,L=1 M=0,41

B

Il is seen Lhat the guantum numbers n and N are not always zero.
The coeilicients ol the non-diagonal terms are not generally zero in this
cage and the sum X[ ] will contain now and non-diagonal matrix ele-

¥

mente. Following a procedure similar to that for the second sum the
[ollowing expression is oblained:

Moo s+ Mys | o Mygs+ Myps + 2MM,
5 =¥ |' 4 - 1005 Yoz o] a0 8 T 02 : 011 +
ST T N S
B .
3Mgos -+ Mogs+ 2Myqs 6]\{[011"2\/9h@5<¢005 [bips>
A A - -
- WNops+ NoaaF Migs+ 61,
. El
3Mpgs -+ 2Mogs + Mygs — \/ﬁw <Pgs 105 2 M
+ 2 + 122 4
3Nggs+ 2Ngg s+ Nygs Noay
Moo+ M) Z(Myps + Moo s - 2Moy 5)
- 4 , 8 2 , —
T Mo T N S Moo NogaF 2Ny |

> (3-\/]’ [}5+ \/1025"} 2M 05+ 6-\’1015 — 2 ‘\/—‘ h()(uoos | LPlOs)
S |

+ 4 . -

T {(3Ngys -+ Nyas—+ 2'1\105+ 8Ny 5)
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?
ES (3M005+ 2NI()23+ Mlos‘, V 5 Fw (LIJOOS‘ 105)) (AT)
2 - o
ZS‘ (3N005_§_ 2N025+ 2N,y s) (5=0 and 1)

Tf we substitute (A.1), (A.6) and (A.7) into {5) Lhe term (AE), beco-
mes:

(AE)z == E{Aoo sMuo s+ Am SMON +

3
4 AgasMyaetA (Mg s — VTh 0 <Yaos | Yrps> )

(S=0 and 1) (A.8)

where the quantities A, s, which depend cn the normalization indlegrals
N,is are given by the lollowing expressions:

W22 12 | 12 N
foos T Ngps ‘E‘NOOKT Nogs+ NonT ‘E(Noolﬁ“‘ Nogx) |
4 4 g
- - = + _ 4
N N005+ N025 - %(Nook T+ Nozk) NooS"‘T N025+ 2'Nou
3 12
T S Nowe F2Non] | BNopat Nogi T MMgat 6 |
N 12 . 6 1
L %(3N00k+ Nogx+ 2Nyox+ 6Nmk) 3Ngg s+ 2N025+ Nios
‘ o A9
: §(3N00k+2N02k‘%‘Nmk) (A-9)
12 16
A - = I3 ST\ !
o %(Nook‘|“ Noy) * %(I\‘ook‘F Nogr =+ 2Ngyx) N
4 24
Z(3N,0x - Noge - 2Nygu + 6Ny 1) (A.10)
k
24 12 16
Agyy — A S y -
o ot Nom N i | Nogre 4 Nogy Noox =+ Nozk+ 2Ngyy +
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24
- Al
+ 3Ngg+ Nogie 4= 2Nygue -+ 6Npyy ( )
Apgs= s - ° +
PT Ngg st Nogs+ 2Nigs+ 6N Z(3Nggie -+ Noger 2Ny -6 1)
2 l 2
T BNgeF Mgs F Nogs SNt 2ot Ny (A.12)
Ao == Ags T 4 L __j_[k_ﬁf.;l_ 8 4
0z 2 } NOOSTI‘ Nozs I %(N001<+N02k) NooS'\" N029+2N011
3 3
+

E(Nook + N02k+ 2N01k) - 3Nou s ZNozS + XNm S+
k

3
SRt Wogt Ny (A.13)

In the above expressions the index k in the sums takes the values
0 and 1.

Finally the quantities Q. s which are the numerators of e, are
given by the lollowing expressions:

M
Qs 2 [ Mas 0 Mogst My
w? {NODS)Z (ENOOR) (Nuos i le)
Z{Mpgr + Mo x) Mys + M E(Mook'Jr Mpa)
0 02§ 5
-+ 2

+ 6 : +2
[

. N TN .
E(Nouk“— Nork }2 "7 (Ngos -+ Ngas)? (k (Ngyx -+ Nozk}

(Moak + Mozk + 2Mmk)

.
My s+ Mogs -+ 2My, -
ny
S Nggn - Nogr 2Nmk}2+
k

_4 -
T (Ngs = Nygs + 2Np0)?

f
L

3
3Mgps + Mags + 2M45+ 6My—2 \/T hes <digg s [ Yrgs >

6 +
N (BNpus | Noas + 20pp - BNy )?
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3
E(SMook“‘ Mg+ 2Mygr + BMggx—2 |/ —- h(K‘r)DDk | b101>)

g K -+
E {ZENppet Moo+ 2Nt 6N01k)}
N 3
8Mgqs -+ 2Mgg s+ Myps — V'T Baclygs | diys>
3 ;

T (3Ngys - 2Npys | Npgo)? -
. 3 ,
Z(3M g+ 2Mpor - Mgk — 5 Res<digor | &0k>)
K

A {%(3N00k+ 2Ngox -+ Nygi) }? _| (A.14)

2“("\'/Inok“zl” Mo] k) z‘(Mook‘|“ Muzk‘|“ r)Mm.k)
S § . 16 %
o = 2 N+ Nt (SNt Nowe | I

(g\qonk+ P\‘ngk e 21\’[101:“1’ 6\”1011* ‘\/*hu(u{]gk | %uk
{E BN+ Nogx+ N gu— 6Nopl ¥ (A.15

+ 24

12 Mogie £ Myyy 16 Mgk 4~ My 2k+2Muu+

- 24 IJll | L - . 1
Qows = Qozot (Nygs -+ Ny J# i {Nook -+ Noax + 2Ng1)?

( ou)z‘ l

5 ‘ 3
3Mook + Mo -+ 2M g + 6Mgq,—2 3 her <gpy | g
424 - -

(3Nggx + Nogx | 2Ny + 6Ngyy)? (A.16)

3Mop. + Mops + 2M e + 6Myy, —2 5 e <dggs | Gros>

o = 8 N Now - 2N - B i
(3Mouk + Mot 2M g + 6\101}(*9_\/% Bew<opr | Prox>)

8 R P 3
T { {SNOOK l 1\02k+ z\mk 4 6Ny 12 -
01"1005 + 2Mgas + Mygs — Vﬁ— Bes < Yggs | digps >
2 - ——

(3Ngos + 2Ngge + Nyge)?
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3
2(3Mook + ZMgar + Mg — \/7 Bieo < Jigou[byge> )

g0k T
| {Ek(BNgok + 2Ngai + Nyge})? (A7)
Qlos B'{[O(]b -+ i\"I()gs !E(N'[Ook + M Dzk)
= —— 4 i _ AL
Qo= g T A N NP *{%(Nm TR

Mgs 4 Mg, + 2Mg;y {(Mogx + Moy + 2Mgy)

¥
[} k ,,L
mm+Nm+2&m2+°@@mr+my+zmw?'

|- I

3Moge + 2Mggs + Mygs— V% hea < hops | s >
+3 (N + 2N+ Nyl N
) - ER
Ek(dh*luuk + 2Myp + Mig— -~ i <oy | br0x>)
+3 X

{{‘(3Nook + 2Ngox + Niygw)}? (A.18)

As 1n the previoas expressions, Lhe index k in the swms takes the values
0 and 1.

The compulations were performed in the computer of the Univer-
sity of Thessalonikl. The author would Jike to thank the computing stalf

for their co-operation. He would alse like to thank Frof. M. E. Grypeos
for useful suggesticns and discussions.
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IR = I e, ; - ! . vy ~
—+HEodeg Tob - povedialon Tekestol mpotimov, wol Eyet wepiypagel
A : b H H ' \ ’ 16 H i

ot mponyodpewy épyaciv, tpappdleton otov muphve 0. Alfovtar 8bo mpoo-
syyiomies Exopdcels THe &vepyetag Ozpchuadoug xataotdoewg Tod mupdva
xdtol, yenotponmolvTae Ty Geyh TV perafordv LE Ty ouvlihun Soywpe-
guoll. Zrobg Omohoviopols yeMOULOTOLODYTHY AR praoTing  Suveriud
orhnpol xeel pohaxod mupfive uad yivetar oulfTnorn Ty dmotehsopdTwy mod
JapPdvovrar pd tic 8o wzliddouc,
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