8cl. Annals, Fac, Phys. & Mathem., Univ. Thessaloniki, 20b, 37 (1980)
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SEMICONDUCTORS:
THEORY VERSUS EXPERIMENT
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Abstract. The random potentiol due to fluctuations in the charged impurity con-
eentration in the case of heavy doping modulates the energy band of the semicon-
duetor. Theoretical results concerming the statistieal charaeteristics of this random
potential as well as the form of the density of states funciion are given, at low and
sirong compensation.

At strang compensation and low enough temperatures the amplitude of the
potential s large and the elcctrons are localised in the deepest fluctuations of the
potential relief. Then the conduetivity is effected by means of thermal activation
to the mobility edge or by hopping between localised silates. Several hopping eon-
duetivity dependences of the form o ~ exp(— TP) where p can take the values
1, 611, 14 or 12 have been predicted theoretieally and observed experimentally
in Gads, CdTe, Ge etc.

Taking into account the correlaiion in the impurity distribution enables to
reach ¢ regsonable accordance between theoretical and experimental values of the
main parameters of the activation and hopping conduetipity in Gads LPE layers.

The electron seattering due to the random impurity potential in degenerated
Gads and Inds is considered briefly as well.

1. INTRODUCTION

Most semiconductor devices use heavily doped maferial in which
the impurity concentration is high enough so that the clectrons they
provide into the conduction band form a degenerated Fermi gas even

at room temperature. (Here n-type material will be considered for

. ® - - - _1',3
concreteness). For this to be the case the interimpurity distance N

should be smaller than the effective Bohr radius as, i.e. Ngafl3 >> 1.

In this case the simple piclure of individual impurity states is inade-
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quate to describe the relevant properties of the semiconductor. Actually,

at concentrationg NDZO,OQ&: Mott’s transition takes place and there

are no bound states on single impurity centres. Instead, a tail of loca-
lised states joined to the parent band appears. It is due to the clu-
stering of several impurities which ereate sufficiently deep potential
wells capable to bind electrons. The random potential dne to the flu-
ctuations in the impurity concentration leads also to some specific

Fig. 1
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scattering of the electrons with energies near the Fermi level. The
qualitative diagram of a heavily doped semiconductor is shown in
Fig. 1.

Using a number of pioneering papers as a framework, we will de-
seribe the statistical characteristics of the fluctuating potential and
the density of states in heavily doped semiconductors, first in the case
of low compensation. Our aim is to make clear the basic assumptions,
simplifying approximations and range of validity of various theories.
The fine details can be obtained from a number of review articles and
monographs [1 to 4]

Then we will discuss the effect of the scattering by the random
impurity potential.

Another main topic is the description of the electron states and
conductivity mechanisms in heavily doped strongly compensated se-
micenductors. A comparison between iheoretically predicted and ex-
perimentally observed temperature dependences of conductivity in GaAs,
Ge and CdTe will he given.

2. IMPURITY POTENTIAL AND ELECTRONIC DENSITY OF STATES AT
LOW COMPENSATION

It 18 well-known from the experiment that the electrons at the
Fermi level in heavily doped semiconductors are nearly free. In fact,

. o _ . X
their mean kinetic energy is of the order of the Fermi energy E(Z: =

h(3wn)2B [ 2m where n is the electron concentration, mn the effective

mass. Their potential energy is of the order qu;‘)"’ ! 4mee B where

Np 18 the donor concentration, - the static dielectric constant. The

condition for heavy doping NDa3B>> 1 means that this potential energy
is small compared to the kinetic energy.

In order to describe the distribution of the random impnrity po-
tenfial we have 1o take into account the eleetron screening. The usual
gituation in heavily doped semiconductors is such that this potential
15 smoothly varying over the electron wavelength, so that it can be
obtained by using the semiclassical Thomas-Fermi type equation. The
condition that the mean potential energy is much smaller than the
mean kinetic energy emables one to linearize this equation. Then we
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get the usual result that the impurity density fluctuations are screened
independently of each other at a distance

R as [T ik 5. M6
5 = 5“ ( 3 ) (H“B)

which is the well-known Thomas-Fermi screening radius.
. . . . . . —1/3
Tt 15 clear that R, is larger than the interimpurity distance ND ,
so that the typical fluctuations contain a large number of impurilies.
Thus, the potential energy of the electron iu such a random field should
obey Gaussian statistics and can be characterized by the pair corre-
lation function

VERVE)> = Tl ‘ (@)

where brackets denote averaging over impurity positions.
The mean squared value of the potential energy v(R;) is another ty-
pical characterigtics of the heavily doped semiconductor:

Z

YR = T (No R (3)

According to the previous congideration, the distribution function of
the potential energy is Gaussian:

F(V) — ij exp(—V? [ 12) %

Tt is now straightforward to obtain the semiclassical result of
Kane [5] for the density of electronic states in such a pofential:

E
o(E) — (22:;1;;;2 [VE—=V Fv)jav (5)

This function has been tabulated in [5, 6]. Tts asymptotic behaviour
is as follows. At large positive euergies (K » 0, E »>y) it is close to the

: 2m)s2 |y
unperturbed band deusity of states go(E):~( gl_)%avr
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(Q,m)sf?,\fz , Y2
g(E)=go—W:go(l— 16E2) (6)

For large negative energies, (E <0, |E|>>y) it falls down according to

8/2
) mﬂfz 142
o(B) == L () exp(—E2 /v?) (7)

This reflects the Gaussian statistics of the potential in the low-energy
stales which form a band tail.

The discussion has so far dealt with the conduction band but the
valence band is also affected by tbe potential due to the donors. The
analysis is essentially the same as for the conduection band. The random
potential {or holes is of opposite sign to the electrons potential but
because of the symmetry of F(V) the expression for the valence band
density of states is identical to eq. (6}, except that the hole effective
mass must be used.

The semiclassical approximation 1s a fundamental limitation on
the validity of the theory. It does not take account of the kinetic e-
nergy of localization. The latter should be included in the theory for
the deep states which have a relatively large kinetic energy due to
localization in a small volume of negative potential. Because the se-
miclassical theory neglects kinetic energy effect, it places stales at
energies, which are too low and tends to overestimate the tail length.

Nevertheless, this method still remains one of the simplest to ap-
ply and it provides a tolerably accurate single function expression
for g(E) throughout the band.

The full quantum mechanical description of the lJow-energy tail
states has been given by Halperin and Lax [7]. They have used a va-

riational method with a trial wavefunction f(z - z,) the shape of wbich
is determined by the optimum size of the fluctuation which can pro-
duce a bound electron state. The latter has an energy

E(ro) = [ f(s— 7o) [— %:—1 V2 + V()] 17~ )iz 8)

The =, dependence of E(zy) is contained in the potential energy part

Vi(ro) = [ 12(z — =) V(z)ds= (9

Wnoeiakh BiBAI0BAKN Ocd@pacTog - TuAa MewAoyiag. A.lM.O.



42

Vi(to) fluctuates about a zero mean value as r, varies. Halperin and
Lax assume thal a bound electron state can be associated with each
local minimum of the smoothed potential Ve(ry). The variational cal-
culation gives an eigenstate E(t,) which overestimales the true energy
so that the calculated density of states will be smaller than the true
one. By maximizing it with respect to the electron wavelength, one
can find an approximation for g(E). The result of Halperin and Lax 1s

B0) = ks exp (= B0) | 2} (10)

Here «(v) and @{v} are dimensionless functions of the reduced energy
v=FE /B, E.=512/2mR} is the kinetic energy of localization, { =

v2 [ 2E% The plot of «{v) and B{v) is shown in Fig. 2 and Fig. 3.

Two asymptotic cases should be considered. In the case when
U»>>1, which is referred to as classical, the typical potential well of
size R; and depth v (Rs) contains many electron states. Then large
energies (v»>>1) are essential in eq. (10). The asymptotic expression
for B(v) is

B} ~ v? (11)

and the density of states is Gaussian.

In the opposite “quantum’ case (T <<1), the typical potential
well of size By does not contain bound states. In this case the electrons
are Jocalized in potential wells of typical size equal to the electron wa-
velength I =1 / J2mE which is larger than the screening radius. Then
the asymptotic form of the expression is

B ~ 3¥v (12)
Thus, in the intermediate case the density of states varies as
g(E) ~ exp(—|E), 0,5< s< 2 (13)

The method of Halperin and Lax is restricted to the energy states
deep in the tail, where Gaussian statistics of the polential can be as-
sumed. Tt may be applied to semiconduclors with random impurity
distribution. This is plauzible for uncompensated material provided
the linear screening theory is valid. However, if the semiconductor
has been doped during the growth process or has been subject to ther-
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mal treatment, the distribution of the impurities in it is not random.
It is determined by the distribution of the ionized impurities and free
carriers in the plasma which existed at some high temperature T, atl
which the impurity diffusion has been frozen out. The statistical pro-
perties of the random potential have been studied in this case by Gal-
pern and Efros [8). They have shown that the correlation function
of the potential <V(z)V(+’)> has TFourier transform

2Npqsk? + R
D) = — — (14)
=kt (k2 + R + R))

Here Ry is the electron screening radius and
Ry = (eeesTy [ Nog2)i/2 (15)

is the Debye length due to the ionic screening at the temperature T.
This correlation function takes into account the mutual repulgion bet-
ween ionised donors which had determined their position prior the
solidification of the crystal. The Coulomb correlation in the impurity
distribution 18 important provided Ry < Rs. Then the typical size of
the potential fluctuations is of order Ry and their amplitude is given
by the rms wvalue

Y(Ro) =L (NpRyir2 (16)

€% Ny

{n this case the density of states in the tail has been caleulated by Koynov
and Yanchev [9] which have nsed the method of Halperin and Lax.
The density of states is given by equaticn (10) with a different
functions «(v) and P(v) and R, instead of TR..

The asymptotic behaviour in the classical case is as follows

a(v) ~ 1072 5 Blv) ~ v (17)

so that the density of states falls off as a Gaussian with a different
characleristic energy. In the quantum case the asymptotic behaviour
of g(E) is completely different:
B2
9/2 .3
CEy R,

g(E) = 10-2

exp (— o B2 | BTy (18)
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where Ey =12 [ 2mR,? and  Eg=mq? [ 2z25,20% is the
effective Bohr energy.
The restrictions on these results are those for the validity of Gaus-
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v of Gaus-

gian statistics. Namely the typical well with a size either R, (in
clasgical case) or =" /VZm.E {in the quantum case) should cor

a large number of impurities:
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10 10 10

Fig. 3
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N[(f /VImE) + Rol »> 1 or v < (NRp2 [ [1— (NRva: (19

The comparison of «{v) and fB(v) as a functions of the energy in the
cases of random and correfated impurity distribution is given in [ig, 2
and Fig. 3.

Naw we are going lo discnss briefly the influence of the impurity
potential on the electronic states near the Fermi level. First of all it
is clear that the existence of a band tail leads to a decrease in the Fer-
mi energy. The corresponding correction is AEY —— 2 / 8EY << EY
and can be obtained from the semiclassical density of states (5). Ano-
ther correction arises from Llhe electron-electron exchange interaction

AEY = — keq? [ dm2zeq [3].
The scattering of the electrons by the random impurity potential
gives the main contribution to the relaxation time. We will recall the

3 -

x10

Fig. 4
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result for the electron mobility in degenerated GaAs [10] which has
been reported on our previous symposium {Fig. 4), There we have
used the following relaxation time [11]:

T™ = ay?/ hksREp (20)

Similar calculations have been performed recently for InAs [12].
The situalion in this relatively small gap material is different due to
the fact that there exist a large number of intrinsic electrons and holes
in the high-temperature plasma at the temperafure T, which is about

800 K. The total screening length R is given by R-2 = Rz -+ R? + R;g
where Rai = (szok 8Ty [ 2niq2)Y/2 is the Dehye radius due to the ni(Ty) =
10%8%cm3 intrinsic carriers. However at low temperature the latter re-
combine and partly unscreen the impurity potential, This can destroy
the correlation in the impurity distribution provided that n;»> No
[8]. Then results for random distribution should be valid. In the op-
posite case, n; << Np, the correlation should be essential.

This theoretical conclusions are In agreement with our calcula-
tions which are shown in Fig. 5a and Fig. 5b. It is evident that at
donor concentrations No < 6 x 10%cm-3 the better description of the
experimental data is given by the curves obtained in the case of
random distrihution. At concentrations Np > 4 x 10%cm—= the curves
for correlated distribution should be used in order to obtain a reaso-
nable compensation ratio, consistent with the radioactivation ana-
lysis and luminescence data.

3. ELECTRONIC STATES AND CONDUCTIVITY IN HEAVILY DOPED
STRONGLY COMPENSATED SEMICONDUCTORS

Now we shall discuss the energy states in heavily doped semi-
conductors with a large degree of compensation. It is well-known from
the experimment that the strong compensation changes the character
of the conductivity fromn metallic to thermally activated one. This
phenomenon has been called Metal-to-non-metal transition, and was
discussed first by Mott and Twose [13] some twenty years ago. The
reason for this transition is as follows. Introducing acceptors with con
centration N4 in a heavily doped semiconductor leads to the decrease
in the electron density n =Np— Na in the conduction band. Thus,
the electron screening hecomes less effective and the amphtude of
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the random potential is increased. At the same time the Fermi level
is lowered so that at some critical degree of compensation it will fall
into the region of localised stales. Then all the electrons will be captlured
into the deepesl potential wells which are separated from each other
by high potential barriers, as shown in Fig. 6.

M—

It is clear that the electron density distribution becomes essentially
inhomogeneous in this case, so that the linear screening is no longer
valid. Now the screening radius can be determined from the following
consideration. The maximum size Rec of the unsereened fluctuations
should be found from the neutrality condition which means that the
mean electron density n = (1 —K)Np should be equal to the excess
charge in the fluctuation:

(NoR)PR® = (1 — K)Np or Re=N_"(1—K)s 1)

Here K = Na { Np is the compensation ratio.

The fluctuations with size R< R, cannot be neuftralized by the ele-

ctrons. The characteristic value of the potential fluctuation is
Ny

czo(1 — Ky

I 3
v(Re) = [No(1 + K)R 2 =

22
229 Re (22)
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Fluctuations with all sizes smaller than R. exist aud now the pro-
blem for the equilibrium of the electrons in the potential of the short
range fluctuations should be solved. Of course, this equilibrium can
be achieved only due to quantum effects. One can show that the ele-
ctrons form metallic drops with typical size of the order R, = a»

(Npa® }-v/2. This size is defined by the condition that the depth of the

typical well y(Ry) should be equal to the Fermi energy of the electrons
in this well. The fluctuations of size R < Ry creale a potential v(R)<
v(Rq) and cannot divide the drops into parts (IMig. 5). The electron

concentration in the drop 1s of the order of ﬁ:(NDRZ)UQ / REZ

No(Npa® )% It is very important that fi does not depend on the mean
electron concentration n. The typical size of the drop R, is larger than

the mean distance between impurities and ﬁasn >> 1. Thus, the ele-

ctrons in tbe drops form a nearly ideal degenerate eleciron gas.

This qualitative picture has been given by Shklovskii and Efros
[14, 15]. It is based on the assumpfion that the impurilies are randomly
distributed.

Liet us consider the kinetic properties of such a system. The ele-
ctron drops are isolated from each ofher by almost non-iransparent
potential barriers so that d.c. conductivily can be effected only by
means of thermal activation or tunneling. The probability for tun-
neling is very small, hence in a wide range of temperatures the con-
ductivity has an activated character. The activation energy is deter-
mined by the minimum energy which an electron should have in order
Lo pass through the whole sample without tunneling. This is impos-
sible if the energy of the eleciron is equal to the chemical potential,
because the drops occupy a small part of the crystal volume. However,
this becomes possible if the electron energy exceeds some energy Ep
which is called the percolation level [15, 16]). Thus, the activation energy
1s equal to E; = Er— Ep and s of the order of the characteristic po-
tential fluctuations:

q?«N-lel?

Ei=wy(Re) =w W

{23)
where v; 18 a numerical factor. This formula determines the dependence
of the activation emergy on the impurity concentration and on the
compensation ratio.

It should be noted that the Hall mobility at such conditions be-
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comes extremely small and a theory of the Hall effect has not -
constructed. Thus, the experimental determination of the eco
tion ratio K 18 nol possible and this hampers the caleulation o

Al lower lemperatures (kT < E{} the conductivity if heavil
compensated semiconductors becomes of hopping type and is
by means of phonon-assisted tunneling of electrons with energ
the Fermi level [16 to 19]. The spatial distribution of the electre
and that of the discrete levels in them determine both the ve
the temperature dependence of such hopping conduectivity. T
resistivity can be described by the expression

o~ exp[(Ta / T)?]

where o takes successively the values 1, 5/11, 1/4 and 1/2 with ]
the temperature. The characteristic temperature Ta depends
concentration and the degree of compensation.

The case « =1 1s analogons to the hopping conductivity In
doped semiconductors. In the presenl case it describes the t
of electrons through potential barriers of size R< R for wl
tunneling may become more probable than the activation to -
colation level when the temperature is low enough [16].

In the case « =511 the electrons tend fo hop between :
remote stales with a smaller energy difference, which are cre
fluctuations of various size between By < R < Re [16].

At lower temperatures the well-known Mott’s law should
(0 =1/4) since the electron hopping is effected on distances :
mpared to Re [17, 19]. Then one can suppose that the density
ge near the I'ermi level i3 nearly constant, which is a necess:
dition for this law to be valid.

At very low temperatures tbis condition may be violat
hopping at such temperatures is realized in a very narrow energ
near the Fermi level, where the density of states changes q
cally with energy and vanishes on the Fermi level. This is the
led Coulomb gap which is due 1o the electron-electron inte
[18]. In this case the relation (24) with « = 1/2 holds.

It has been shown by Shklovskii and Efros [16, 201 that ]
of validity of Mott’s law at very strong compensation may :
extremely low (= 10-3K) temperature. This can make its obs
impossible. Moreover, the existence of the Coulomb gap may
similar dependence.
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In the paper [21] some theoretical considerations are given that
in the case of correlated impurity distribution the range of validity
of Mott's law is shifted towards higher temperatures. This enables
its observation in principle.

The characteristic temperatures Ta for all cases of hopping con-
ductivity are given in [21] in the case of correlated distribution.

Let us now discuss the experimental data. Thermally activated
conduetivity in heavily doped compensated GaAs, Ge and CdTe has

300 200 100_K

e

plarb. units)
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been investigated in [22 to 24]. The activation range is clearly seen
in Fig. 7 where the activation energy is increased with increasing the
compensation ratio. The results in Fig. 7 refer to samples with random
impurity distribution. The authors have not given a quantitative in-
terpretation of the activation energy values.

In the paper [24] LPE layers of GaAs compensated with Te and
Ge presumably with correlated Impurity distribution have been in-
stigated. The activated conductivity for 4 p-type samples with ma-
jority impurity concentration in the range 5x 107 to 1.3 x 10t%m-3
is shown in Fig. 8.

The values of the activation energy for several samples with ma-
jority impurity concentration 10%em® and various compensation ra-
tio (resistivity) are given in Fig. 9. It is evident that in a large range
the activation energy is constant.

The value of Eaw can be calculated from (23) by replacing Re
by R,. As one can see, from (15), Ry and Esx do not depend on the
value of the compensation ratio if only 1— K << 1. This leads to a
good agreement belween the experimental and caleulated values for
Euer in the whole concentration range. The best agreement is obtained
at concentrations 102%m-3, as can be seen in Fig. 9.

The hopping conductivity ranges which replace the activated one
have been investigated in a number of papers [21 to 23, 25, 26]. in
GaAs, Ge and CdTe. The observed hopping conduclivity has been
usually interpreted according to Mott’s law [22, 23], which has given
extremely large values for the density of states at the Fermi level gr,
up to 102eV-lem-2. As predicted by Shklovskii [16] and shown by Red-
field [25], the experimental data are better deseribed by the dependence
o~ exp(Ta /[ T)2 which is nearly identical to (24) with « =5/11. (Fig.
10-e).

In the paper [22] the hopping conductivity in CdTe samples cut
in different directions has been investigated. The regimes p ~ exp(T-1/4)
or g ~exp(T-/2) have been observed (Fig. 10b) for various orienta-
tion. The authors have assumed that Mott’s law has been observed
due to the presence of the impurity correlation only in one spatial
direction, perpendicular to the equipotential planes, in accordance with
some theoretical conclusions, given by Shklovskil [16].

The hopping conductivity in heavily doped compensated LPE GaAs
layers with fully correlated impurity distribution has been investi-
gated in [21]. (The results about the acfivated conductivity in some
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samples have been discussed above— Iig. 8, 9). In n-type samples
the theoretically predicted hopping regimes with a==1, 5/11 =~1/2 and
1/4 have been observed. In order to verify this, we present the plot
of some experimental data in coordinates T™* and TY* (Fig. 11) for
samples with different impurity concentrations, corresponding to those
in Fig., 8. The linear ranges II in coordinates T* show superlinear
dependences in coordinates T-* In the same time, the sublinear ranges
Il in coordinates T* hecome linear in coordinates T/ There is an
overall agreement between theoretically estimated and experimen-
tally derived parameters in the formula g~ exp(Ta / T)*, namely Ta
and the theoretically predicted ranges of validity of all the three laws.
The caleulation was based on the theory for correlated distribution,
as discussed Dbefore.

The experimentally derived values for the density of states at
the Fermi level gr vary between 6 x 1018 and 2 x 109eV-lem-3 for sample
No 1 and 4, respectively, which are in a good agreement with the the-
oretical estimations. This fact allows to obtain a reliable experimental
value for the difference 1 — K. For the samples No 1 - No 4 this quan-
tity varies between (.09 to 0.025. The corresponding K values are
0.91-0.975 and agree with other electrical measurements and the growth
conditions.

In conclusion, we can say that the theory of heavily doped or [ and
strongly compensated semiconductors can give a quantitative descri-
ption of the conductivity provided we take info account the correla-
tion in the impurity dislribution.
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TIEPIAHYH

MEAETH HAEKTPIKQN TATOTHTQN
HMIATQTON TEXTPHY [TPOEMEIZEEQE

Tt
I. T. TANCHEV KAI B. G. ARNAUDOV

{’ Eoyaotiipio Quoedjc "Huayoypdy xai Teyvoloyudby *Fpevviy
Havematipio Zdpeag )

TS wuyaio Suvapind mod destrctor orh Jwmbuaver W ouyrevTpd oL
popTicuévwy mpoopstfewy ot mepinTwey loyueie mpooueifzug Slrpoppdver
T dvepyelexd Towvix ol Aueywyob. Ta Oewprrote dmoterbopute yid Ta
oTaTLOTIHG YepaxTplaTine adtol ol Tuyelou Suvepxod Brmwg émiang xol
9 ouvdpmen TuxvbThTeg TEW wateoTdoTwy Stvovtal ab yoepnid xel loyued
avrioTadpay.

g toyueh dvmotalpioy xal doxetd yauniic Oepponpmeiss To mhdm
Tob Juvapixed elven peydia xel e Hhewtpdvia dvromifovrar otle Balbdrepeg
Stexvpdvoeig Tol Suvapxel. Téte ¥ dywypébonra twnpealetor dmd 1) fep-
puety Evepyomolnay tHe duplg edwvmolag B dmd dpwra et dvtomopéveoy
KUTEOTACTWY. Aldpopss ReplmTdIcEl dywylwbmyTeg anh dapate otic £vro-
moubveg xataoteoets pé wlx Edpmorn o8 tirou o~ exp(— TP) el p =1,
A, 174 3 172 Erouy mpofreelsl Qewonting xal #youy Semotwlel meipa-
poties oté GaAs, CdTe, Ge w.im.

AapBavovrag Omhdr oy cucyeTiopd omh wetavopd Thv mpospcifewy
propolpe va Stepeuviooupe ThY oyon peteld Gewpnrindiv xal TelpoioTieddy
Tiédy TV vptbrepav mapapfTowy oty dyeviwdmra vob Gads. ‘H oxé-
Swon Hhewrpoviov mwobd desthetor oTd Tuyels duvepuxd mooopstiswv GaAs
xol InAs ouvlnmidren dmiong mepiinmrind.
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