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Abstract: In this study the cffeets of halos on the dynamics of spiral structure
are examined.

Espeeially we make a elussification of the rotation curves in galoxies and study
the influence of a halo and of a eentral mass on the positions of the resonances and
on the picth angle of the spiral arms.

1. INTRODUCTION

The concept of massive halos of high-veloeity stars has been sug-
gested by Osrtilker and Peebles (1973) (see also Ostriker et al. 1974,
Ostriker and Thuan 1975) in order to stabilize a galactic disk of low-
velocity stars, against har-like instabilities observed in computer ex-
periments (Miller 1974, Hohl 1975, Hockney and Brownrigg 1974).
Ostriler and Peebles (1973) after a 3-dimensional numerical experi-
ment, established a criterion according to which non axisymmetric in-
stabilities are avoided only if the ratio of the total kinetic energy of
rotation to the potential energv of the system is smaller than 0.14.
This result means that at least 3/4 of the total kinetic energy are in
random motions.

Observation] evidence for massive halog in galaxies comes from
estimates of the masses of galaxies by Einasto (Einasto et al. 1974a,
b, Chernin, Einasto and Saar 1976) and from the rotation curves of
gome galaxies at large distances (Rubin and Ford 1970, Roberts and
Rots 1973).

In the computer experiments that produce spiral waves, rather
than material arms, the stars acquire finally large random velocities.
Tt has been suggested by Miller (1974) that this fact is due to non-
axisymmetric instabilities of a disk with low-velocity stars and is in-

WYnoeiakn BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.lNM.O.



285

dependent of the experimental conditions. The halo counsidered by O-
striker and Peebles (1973) could stabilize such a disk.

Among the computer experiments that have taken into account
a halo component are those due to Hohl (1975} and Hockney and Bro-
wnrigg (1974). Hohl examined the results of a halo on barred spirals
and the conditions under which this spiral structure can snrvive. Hoec-
kney and Brownrigg found that relatively long-lived apiral arms are
observed when the proportion of population IT stars in a galaxy is large.

In the present study we consider the effects of various assumed
halos on the dynamics of spiral galaxies, under the assumption that
the halo population does not interact with the disk, namely that it
does not participate in the spiral arms, An application of this hypothe-
s1s 18 that the dispersion of velocities of the halo objects must be large.

As axisymmetric background we have used the model of Schmidt
{1965) (called afterwards S-model) and the model proposed by Miya-
moto and Nagai (1975) (called afterwards M-model).

a) S-model
The 5-model consists of three parls:
[. & central mass equal to 0.07x101;
[I. a spheroid with major semiaxis: r.=%.73217283 kpe, eccentricity:

e=0.998749 and ratio of axes 0.05 where the density follows the law:

o(r) =22 0.02489 rojper (r<r) (1)

and its total mass is 0.82){10;1.

ITI. A spheroidal shell surrounding the previous one whith a density
Taw:

14499
T

olr) o/ ped (v >1s) (2)

and mass 0.935110;1.

The total mass of the model is 1‘8}(10(1;.

According to the 5-model, the force on the plane of symmetry, as a
function of the galactocentric distance for r < ry is given by {Schmidt
1965) :
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30000

r2

Fr) + 10120.2 — 41.722r%a02sec~2kpe ! (3)

while for r>ry by (Contopoulos, 1975):

153 A4l 3 2
PRNICD 1:;*9_2 G10 [(r_z_ez)l,z_o‘og)J +ﬁ)rozoo .
| 393x4r YT—& G103 [1 _(P e ) 1f2] _ %)
a2 r2

0.02489x8x J1—e2 G10%2 rle? e\ 12
_ _ B _ 8 app— -1
350 [1 <1+ 21"2) (1 = ) }km sec2kpe

where G = 4.3007x10-¢ (kmZ2sec2kpe Ma-1).
The fuction F(r) has a discontinuous second derivative al r=r..

b) M-model

This model is a generalization of «Toomre’s (1963) model 1».
In this model of the Galaxy, the gravitational potential V(r, z) is

M;
i [ -las + (2 + b2

Vir, 2)=G 3

1

(5)

where: a; =0, b; =0.495, a, = 7.258, b, =052 (in kpc)
and: M, = 0.205x107, M, = 2.547x10, .

The advantages of this model are: (a) It has no singularities, (b) it
mvolves functions quite explicit and elementary, and (c¢) the corres-
ponding density law represents very well the distribution of mass in
real flat galactic systems (edge on galaxies). By using models of the
form (5) we can avoid the singularities imposed by the superposition
of spheroids in the central parts of Toome’s flat models, as it was done
by Shu et al. (1971 1IT), and by W. Roberts, M. Roberts and F. Shu
(1975).

In the following we use several variants of the models 5 and M.
Specifically, we do not necessarily take the parameters used by Schmidt

WYnoeiakn BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.lNM.O.



3a

or Miyamoto-Nagai. In the figures we mark only those parameters
which are different from these adopted by the above authors.

c) Spherical Halos

On the above models we superimpose spherical halos so that in
in a sphere of radins 20 kpc there exists a given amount of mass
(2100, 100, 0.7x10., etc.) following three different density laws:

1) p(r) = constant

i) p(r)~ 11

i) p(r)~ r2
The curves of figures 1-10, refer to some of the most representative

models, using different masses for the axisymmetric component and
the halo and different density laws in the halo.

2. CLASSITICATION OF THE ROTATION CURVES IN GALAXIES

The basic observational datum in the study of a galaxy is its ro-
tation curve. Thus, it is worthwhile to examine the contribution in
the rctation curve of each constituent of the galaxy (e.g. disk, halo,
ete.), especially in the models M. Tn this way we can classify the ga-
lactic rotation curves according to the basic parameters of the dis-
tribution of mass in galaxies.

In the figures 1-4 we have considered the rctation curves based
on several mass distribution drawn in all cases together with the ro-
tation curve of the M-model (heavy line) which represents the rota-
tion curve of our Galaxy. AM1 and AM2 are the «eentral» and «disk»
masses, correspondingly, namely the masses which determine the form
of the velocity curve in the central regions and in the intermediate
distances.

The retation curves in figure 1 have the same «disk» mass, while
the «centraly mass is varying.

If the central mass is small (e.g. AM1 =1OZ>) the first peak in the
rotation curve practically disappears while with AMi:O.iOSxiOE it
occurs lower than that in the M-model (heavy line) and with AMi=
0.305x10. it occurs higher. It AM1 = 0.105x10,, but the constant B

is equal to 0.2 kpe (instead of B4 = 0.495 kpc as in the M-model) the
peak becomes more acute and occurs higher and to the left than in
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the M-model. It 1s obvious that the «central mass affects considerably
the central part of the rotation curve (r< 4kpe), while it has small
nfluence on the «diskn part of it.

In figure 2 we have removed the «centraln mass. There are two
sels of curves. In the first set (solid lines) we keep A2 constant (A2
=7.258 kpc) and we change only the mass AM2, while in the second

set we keep constant the mass AM2, (AM2:2.547X‘10;1) and cansider

three values of A2. We note that in the first set the maxima occur for
about the same value of r {r=11 kpc), while in the second set the ma-
xima move to the left as A2 decreases. What becomes obvious is that
the rotation curves become higher either increasing the mass and ke-
eping the «dimensions» of the disk component constant, or keeping
the mass constant and decreasing the dimensions of 1he disk distribu-
tion. It is also worth noting that in the second set the curves converge
to each other for large r to a much larger degree than in the fist set.
We have also tried the S-model with only the spheroidal distribution
and found the same characteristics of the «disk» part of the rotation
curve: an abrupt increase to a maximum and after that a smoother
decrease - so that this form of the rotation curve seems to be chara-
cteristic of disc mass distributions.

In figure 3 we mark with HM, the halo mass inside a sphere of
radius 20 kpe, considering in this case a density law p~r2 With the

exception of the top curve where HMzO.QXiOl@I the other three curves

have been drawn with HM:O.?xiog, while different combinations

of the masses AM1, AM2 have been examined, as indicated in the fi-
gure.

We have considered in figure 3 also several combinations of disk
and halo masses with density law of the halo mass, p~r~1. What is ra-
markable here is the fact that with a density law g~r~1 the rotation
curves become appreciably flat for large r, whille in the case of a den-
sity law p~r1~2 the slope of the curves (for the same r) remains more
or less constant. This can be easily explained by the fact that in a pure
halo with density law ag p~r-2 the rotation curve is a straight line pa-
rallel to the r-axis, while in the case of the law r~1 if increases like a
parabola {concave towards the r-axis). Therefore, the contribution in
the flattening of the outerparts of the resultant rotation curve is much
stronger in the second case than in the first.

In accordance to the previous comsiderations one could classify
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the rotation curves of galaxies in terms of the distribution of mass as
follows

I. If there is a significant amount of mass in the central region of
flat galaxies, then the rotation curve has a first acute peak for
small galactocentric distances.

II. If the central and the halo mass are negligible then the rotation
curve is characterized by an increase to a maximum and after that
a. smoother decrease.

IT1. If the density of the halo mass follows the law r=*, then the «disk»
part of the rotation curve hecomes {lat, after it has reached a ma-
ximnum. If the density of the halo mass follows the law r~2, then the
rotation curve becomes higher than that of a pure disk mass, wi-
thout significant change in its slope. Alternatively a flat rotation
curve can be explained by a halo following the law r—2 if the con-
tribution of the disk in the outer parts of the galaxy is insigni-
ficant. The flat part found in the rotation curve of M31, ifrom o-
ptical observations by Rubin and Ford (1970) and verified from
21-cm studies (see Roberts and Rots, 1973 and their references),
according to our previcus classification could be explained assu-
ming a «hollow» halo surrounding the galaxy in which the density
follows the law r—2

3. THE INFLUENCE OF A HALC AND OF A CENTRAL MASS ON THE
POSITIONS OF THE RESONANCES

The «relative frequency» v, in the case of a two armed spiral ga-
laxy, is defined by:
) 200) )

pd

and gives the resonances in a galaxy. Here £ is the angular velocity
of the spiral pattern,  is the angular velocity of the stars and x their
epicyclic frequency.

Resonances occur when v i a rational number, but the most im-
portant ones are when v=-1, v=10, v=+1. In the first case we are
referring to the inner Lindblad resonance, in the second to the parti-
cle rescnance and in the third to the outer Lindblad resonance.

In figure 5 we have drawn the curves of v versus r for several £,
in the case of the pure S-model (continuous lines) and after introdu-
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cing a halo (dashed lines). In all examined cases the halo curves are
lower than those of the corresponding axisymmetric model. From these
curves we derive the galactocentric distances of the various resonances.

In figure 6 we compare the curves giving the resonances of the S-
model with those resulting from several halo masses. The curves of

figure 6 marked with M1 are due to a halo mass Q.xiD;l and density
law r-1 and the curves due to a halo mass 0.7151’101@1 and density law

r~1 with M3. The resonances due to 2x10;1 and 0.7x1[};1 homogeneous

halo are marked with H1 and H7. The above halo masses are contained
within a sphere of radius 20 kpec.

Tn figure 7 we have drawn the inner and the particle resonances
for different values of the central mass, marked in the figure with CM.
From the study of the curves of figure 6 it becomes obvious that the
halo mass influences considerably the particle and even more the ou-
ter resonance, but it leaves the inner resonance practically unaffected.
On the contrary (figure 7} the central mass influences much more the
inner resonance.

Tn figure 8 we have drawn the inner and outer Lindblad resonan-
ces under several mass configurations as indicated in the figure, using
the M-model. {We have drawn only the particle resonance of ihe o-
riginal M-model in order to avoid confusion). The basic difference bet-
ween the two models is that, in the case of the M-model, by removing
the central mass, there is a specific £ in each case, beyond which the
inner resonance disappears. In the general case of two mass distribu-
tions of the M-model (without lalo), there is again a limiting Q,, be-
vond which there is no inner Lindblad resonance, but the range of
permissible {¢’s is much larger.

The behaviour of these curves can be explained as folows. The
epicyclic frequency % can be written in the form:

FooodF\2 ~ .
x:(S-P——%F) kmsec—tkpct. {7)

So that:

3 - F 1/2 1 I dF Uz —1 -1

where P is the force on the galactic plane
In the case of our two models we have:
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a) S-model

In this model it 1s:
lim (Q—%)Zm (9)

r—>0

The same result holds, if one takes into accoung the influence of a halo.
Therefore, in the S-models the inner Lindblad resonance exists for all
vallues of (2. The result does not change, if the central mass has been
removed (term 30000/r2 in the force).

b) M-Model
% GM oM 173
N - T
2 (r24-c2)32 (r24 cZ) P
I T
1 GM, GM, s GM, GM,
-3 4 [(r'er cE)2s3 + (12 c2)?8 l%3 (ERREIEE + 17T G2y (10)

— -

where ¢; =a, + by, ¢y =4a5+ bs.

If there is no central mass (M1~=0) the maximum (Q — i) max 0C-
2

curs for somewhat large value of r (around r=10 kpe) and iz of the

order of (Q —%)max = 8 kmsec~! kpc-1. On the other hand if M{ =0

the maximum of Q — % oceurs much closer to the origin and (Q— -;i ) max
is much larger.

As an example in the case of the pure M-model it is (Q— ‘)—Qc")max:

110 kmsectkpe-t at r==0.64 kpc. It is obvious that if QS>(Q—~2—)Illax
W

the equation Q —%: Qs has no solution, i.e. there is no inner Lindblad
resonance. It can be verified that as r—0 the curve Q= tends to zero.

2

Censidering halos superimposed on the M-model in which the de-
nsity follows the law p~1r~1 or p~1~2 a term of the form cr-22 or cr-?
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(where ¢ is a constant), is added correspondingly to Q—,—;. Therefore,
there 1s always an inner Lindblad resonance, since in this case Q— =

2
tends to infinity as r {ends to zero.

4, HALOS AND PITCH ANGLES OF SPIRAL ARMS

The dispersion relationships given by the theories of Lin-Shu and
Lynden Bell-Kalnajs in the case of a two armed spiral galaxy are the
following:

1) LIN-SHU
= Ty (x
(Qax)l2 = De-x El T_—(vg)/—nz— (11)
2 o pd
where X= k jzz {12)
2) LYNDEN BELL-KEALNAJS
= I.(x
(Qux QD pn =20 3 0 (13)
Q 2
where v = [kz 4+ (_4_)2] <iz> (14)
® ;
1 A0N2
D= [i=(5)] )
and Qe = 0.2857 (2 {186)
<R
B <£'2' >]‘"2mn (17)
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w2

< 12> = 0.2857 Tz

(18)

w2

kp = 2nGay

(19)

Here k 1s the wave number, & the angular velocity of the sfars, x
their epicyclic frequency, r the galactocentric distance, <1212 is the
dispersion of radial velocities, whereas v is the relative frequency which
defines the resonances in a spiral galaxy.

We have called the quantity Q given by equ. (17) stability para-
meter. This is the ratio between the real dispersion of radial velocities
to the crilical value given by equ. (18) (Toomre, 1964). If a Lin-Shu
type wave reaches corotation it is necessarily margimally stable (Q=1)
at corotation. Finally kg 13 the basgic wave number connected with
the critical value of the dispersion of radial velocities in order to have
a stable disk against axisymmetric collapse. The surface density con-
nected with kr is o

At any point of a spiral arm, the pitch angle is the angle y between
the spiral arm and the circle going through this point and is given by:

¥ (r) — tan-t (ik) (20)

T

in the case of a two-armed spiral. This angle determines the type of
a spiral galaxy in Hubble’s (1926) classification. The pitch angle of
the spiral arms depends on:

1. the angular velocity £ of the spiral pattern
2. the stability parameter Q

3. the halo mass, and

4. the axisymmetric model.

We have solved equ. {11) for three values of Q; (11, 12.5 and 14
kmsec~t kpet) and for two values of the halo mass (0.7x107, 2x107)

inside a sphere of 20 kpe radius with density law pg~rl. Here Q) has
been taken equal to unity. The resultant spiral arms are presented
in figure 9. In all cases examined the spiral arms have heen drawn
from a point a little outside the inner Lindblad resonance up to the
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particle resonance {(only one spiral is given in order to avoid confu-
sion}. The first row corresponds to the pure S-model. It is obvious
that the pitch angle decreases for smaller s and for larger masses
in the halo. Tndeed for the pure S-model at r=10 kpe, the values of
the picth angles for Q,=11, 12.5 and 14 krosec~! kpe~! are 596, 792
and 8%6 correspondingly. On the other hand for Q; =14 kmsec—lkpe-!

at r=10kpc for a halo mass HM:(MO;1 the pitch angle is 7904 while
for HM=2x10] it is 5°3.

The effect of the central mass is shown in figure 10, where we have
drawn the spirals that correspond to three different values of the cen-
tral mass (indicated in the figure by CM), in the S-model with Q.=
12.5 kmsec—tkpc—1. It is obvious that by increasing the central mass
the spirals become more tightly wound. Thus, either a halo or a cen-
tral mass produces a decrease in the picth angle of the spiral arms.
A discrimination between the two can be made by looking at the po-
sitions of the resonances.

The solutions of the Lynden Bell-Kalnajs dispersion relation (which
are similar with Lin’s solutions as regards the slope) depend on the
angular veloeity of the spiral pattern. on the halo {or central) mass,
on the stability parameter, and on the axisymmetric model used, while
the Lin-Shu are independent of the axisymmetric model and demand
that at corotation @ must be unity.

In the work of W. Roberts, M. Roberts and F. Shu (1975) the
form of the spiral arms depends only on the angular velocity of the
spiral pattern and the distribution of the mass in accordance to the
observed rotation curves in galaxies. However, these authours used
only models without halo and with the stability parameter equal to
unity (Q=1). This lagt restriction was necessary for them because
they have used the Lin-Shu dispersion relation.

On the contrary using the Lynden Bell-Kalnajs dispersion rela-
tion we have found that the same pitch angle can be derived by dif-
ferent combimations of the angular velocity of the spiral pattern. the
hallo mass and the stability parameter (Terzides 1977).

5. CONCLUSIONS AND DISCUSSION

The conclusions of this work can be suramarized as follows:
1. Tf we have from observations the rotation curve of a galaxy,
the distribution of mass in the central region of the galaxy can be e-
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stablished from the «centraly part of the rotation curve. Therefore
the contribution of the central mass to the dynamical behaviour of
the galaxy is known. On the contrary the «disk part» of the rotation
curve may be uncertain, since the same «disk part» of a rotation curve
can be due either to a pure disk mass distribution or to a combination
of a disk and a halo. In other words the same rotation curve can be
reproduced by models consisting (besides the central mass) of eifher
a pure disk mass distribution or a combination of a disk and a halo.
Therefore the force, the potential, the angular velocity and the epi-
cyelic frequency are the same in both types of models. But in the mo-
dels with halo the surface density of the disk is smaller than the cor-
responding surface density of the models consisting of a pure disk mass
distribution.

2. The halo influences more the positions of the particle and ou-
ter Lindblad resonance, whereas the central mass influences more the
position of inner Lindblad resonance.

3. The pitch angle of the spiral arms due either to the Lin-Shu
or to the Lynden Bell-Kalnajs dispersion relations depends on the an-
gular velocity ) of the spiral pattern, the stability parameler Q, the
halo mass and the axisymmetric model. The pitch angle increases for
either larger values of the angular velocity of spiral pattern €4 or for
larger values of the stability parameter (). On the other hand for mo-
dels giving the same rotation curve (one with halo and the other wi-
thout halo) the pitech angle of the spiral arms in the models with halo
i1s smaller than the pitch angle in the models without halo.

We discuss the above conclusions:

From equs. (18) and (19) we have immediately that the critical

. . . o . 1z . .
value of the dispersion of radial velocities <r>irjb 18 proportional to
the ratio —. Therefore, whereas for the same galactocentric distance
%

in both types of models (one with halo and the other without halo)
giving the same rotation curve the epicyelic frequency is the same,
the surface density in the model with halo is smaller than the value
of the surface density in the model without halo.

- 12 . . .
As a consequency <r>> . in the first case is smaller than in the

second, which means that the model with halo is more stable than
the model without halo. Thus the stability parameter Q (for a certain
galactocentric distance) in a model with a halo, is larger than in a
model without a halo.
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In general () can be considered as function of the galactocentric
digtance and of the age of the stars, since stars of different ages have
different dispersion of radial velocities. However, up to now we have
no detailed information about the dispersion of radial velocities in the
disks of external galaxies and in our Galaxy except In the vicinity of
the sun.

The necessary and sufficient condition in order that the solutions
of Lin-Shu dispergion relation reach corotation is thaf al corotation
(Q must be unity. If Q<1 the galaxy is unstable towards axisymmetric
collapse, while if Q=1 the wave does not reach corotation and the exci-
tation mechanism due to Lin is not applicable. If Q varies with r, then
it cannot take arbhitrary values (Terzides, 1977).

The pitch angle of the spiral arms depends on the halo and the
angular velocity of the spiral pattern.

Since the solutions x=x(v} of the Lin-Shu dispersion relation are
independent of the model, the solutions x=x(r), for a spesific value
of the angular velocity of the spiral pattern are the same for models
giving the same rotation curve. But as becomes clear from equs. (18),
(12) and (12) the wave number is conversely proportional of the sur-
face density. That means that for a certain value of r, in a model with
halo the wave number is (absolutely) larger than in a model without
halo. Therefore in the first case the wave number curve k=k(r) is hi-
gher than in the second one. Consequently the pitch angle of the spi-
ral arms in the model with halo is smaller than the pitch angle in the
model without halo.

As rtegards the dependence of the pitch angle of the spiral arms
on the angular velocity of the spiral pattern €. we notice first that the
relative frequency v increases with Q; {see figure 5). On the other hand
the values of the upper branch solutuon x=x(v) of the Lin-Shu di-
spersion relation between inner Lindblad resonance and corotation de-
crease with increasing v. Therefore the values of the variable x (and
of k) decreage with increasing £, for the same distance r. Ag a conse-
quence the pitch angle of the spiral arms increases with angular velo-
city of the spiral pattern.
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Fig. 10. The form of the spiral arms due to the Lin-Shu dispersion relation for
vartous values of the central mass.
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