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A STUDY OF THE 20 DIMENSIONAL BHABHA
WAVE EQUATION AND ITS CHARGE

By
C. 6. KOUTROULOS*
Department of Theoretical Physies

University of St. Andrews
St. Andrews Fife SCOTLAND

Abstract: A detailed exposition is given of calculations reported previously in ref.
(20) and in addition it ts verifield by the method adopted namely the Lie algeb-
raic one that the charge assoccated with the 20 dimensional Bhabha field is inde-
finite.

1. INTRODUCTION

The field of relativistic wave equations aims at the description
of particles in terms of wave functions and equations of motion. Se-
veral wave equations have been proposed in the scientific literature,
see references (1-19). Here we shall be concerned with the Bhabha 15-19

. .3 .
wave equation for spin 5 particles.

Bhabha in his effort to free the higher spin theories from the pre-
sence of the subsidiary conditions proposed an equation which is si-
milar in appearance to the Dirac wave equation and which in the ab-
sence of interactions reads

k4 bR 4 k3 M .
Lo + s + Tig + Ls + 1x¥ =90 (1)
pib. € X1 X2 0X3

where Lx, k =0,1,2,3 are four matrices of appropriate dimension de-
pending on the representation according to which the wave function
¥ transforms and x a constant related to the mass of the particles.

* Present address: Department of Theoretical Physics University of Thessaloniki
Thessaloniki, GREECE.
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The Bhabha field is a multimass and muitispin field. For example

a field of maximum spin % appears with two possible rest masses

one three times the other. A field of maximum spin 2 has also two rest
masses one twice the other. In a field of mazimum spin s all the lower
values of spin appear as well

Bhabha studied equation (1}; a) in the case when the underlying
representation belongs to the group S0O(4,1) and b} in the case when
the underlying representation is a general representation. In the first
case the matrices Ly satisfy a relation of the form:

[Lm, Ln]— =Imn (2)

where Imn are the infinitesimal generators of the Lorentz group. In
the second case (2) does not hold. According to Bhabha there are two
possible representations of the group SO{4,1) which can be used to
describe a particle of spin 3 , hamely the 16 and 20 dimensional re-
presentations.

In an earlier paper entitled «Lie algebras and relativistic wave
equations»? (called in the sequel (1)) we gave a method of determining
the 16 and 20 dimensional matrix representations of the group SO({4,1)
in terms of which the matrices Lk of the Bhabha wave equation can
be expressed. The purpose of this paper is to complete the earlier paper
by providing all the missing details and also extend it by employing
some of the results obtained there to attributing a charge to the spin

—g— Bhabha field. We shall concentrate here only on the 20 dimen-

sicnal representation.
2. Lg AS LINEAR COMBINATIONS

The Lie algebra corresponding to SO{4,1} is the complex Lie alge-

— — — — —_ —
bra Bq21-2%), Tts generators are hey, hay, etay, €tag, €4 (ag+ag), € + (ag+ag)
We recoll that for any Lie algebra L:

i) any element h € H is given by

_E = El]._];al + [J.B_];az, (3)
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where H the Cartan subalgebra of L .Tl’.al,_hbaz the basis elements of
the Cartan subalgebra and i, ua, coefficients.

i) [ea, B). =a(h)eu, (4)
iii) (h, K']. =0, ¥ h, i€ H, (5)
iv) [6a, _a]l- = bu, 6)
v) (60, 6] == Najs €asa (71

where Ng3 =0 if « + P i3 not a root of L. Ng,s =— Nu,g and by con-
vention N-a,-5 = Na,g. Moreover if the a-string of roots containing B is:

B—ra, B—(r—1)x, ... B ... B+ qu (8)

then the magnitude of Na,; is given by
1
(Nug)t = o g +1)(x2) ©)

with the signs of Na,s to some extent being arbitrary. ([, ]- indicates
the commutator and (, ) the inner product).

Five dimensional matrix realizations of the complex Lie algebra
of SO(4,1) i.e. By and hence of the canonical form of Bz are given in
reference (23). These formulae for any algebrs B: are for the basis
elements of the Cartan subalgebra:

1 =~ Lo R |
[_ 22—1) {esrim—en—epmyseternmanhj=1,2,.. (1),
_ﬁnl = (10)
L
_.mfi) {e1+1,1+1— eal+1,21+1} 5 1 =] ,

and for the other elements corresponding to the simple roots:

- l[z(zl— 1)17172 {T;jﬂ,nz—- _82+1+a,1+1+1} ,1=12...(1—1), "
(11)

eu] e — -
(22— 1112 fer,ma—e1a}, i=|,

WYnoeiakn BiBAI0BAKN Oed@pacTog - TuAua MNewAoyiag. A.lNM.O.



o

— [2(21—1)]12 { E;+2,j+1_;4;+1+1,j+1+2} ,1=1,2,...(1—1),
€-si = — e (12)
—R2A—D)TV2{enng—eraa}, j=1L

In the above g:n,n are square matrices of appropriate dimension in which
the (m,n} element is unit and all the other elements are zero. The inner
product of a simple root a; by itselr, for the algebra B: is given by the
formula:

(aga;) =

l e i=12 01
{ 13)

In the case of the algebra Bz (1.e. 1=2) for j =1, 1=2 we find for-
mula (9) and for j =2, 1 =2 we find formula (10) of ref. {[}. Like-
wise for j=1, 1 =2 we find formulae (11) and {12) of ref. (I} and
for j =2, 1 =2 we find formulae (13) and (14) of the same reference.

For the inner products we find for j =1, 1 =2, {a1,a1) :—;m and for

j=2,1=2(as, a2)=—é— :

Here we would like to point out that some authors define as basis

elements of the Cartan subalgebra instead of }_1:;,- the elements _ﬁ,- re-
- - - - { -
lated to ha; by hay = (a—’éa’-)— hj. Thus in the case of Bs, hy =5 hs

—_

and hg, = 1 hs. For Ia:j they use _(;j related as follows _é.a] = ey and

12
for E:aj they use E connected hy—fhj =2K_aj/(aj,a1). In the following
we shall distinguish the matrices associated with the elements

T — — —

hay, hag, e+s, 8+ay . .. by writing [(ha,), T'(hag), I‘(Eiu), F(‘;iaz)- s

— —>

— —
To determine the basis elements eajtap), €~(ay+am , Blayt2ag) , € (art2ag)
of Ba in the five dimensional representation we make use of the following
formulae:
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Clay+agt = Now s [ea1, €az]- , -(syram = m[ €—ay, €—az |-
1, a2 —a1-
€(ny+283) — —N I: €ag, eﬂl"‘“Z] , E—(a1+280) — N—"" [ E_ag,6_a1—8g ],
83,21 +82 —az; —81-82

or in matrix notation:

1 — — 1 —

T(eay+ag) = Mo o[ TE 6 ], T(emumsa) = [ (6o u),T(e-2) ],

N_a;-sz

1 — —

T (Buy 1252) [D(esg) , T {Carsan) -

N52r31+52

1 — —_

T{e_a1-2ep) = [0 (eug),T (6= g -s2) ]

N_ 82)— 81— 82

— —_ 1

Thus using FGal), F(ja;), F(E—al ), I‘(E—az) and Nal,az = N—a.l,—ag =+ V?

{to be determined later) we find choosing the positive sign the for-

— - —

mulae (15) and (16) of ref. {I). Similarly using I'(es;), I'(ea;+es), I'{e-ay),

—

1
I'(e-sy-ag) and Nag,ar+ap = Noagy—ny-ng =+ V—? we [ind choosing the po-

gitive sign the formulae (17) and (18) of the same reference.
To determine Naj,e; we use the formula:

1
{Naj,up)? = q(r +1) (a,,3,)

where g, r are determined from the a; - series of roots containing as
which is { asz,az + 1a1 } and hence r =0, g =1. Using (a,a1) =1/3 we
find Na,az =+ 1V6. Similarly to determine Nag,a;+ay, We use the for-
mula (Nay,a1+85)2 = {1/2)q(r + 1)(az,a2) where q, r are now determined
from the asz series of roots containing a1 + az which is {(a1 + az)— az,
(a1 + az), (a1 + az) + a2} and hence r =1, q=1. Using (as,az) =1/6
we find Naj,agie; = = 116,
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Bhabha in defining the five dimensional realizations of his matri-
ces Ly, k=0,1,2,3 extended the group 50(3,1) to the group SO(4,1)
by identifying:

Lo=Toa, Li=Ii,s, La=1z4, Ls=13,4

where Io,s, I1,4, I2,4, Is,s are generators of the five dimensional Lorentz
group. To derive the generators Ii; we consider a rotation Ri(p) through
an angle ¢ in the {i,j) plane and identify the generator Ii; with the
derivative of Ry(p) with respect to ¢ at ¢ =0 ie.:

d
Iy = “do Rii(‘?)
4 =0

There is a similarity transformation S which maps the canonical

form of By to SO (21 + 1 —2r,2r), r=0,,...] and is defined in the
following theorem?.
Theorem: Let b be an element of the matrix realization of the canonical
form L. Then the similarity transformation to the SO(21 + 1 — 2r,2r)
Lie algebra (for r=0,1,...,]) is given by a =5bS-1 where S= Ve
T where T is given. by:

-1, j=2%—2 k=2,...,1+1

and j=2k—21—2, k=1+2,...,21 + 1

i, j=2%k—3,k=2,...,1+1

Tjk:<
—i, j=2%—~—2A—3 k=1+2,...,21 +1

V2, j=21+1, k=1

— 0 , all other j, k

provided that the diagonal elements of g of a¥g + ga =0, (tr = trans-
pose) are arranged so that ga),25 = gej-1,21-1 for j = 1,2,. . .1 and gay+1,8041 =

gzg_1,zj_1exp{aj(ﬁ)} for j =1,2,...,1 where exp{ajffl)} are given by:

- 1, j=12,...1—1, j=1—r
exp{a;(h)} = _
—1, j=1l—r1,1

WnoeiakA BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.MN.O.



where ai, as,..., a1 are the simple roots of B
It will be noted that the only dependence of S on the elements of g

lies in the factor Vg which is defined to he the diagonal matrix such
that:

1 af gy = 1

Vo=
1 1f Oij = — 1.

Setting 1 =2, r=2 in the above theorem we have a mapping
of the canonical form of the Lie algebra B: onto SO(4,1). In this case:

/010—10\

0 1 0 1 0

T=| 0 0 i 0 -—i ,
0O 0 1 0 1
V2 o 0o 0 0

g =dig(1,1,1,1,— 1) and Vg = dig(1,1,1,1,i). Hence we find for the si-
milarity transformation S which maps the canonical form of Ba to
the Lie algebra SO(4,1) the matrix (20) of rel. {I}. The inverse of S ia:
0 0 0 0 —i/¥2 \
—i/V2 12 0 0 0

0
i2 12 0 0 0
0 0 2 12 0

Using the similarity transformation S and constructing S-1LiS,
k=10,1,23 we find the matrices {21) given in ref. (I). The matrices
5-1LyS form a linear comhination of the basis elements of the Lie
algebra Bs, as indicated by lormula (22) o, rer (I). As an example we
find the coefficients of the linear combination giving S—1LyS. We have:

WYnoeiakA BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.lNM.O.



10

o, a6 Ve, w¥e L els
'—n/VG‘ L AR 71 L B ] [
s-iL,8 = | —¢/¥6 . —3/¥6 %—% ,—x/¥6 , 0 i:
—8/¥6 , 0 RPY] Y , 8/¥6 ‘
|
—C/VG— J—A/V_S 3 0 ,—'Ylyﬁi ,—-;"“_2"\
[0 0 iya 0 i1Y2 '(
0 0 0 0 0 i
= —i¥2 0 0 0 0 l
0 0 0 0 0 }
_—iffz o 0 0 0 |

Equating corresponding elements we find {=iy3 and e=i}/3 with
all the other coellicients zero. Thus we find for the linear combination
giving S48 the formula (23) of ref. (I). Similarly working we find
for the other three linear combinations the formulae (24), (25) and
(26), of the same ref.

The 16 and 20 dimensional realizations of the matrices Ly are give
by the same linear combinations of the basis elements of Bz as for the 5

dimensional represantation except that D's_aim (Kal),. .. Fs_dun((;_al_2nz)
have to be replaced by the 16 or 20 dimensional matrices onh.dim(_ﬁal),---,

—

20 _aim{e_a;_2ap), a8 is indicated by formulae (27), (28}, (29) and (30)

of the ref. (I). Hence for the determination of the matrices Ly in the
—_
20 dimensional representation the basis elements I'se_amm(hag}, 20 aim

(_E.a,z). o Dzo_aim (_é_ul-zna) of Bz are necessary. These we give in the
following paragraph.
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3. 20 - DIMENSIONAL BASIS OF B, ; THE MATRICES LI"9™ ;
THE HERMITIANIZING MATRIX; THE BIGENVALGES OF L,

We give now here the 20 dimensional basis elements of Ba. The
fundamental weights of B: are given by formula (31) of ref. ( ) and
the highest weight is given by formula (32) while the dimension of
the representation is given by formula (33) of ref. (I). For the 20 di-
mensional representation the highest weight is given by formula (34).
The other weights of the representation are found as follows We start
with the highest weight A = (3/2)a: + 3a: and evaluate the ratios:

&
(a1

) 2(A,22)
a) 7 (a a)

Evaluation of the ratio 2(A,a1) | (ar,a1).
We have:

2(A,a1) _ 2(3/2a + 3az,a1) _ 2((3/2a,a1) + (3az,a1))

(an,a1) (a1, a1)  (ay, ar)

2(3/2(ay, 1) + ez, 1))

o (ala al)

For the evaluation of the ratio the values of {a;,a:) and (aga) are

necessary. (ai,aa) is 1/3. To find (az,a1) we make use of the Cartan
matrix B: defined by:

2(ay, ax) { A Age } [ 2 —1 }
Ajy=—""2"""_— =
(as,a4) Az Ag —2 2

Setting Az = 2(as,a1) / (az,a2) =— 2 we find using (asz,az) =1/6 that
(az,a1) =—1/6. Thus 2(A,a1) / (a1,81) =0 and the a; series of weights
containing A is just A = 3/2a; + 3as.

Evaluation of the ratio 2(A,a:) | (@2,a2)

We have:
2({A az) __2(3/2&1 + 3as,a2) _ 2(3/2(a1,az) + 3{az, az))
(az,az) (az,a2) - (az,as)
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Using (as,a2) and (a,a2) =—1/6 We find 2(A,az) / (az,2:) =3=j— k.
Where j is the lower integer and k the upper integer in the as - series
of weights containing A i.e.:

{A—jtag, A— (j—1)az,... A+ (k—1)az, A + kas}

The equation j— k=3 accepts the solution k =0, j =3 and hence
the as - series of weights containing A is:

{A— 332, A— 2&2, A— aeg, A}
or
{3/2a1 + 3ae, 3/2a; + 2as, 3/2a; + as, 3/2a1}.

Choosing any weight of the above set for example 3/2a; and proceeding
in the same way as for the highest weight we find some new weights
of the representation. Continuing in the same way with every new
weight we find finally the following sixteen weights:

A =M, =3/2a1 + 3as, Mz =3/2a: + 2az, Ma = 3/2a;1 + as, Mas=3/2a,,
Ms =1/2a; + 2a;, Ms = 1/2a1 + a;, M, = 1/2a;, Mg=1/2a;— as,

My =— 1/2a; + az, Mo =— 1/2a1, My =— 1/2a; — as, M1z =— 3/2ay,
Mz =— 1/2a: -~ 2a;, Myqs =— 3/2a; — as, M}s ==— 3{2a1 — 2a2,

Mis =— 3/2a; — 3aa.

Because the number of the weights found is less than the degree
of the representation some weights are multiple. In general the method
of calculating the multiplicity ny of a weight M is given by Freuden-
tals?? recursion formula:

o0
{A+3A+8)— M+ 5M48)nu=2 D> > mxa(M+ka,a)
k=1,a>0
where § =1/2 z a, and the sum is taken over all the positive roots.
a>0

In applying Freudentals formula we have to bear in mind that the
multiplicity of the highest weight is always one i.e. na=1.

In the case of B; the positive roots are ai, as, (a1 + as), (a1 + 2az)
and & is:
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o

=-—12* {a1 + az + (a1 + aa) + (a1+2a2)}=73a1+2a2

As an example let us find the multiplicity of the weight M: = 3/2a1 +2a..
Substituting in Freudental’s formula A = 3/2a1 4 3az, M =M= =3/2a: +

2az, nu =Ny, M + ka =M. + ka, 8 = 3/2a1 + 2a: the left hand side
gives:

{(A+8,A+8)— (M2 + 38, Mz + 8)}nm, =

{3(a1,a2) + 3{az,a1} + 9(az,82) Jnm, = —%— NiMy -

The right hand side using na =1 gives:

1

2 D mugike(Mpt+kaa)=2 > ugeap(Me -+ azas) =
a>0k=1 az0

= 211;;(% a1 + 3az,a2) = 2(% {a1,az2) + 3(az,a2)) =% ;

Equating the left and right hand sides we find nm, = 1. Similarly we
find for the other multiplicities:

D.A=1, nM8=1) 11M4=1, D-M5=1! IIMBZZ) IIM7=2, nM8=11 nMB:l)
Mgy =2, Mayy =2, Dagp==1, Mgz =1, Ny =1, Dy =1, nye = 1.

Taking into consideration the multiplicities of the weights and renaming
them as Ay, j=1,2,...20 we find the twenty weights given by for-
mulae (35) of ref. (I). These weights can be arranged in a weight dia-
gram which we omit. Using the test of reflections we can check that
the above weights are all the weights of the representation. We use
as lines of reflection the lines perpendicular to the roots ai, as, a1 + as,
a1 + 2az. The test of reflections states that for every non-zero root
a relative to the space of roots a linear transformation S, in the linear
space of weights is defined such that:

2(As,4a) a

Sa(A) =M— =5 e,
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for any weight A:. As an example let us find the reflection of the highest
weight A = 3/2a; + 3az through the line perpendicular to the root a =
a1 + 2a:. We have:

2(3/2 3 2
ia/l —T—l 2-; :12 »il ‘zFa:;lz) (a1+2az)= — *331_3&2:Azm

Sa(A)=(3 ar+3az) — 9

2

Basis of the Cartan subalgebra:

— -

We find now the matrices I'(ha,}, I'{hay) forming the basis of the
Cartan subalgebra. In doing so we find first the matrices I‘(Kl), P(Ez).

We require: a) P(T{j)pp =AD(E), =12, p=1,2,...20 where A,
i3 the p-th weight of the representation and b)ax (_}:;) = Ajx where
Ajx are the elements of the Cartan matrix B..

i) I‘(Kal): The elements of I'(h;) are calculated as follows:

— —> —>

> 3 3 3
r (hl )1,1=A1 (hl ) :7 a1 (hl )+ 3az (hl )= j A+ 3A1,2 = 2— (2 ) +3 (——1) =0.
Similarly working we find the remaining diagonal matrix elements.
The off diagonal elements are zero. Thus

—>

T (k) = dig{ 0,1,2,3,—1,0,0,1,1,2, — 2, —1,— 1,0,0

2

:_3)11_21_'110 }

which is related to I'(hs;) by the formula I'(hs,) =1/6I'(h1), (i.e. we
find (37) of ref. (I)).

— —>

ii) T'(hsy): The elements of I'(ha) are calculated as follows:

3 —2)+3(2) =3.

— — 3 — —
I'the hp=A1(he)= 5 A (hz)+3az(hz)= —23— Az,1+3As,2= 9

Similarly working we find the remaining diagonal elements. The off
diagonal elements are zero. Thus:

I‘(Kz) = dlg{3)1: "_1’_3:3’1:1)"_1ﬂ_1s_3)311:1:_1’_1:31_311J—1)_3}7

and 1“(&):1—121“(152) (ie. (38) of rel. (I)).

We remark that P(Eal) and F(Euz) are traceless,
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The other basis elemenis of Ba:

- -

By definition [[(h), I'(es)] = — a(h)l'(ea). From this we have
{T'(B)op— T'(h)aq + a(h)}T (6a)pa = 0. The matrix element T{es)pq 5= 0

-

only if P(ﬁ)pp“’ I'h)qgq =— a(ﬁ), or if the difference between the p-th
weight and the g-th weight is equal to —a(_fl) i.e. Ap(_ﬂ)- Aq(i) =

>

— a(h). These differences give the positions (p,q) at which the maitrix

I‘Ga) has elements different from zero.

—

i) T(ew,): Using the weights As, As,... Az found earlier and construc-
ting the differences Ap(_l;) —Aq(_E) and selecting out of them those
for which the relation Ap(h)— Aq(h) = — ai(h) is satisfied we find

that the matrix I'(ea,) has non-zero elements at the positions {p,q)
given by (39) of ref. (1). We call these elements es,2, es,3, €7,3, €8,4, ©8,4,
€8, €u,?, €iz;s, €12,9, €13,8, €13,9, €14,10, €15,10, €16,12, 16,13, ©€18,14, €18,15,
€19,17.

—_ —_> —_
i) T'(e_sy): We choose I'(e_s;) =— I'®{eqs;) Thus the non-zero elements

— —

of I'{e_s;) appear at the transposed positions of those of T'(ss)

iii) F@uz): Constructing again the differences Ap (ﬁ)A— Ay (T;) and selec-
ting those for which Ap(h) — Aq(h) =— az(h) is satisfied we find that

the matrix I'(es;) has non-zero elements at the positions (p,q) given
by (40) of ref. (I). We call these elements es,1, €3,2, £4,3, €6,5, €75, €nys,
€8,7, €0,8, £9,7, €10,8, £10,0, €12,11, €13,11, £14,12, £14,13, €15,12, £15,13, £17,14, £17,15,
El8,18, £1%,18, £20,19-

bl -

iv) ]."(:_32): We choose I'(e_sy} =— T’ {ea,). Thus the non-zero elements

of I‘(T;_az) are at the transposed positions of those of F(_e:,z).

v) P@al+,2): This matrix is given by formula (41) of ref. (I}.

vi) I‘(:;_,,l,ug): This matrix is given by F@_nl_az) =—I‘"(—;a1+ag).
vii) T'(6ay+20g): This matrix is given by (42) of ref. (I).
Viil) T'(0_sy_20g): This matrix is given by T'(6_ag_2ea) = — DY (Bugs2ap)-
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— - —>

All the basis elements T'(e+a;), T'(e+as), F(:i(n] +ag)) and I(e+¢a;+2ag))
are functions of the quantities ey, eiy. To determine these quantities
we make use of the commutation relations of the Lie algebra, namely:
(43), (44), (45), (46) and (47) of ref. (I). From each one of these re-
lations we derive a set of equations satisfied hy the quantities ey, =i
Solving these equations simultaneously we find the solution given by
(48) and (49) of ref. (I). Choosing for the ey the positive sign this
fixes the sign of ey to positive. Hence we have for the basis matrices
of Bz the matrices given by (50), (51), (32), (33), (b4), {55), (56)

and (57). By means of these matrices the matrices Liobdim, (k=0,1,2,3)

of the Bhabha wave equation can be constructed as is indicated and
given explicitly by (58}, (59), (60) and (61) of rel. (I). The hermi-
tianizing matrix Asy_am i8 given by (71) of ref. (I). The eigenvalues
of Lio_djm are given by (74) and the masses associated with the field
are given by (75) of ref. (I).

We shall use in the following paragraph the results referred to here
to study the charge of the 20 dimensional Bhabha wave equation.

3. CHARGE OF THE 20 DIMENSIONAL BHABHA WAVE EQUATION

With every Bhabha wave equation one can associate the quantity
Sy known as the charge density and given by the formula S, = ‘V+ALY
where ¥ is a vector with the same number of components as the dim-
ension of the representation, ¥ its hermitian conjugate. The total
charge is given by fSadv where dv the volume element.

Since the charge is independent of the frame of reference it is better
to consider that frame in which the matrix AL, is diagonal. If Ay,
n=1,2,... 20 are the eigenvalues of AL, and ¥ the components of
¥ then:

20
So="P+(ALo)ae ¥ =D An¥u*¥a.
n=1

This is definite if the eigenvalues A. bave the same sign. To find the
eigenvalues of AL, we use the following theorem. If A =f(L,) and &
iz an eigenvalue of L, then f{(i) is an eigenvalue of A and Af(A)=A
is an eigenvalue of ALy, In the case of the spin 3/2 field associated with
the 20 dimensional representation Aso_aim has the functional form:

WYneiakni BiBAI0BRKkn ©gdppacTog - TuAua MewAoyiag. A.lN.0.
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20-d1im 1 20-a P0-dim
Awam=1(L, )=- L AL T —T)
and for the eigenvalues M =1ls =23 =hs = 3/2 of Lzoo—'jlrll we fiod:
f(m =3/2) =é— M2 —T7)=1=1{(k) =1(s) = f{Aa)
. . 20—dim
Thus the corresponding eigenvalues of Ase—amm L are:

A]_ :le(ll) :%=A2=A3=A4

Similarly for the other eigenvalues of Lio_dim we find that the corres-

ponding eigenvalues of As_qim L20-9im gre:

As =nsf (s =—3/2) =—-% {(—1) =%=AB=A7=AB

Ap =2i(ho =1/2) =—% (—1) z—é— =A=An=An=Ais=Aun
1 1
A =2t (s =— 1/2)=— 7(1) =—— = Are= Air= Aus= A1s = Azo.
Substituting in So¢ = ¥+ (Az-gim Lzoo_dm)dlg ¥ we find for the charge
density:
3 8 1 20
So =7 z Wy IFJ—-? z ¥ ¥y,
=1 k=9

This is not definite and hence the charge is not definite.
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