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Abstract: An appropriatc compuler programmec ts used lo simplify the calewlations in
the case of Wasscher’s methed for galvanomagnetic measurernents in anisofropic malerials,
For flat cireular samples the main anisotropy ratio of the in plane resistioity is determined
and suitable formulas for the prineipal resistivities are dertved.

1. INTRODUCTION

In 1958 Van der Pauw introduced a new method for measuring
galvanomagnetic coefficients [1]. This method is based upon conformal
mapping and it can be applied to isofropic materials and flat samples
of arbitrary shape. Ten years later the method was extended for aniso-
tropic materials by Wasscher [2] who solved the case of circular or
rectangular samples. The main resull in this extention is the determina-
tion of the main ratio of the in plane resistivity anisotropy. In this paper
we shall examine the possibility to determine the anisotropy ratio in
the case of cireular samples, comparing experimental values treated by
Wasscher’s empirical method and theoretical ones, that are obtained
by treating the data using an appropriate programme in the electronic
computer.

2. PRINCIPLES OF THE WASSCHER’S METHOD {2]

Suppose that we have a flat cireular anisotropic sample (Fig. 1)
of radius r and thickness d. The two principal directions of resistivity
x; and x, are in the plane of the sample, while the third one x, iz normal
to it.
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a b

Fig. 1 {a) A circular anisotropic sample with four contacts. {b) The equivalent elliptic
tsofropic sample.

According to the Wasscher’s proof this anisotropic sample is
electrically equivalent to an isotropic one with elliptic shape (Fig. 1)
and the following characteristics

a. Chickness d’ = d{ps/p)*'? (1)
b. semi-axes a=r{g /pi'*? (2)

b = r{p;/p)+* (3)
¢. resistivity e = (pypaps)?’® . A

Consider now four contacts A, B, C, D formed along the circumfe-
rence of the circular sample on two perpendicular diameters (Fig. 1).
Then we may define the “resistances”

VD_VC

Tan

Va—Ve

IBD

R, = , Ry= —V_ and Ry, = (5)

As Van der Pauw proved {1] the resistivity p is given by the following
relation

ed’ R
o= g (R Rt () (©
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The corrective factor f(R; /R,) is a function of the Ry /R, ratio and its
values are given graphically [1] or by the parametric expression [2]

log !
f( By ) - C A
Ra log —— (1 - %) + log —— (1)
2 2
1
R, log 5 (1 —x)
R T (7
2 log —5— (1 + x)

for —1<x <1 .

Combining eqgs. (1), (4) and (G) the following relation is obtained

md R
(papt = o (s + Rt () ®)

By conformal mapping of the ellipse into a unit circle, Wasscher obtained
the following expressions for the resistances R, and Ry

__ (pypg)*® 2

By=—g— [ 1 —ksn(2u) ] ©)
__ {pypa® 2

Bo=—" " | Ty ] (10)

where sn{2u) == sn[ 4K (m) i] is an elliptical function of the complete
T

elliptical integral of the first kind K{m), ¢ being the angle between one
of the principal axes of resistivity and a line connecting two opposite
contacts. The modulus k is related to the parameter m by the expression

k= Jm (11)

The maximum value of the ratio R,/R, occurs for ¢ = w /4 where
sn(2u) = 1.
12

WnoeiakA BiBAI0BAKN Ogd@pacTog - TuAua MewAoyiag. A.MN.O.



178

Combining eqs. (9) and (10) we have, for the extremum values of
the resistances R;, R,, the following expressions

1/2 2

(B) s = 00810 2 (12)
1/2 2

(R) i = — 21 2 (13)

1n[1—(1;k)]
(E )max N ln[—Z—(iJrk)]

From eq. {14) the value of the modulus k is determined.

Wasgscher expressed graphically the dependence of the normalized
ratio R, /R, on the angle ¢ (Fig. 2) for four values of the anisotropy ratio
’ = p1[pa{py > py). S0 the main problem is the reproduction of the group
curves of Fig. 2 or in other words finding of the exact value of the ratio A
which corresponds to the experimental value (R;/R;)n.. and the
correspondence hetween the ratio R, /R, and the angle ¢ for the above
concrete value A Valassiades and Economou [3] gave a solution to the
problem using an empirical relation which reproduces the curves of
Fig. 2.

3. CORRELATION OF THE RATIOS % AND (R,/R,)

For a definitive value A it is possible to calculate the (g)nome Q{k)
from the relation [2].

K1 — 12 (s
Q) = exp | — g =L | - =) (15)

From the above relation we may also find the parameter m and the
modulus k. The value of the integral K(m) for the calculations, is found
by the approximate formula (C. Hastings [4])

K(m) ={A; + Ay{l —m) + Ay(1 —m)? + Ay(l —m)® + Ay(1 —m)i]
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Fig. 2 The dependence of In{R,[R;) on the angle of rotation g for four values of the
anisotropy ratio & [2].

-+ [By ++ Bi(l —m) + Byl —m)? -+ By(1 — m)® 4 By(l-—m)?]
In ———— - &(m) (16)

where A and B are numerical constants and | &(m) | € 2 x 1078, The
exact value of K(m) is found by the relation

K(m) = _"2'; L9 2%5- (17)

while the value of the elliptical function sn{2u) is calculated using the
relation
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Fig, 3 Flow chart diegram for the reproduciion of Wasscher’s curves.
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2 < n+1/2 )
sn{Zu) = m Z —1_—(5727’7? sin[(2n 4+ 1)v] {18)
m2u
where v = m

Using the programme presented by the flow chart of Fig. 3, we
obtain the values for m, k, Q(k), K{m), (R, /R3) maw (B /Ry)s, sn(2u), ¢.

Therefore it is possible to construct a diagram (Fig. 4) showing the
" dependence of the ratio R; /R, on the angle ¢ for any value i without any
restriction.

o] I N I U i S — 4 o, t
0 20 40 60 80 100 120 140 160 180

— 9
Fig. & The theoretical diagram (¢, H,[R,).

4, EXPERIMENTAL APPLICATION

We start the measurements on the eircular sample from an arbitrary
pogition of the four contact systemn, which we call position of angle
§ = 0°. Rotating the sample we conlinuously perform measurements
for several values of the arbitrary angle 8, After thal we construct a
diagram of the experimental values R; /R, vs the angle 8, using the same
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gcale with the one used for the diagramm of the theoretical values
(@, Ry/Ry).

After that we allow the experimental diagram to slid on the theoreti-
cal ones until we succeed to fit it with someone of them. Thus the exact
value of A is determined and the relation between the angles 0 and o is
also obtained (Iig. 5).

C

Fig. 5 Correlation of the angles ¢, 8 and w.

If we have not measured experimentally the value (R,) .., we can
find it as follows. Let R; be the experimental value which corresponds
to the angle 6 = ¢ — 0, (Fig. 5). Then from egs. (9) and (12) we have

5 (19)
In) ————o——
{ 1 — ksn(2u) ]
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In a similar way we obtain

h’[ a ]
(Rz) min — Rz (20)

) 2
i [ 1 - ken(2u) ]

Knowing the values k, (Ry) n.x and (Rp) i, we can calculate, using eq.
(12) or (13), the product p,p,. Finally, for the main in plane resistivities
¢, and p,, we have the following expressions:

o = Alf%d(gl)max _ llmﬂd(l;;z)min
In % In TIE (21)
0y — )\-lfznd(gil)m“ _ 7\‘1fznd(§.2) in
In ——— I~ (22)

5. THE DEPENDENCE OF THE RESISTIVITY ON THE ANGLE o

The values of the resislivities ¢; and p,, which are determined by
eqs. (21) and (22), are the maximum and the minimum values respective-
ly. The resistivity along an arbitrary direction in the sample’s plane is
given by the well known relation [5]

p = p1008% 4 py8inte (23)

where « is the angle between the direction of p with the direction of p,.
The relation between « and ¢ is (Fig. 5)

o = @ — 45° (24)

Combining eqs. (21), (22) and (23) we obtain the equation

o = —n—d(Bg“‘A (W2c08%0 - A~1/%in%w) (25)

ln‘ibk

In Fig. 6 the polar plot of the resistivity p (eq. (23) or (25)) is given. It
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Fig. & Polar plot of the resistivity ¢ for two values of the ratio 1.

is evident that for two mutual perpendicular directions the amsotropy
ratio is

rcog?w -+ sinfw
asin’e -+ cosia

From eq. (20) it also follows that the swn of resistivities in the two
perpendicular directions is constant and equal to the mean resistivity
of the sample.

P1 + Pa — Pw + P+ o0 == gonst (27)

<P =3 )

This value differs from that one (py) which we obtain by using eq. (8}
if we consider the material as isotropic. So, when we make measurements
for ¢ =0° or ¢ = 90° (@0 = £ 45°) then Ry = R, =R , {{R;/R,) =1
and

7d
Pv ]I'l2 (28)
which is not the actual mean value <p> .
From eq. (19) for ¢ = 0, sn{2u) = 0 we have
R max R
( 1)2 ~ Tn2 29)
In T—%
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and thus the egs. (21) and (22) become

WMizd R
=" T WMoy (30
)\—1.’2 dR
pr = ——5— = A"y (31)
so that
<p> = —92" (372 4 A7y, (32)

Therefore < p> iz proportional to py while the proportionality constant
depends on the main anisotropy ratio 2.

6. THE DETERMINATION OF THE MAGNETORESISTANCE AND OF THE
HALL COEFFICIENT

The application upon the material of a magnetic field B results
in introducing an anisotropy in the electrical resistivily with principal
directions 1n general different from those of crystallographic axes which
usually define the principal directions of the zero-field resistivity [6, 7].
This phenomenon, known as magnetoresistance skewness [8, 9], is directly
connected with the weak-field magnetoresistance coefficients g;;,;. Thus
the measurement of the resistivity in the presence of the magnetic field
leads to the determination of the g;;,, coefficients. As Wasscher [2] has
indicated, the previous analysis of the anisotropic zero-field resistivity
may also be applied for the determination of the resistivity under the
influence of the magnetic field. The needed configurations depend on
the crystal class of the material [6] and the orientation of the surface
layers or the epitaxial films [7].

In the simple case where the application of the magnetic field B
does not change the main directions of resistivity, the magnetoresistance
may be calculated from the following relations

Ay =( N ) DB Tk (33)
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1/2 , in L
Ap2 _ ( A ) ( 2)min 1 + k _____,I (34)
Pz N (Rs) min In 2
1+ K

where the prime quantities are the ones in the presence of the magnetic
field.
In an arbitrary direction the magnetoresistance is

Ap; ) cos?w ( Ap, '\ sin%w J
( Ap )zplpz[( o1 o N e ) w

¢

(35)

Finally the Hall coefficient is caleculated by the Van der Pauw relation

(1]

d
Ry = B ARIZ‘ (36)
where the magnetic field B is perpendicularly applied on the sample

and ARy, is the change in the resistance Ry, (eq. (5)) due to the presence
of the field.
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