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ABSTRACT

A data set of 8 strong motion records produced by normal faulting earth-
akes are scaled in order to predict future ground motions at a site 20 Km
ay from a normal fault capable to produce an earthquake of surface wave
gnitude egual to 5.5 and 6.5, respectively. The proposed spectra were also
pared with the results based on a different methedology. In spite of the
catter in the scaled spectra, the predicted spectra seem to represent, within
acceptable errors, quite accurately this type of ground motion for future
earthquakes in Greece, as it was shown from the comparison of these spectra
with spectra obtained using accelerograms of recent earthquakes. The near
source effects and soil conditions seem to strongly influence the obtained
records which differ considerably from the average spectra.

NEPIAHYH

OKTIO EMLTOXUVOLOYPAUPNTO QMo OE LGHOUC MoV NPofpXovIaL Ond XavovLKE phypoto
YpnoLpono LoUvial nNpoketpévou va npofreedel n 1oyupll CfLORLKL Kivnon o pila
Béon novu onéyxel 20 Km and éva KovovikO phypa nou upnopel va SO0EL OELOHO
pevéBouc 5.5 kol 6.5.

Ta npotelvopeva Qaopala OUYKPIiBnKov ENLONg Kol HE aviiorolyxs @&opotio
dlapopeT Lk pePodoroyiag. Av KoL 1o @&OpaTa NovU nNpofxujav noapovdi&louv
SiLaomopd, EVIOUTIOLEC ®iveTal 6T NPodopotl&louv LKUVONOLNTUIKE T1G HEANOVILKEQ
LOYUPEC KUIVACELC and T£T010UG OELOHOUC O1n YOpo pag, ONWeC MPoxUmntel amdé 1
OUYKPLON TWY MPOTE LVOREVOY QUONETWOY HE GVTLIOTOLX: avnypéva @ldopata npdopatov
ogLopdv. H enidpoon 1n¢ e01{ag OTLC eyYROQEC TOU KOVTILVOU MEdioU Kol oL TomLkég
edap L KEC OUVBNKED ENMNPéxoav ONUOVT LKE 1o QAoHXTa, 10 Oonola Mupoudialoy OnuUoVT LKEC
SLapopéc and Ta pEcH QHOUXTO.

INTRODUCTION

The characterization of earthguake strong motion for engineering pur-
poses requires the level of shaking, its frequency content and the signifi-
cant duration of motion. The frequency content is most usually defined by
the shape of a response spectrum, while the level of motion has been
defined by parameters such as peak ground acceleration or Housner's spec-
tral intensity (Housner, 1970). Several studies of strong ground motion
records are available, showing the values and ranges of variation if the
level of shaking and the freguency content, as well as the influence of
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‘IhegseismicractivitypinsGreecegfhegeansandythe surrounding area) has a long
documented history and many of the reported earthquakes have caused great
destruction and many casualties (Papazachos and Papazachou, 1989). Conse-
quently, earthquake hazard analysis in this region is of great importance.

Many people have worked in the seismic hazard assessment in the broader
Aegean area, among which are Galanopoulos (1968), Algermissen et al. (1976),
Drakopoulos (1977), Makropoulcs (1978), Papaiocanncu (1984), Fapazachos et al.
(1992, 1993), Papaiocannou et al. (1992).

In the present paper, a procedure 1is described for the evaluation of
response spectra in Greece based on strong motion records. Since peak accel-
eration is the parameter greatly used by the engineers for static seismic
design, as well as a scale factor for response spectra and because its
attenuation relations have been more extensively studied, we shall restric
our demonstrations explicitly to the use of this parameter.

AVERAGE RESPONSE SPECTRA IN GREECE

In the following, we use an analysis to estimate future ground motions
in Greece using the recorded accelerograms. In order to make an a-posteriori
compariscn we use the records up to 1984 caused from normal sarthguakes. Thff
type of faulting is dominared over the mainland of Greece (Papazachos el
al., 1991). The premise of this study is the assumpticon that future gro
motions will be similar to those that have been already observed
previous earthquakes. For this reason, peak ground acceleration was cho‘
as the single parameter characterizing ground motion. A data set of
strong motion records from past earthgquakes in Greece were used and tt
relevant information is given in table (I). All accelerograms cCoOrrespon
to free field conditions on soft alluvium type soills. The records have bee
corrected and analyzed to obtain the response spectra, by the staff of
National Technical University of Athens and are published in Brady et
(1978), Carydis et al. (1982), (1983).

It is true, however, that the present data set is small to encompass thi
wide variation in tectonic and site conditions which may be encountered.
order to alleviate to some degree this problem, we decided to scale only tho
records which are appropriate for the conditions of a particular des
earthquake.

The procedure suggested by Guzman and Jennings {1976) is adopted in th
present study, which involves scaling records with attenuation formulae
are based upon a characterization of peak acceleration. For this purpose, |
following attenuation law for peak acceleration proposed by Papaicannou (19
is used:

InA = 8.69+0.89 M, - 2.37 1ln (4+23) (1)

where A is measured in cm/sec2, A in km and Ms is the surface wave magnitu
The data set of records chosen for scaling, Table (I}, corresponds to shalli
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COR1 Qct. 12, 1975 16 540 Alluvium 87
08:23:10 Corinthos SMA-1
37.9°N, 23.1°E

| THES1 July 4, 1978 17 5.1 Alluvium 89
22:23:28 Thessaloniki SMa-1
38.3°N, 22.09E
THESZ June 20, 1978 30 6.5 Alluvium 160
20:03:34 Thessaloniki SMA-1
318.3°N, 22.0°E
COR2 Feb. 24, 1981 20 6.7 . Alluvium 314
20:53:37 Corinthos SMA-1
38.1°N, 22.3CE
COR3 Feb. 25, 1981 ) 20 6.3 Alluvium 220
02:35:54 Corinthos S5Ma-1

38.1°N, 23.1°E

ormal faulting earthquakes and cover a wide variety of magnitudes. In order
o perform the scaling, we have grouped the records in two sets. One set
-{orresponding to the records of the small magnitude earthquakes, (listed as 1
to 5 in Table I} and ancther one for the large magnitude earthquakes (number
6 to B in Table I). Perhaps, the most difficult problem to address involves
‘estimation of ground moticn at sites which lie close to the source of a large
‘earthquake, since there is virtually no data for such circumstances. Lacking
direct measurements we are forced to hypothesize what the ground motion might
e based upon indirect information. All the records which are scaled here
correspond to normal dip slip earthguakes. In-order to keep the number of
assumptions and sources of error to a minimum, we tried to use records which
required as litrle scaling as possible,

Therefore, beginning from these thoughts, we assumed a site which lies at
'a distance of 20 Km away from a nermal fault, having dimensions appropriate to
produce an earthquake with a surface wave magnitude equal to 5.5 in the first
case and to 6.5 in the second. In both cases, the site conditions are assumed
to be of alluvium hardness. Records numbered 1,2,3,4,5 (Table I) are scaled for
the postulated 5.5 magnitude earthguake, while records numbered 6,7,8 for the
postulated 6.5 earthquake.

The next step was to compute the expected ground acceleration at the site,
Asite, for the two postulated earthguakes using equation (1). This scaling
function predicts peak values of ground acceleration egqual to 0.11 g for the
5.5 and 0.28g for the 6.5 postulated earthqguakes, respectively, occurring at

a distance of 20 Km from the site.
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i *" Dhe scaling factor, S, wifh which each recorqwas- multiplied, was found b

“nie xe latiohs
A__ .
o Sige
She=a (2)

where, lpyl lils Jthe |computad.) acteleration at each station for the given
magnitude gand distance from the source.

Tablé (1I) summarizes the&"values of the scaling factors for each of the records
Used. The response spectra of each station wete fand digitized for the period rang
'0.05 - S5sec, with dlgltlzatloﬂ step equal to 0.01 sec. The reading at each perio
was multiplied by the corresponding scaling factor. The end aof this process was &
ensemble of records, which should be representative of the types of motion expec
at the study site. We have scaled the records of the horizontal components only, bo
longitudinal and transversal for each station, and for 0,2,5,10,20% of the critics
damping. Since the derived scaled spectra were identical, the averaged ones from
both horizontal components of each station were used.

The above mentionad procedure provides a representative sample of rthe t

Table II: Computed values of the sraling factors f[or each record used in this
analysis. tNurn:)er:x CDrrrqu}Iltl to Table text tor n,.rrher LnEUrmatJ.uni

No_i Staticn Name Scaling Factor No Srar1on Name 5callng Factorr

1 ' PATI1 2025 5 THESL 1.21
2 PATZ 1.80 6 THESZ 1.64
3 XYL 2.16 7 COR2 0.84
o : COR1 1.24 8 COR3 1,20

of motions which have occurred for conditions similar to those at the st
site. The way in which the set of scaled records iz used for design depe
upon the particular application. In our case, the output of this analysis .
a free-field design response spectrum of absclute acceleration. This
chosen to be the average spectrum of all the scaled spectra.

~
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Figures (3) and (4} represent the smoothed versions of figures (1) and (2),
respectively, using a moving average filter.
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S: Comparison between the average response spectrum and the correspeonding
probabilistic response spectrum (Theodulidis, 1991) for design earthquake
with Ms=5.5 at a distance of 20 Km (%a) and design earthguake with
Ms=6.5 at a distance of 20 HKm (5h).

Figure (5 a,b) shows a comparison between the smoothed response spectra in
I_-igures (3) and {4) for 0% damping (continucus line) with the probabilistic
response spectra for the two postulated earthguakes according to Theodulidis
{1991) (hatched line). It is obvious that the two methods give almost similar
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the response spectra of recent normal
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lecords were used. The first, second
and third were those obtained from
the Kalamata main shock (Sept, 13,
1986, Ms=6.1) and largest
aftershock (Ms=5.5). The epicentral
distance of the first one was about.
1% Em, while the aftershock was ver}%

its

close te FKalamata. The response

spectra of the main shock (postulate i

1.0

T (sec)

to an event of magnitude Ms=6.5
recorded at 20Km) was

found in

Fig 6: Comparison between the average average response spectrum. A dood
response spectrum (Ms= 5.5, F=20 agreement was also found for
Km, continuous line) and the racerds of the strongest aftersho
Kalamata 1986 records of the

sSLrongest
postulated to the previ
{hatched lines),

Comparisson betwesn Lhe aveérage

fesponse spoctrum (dasplng=0%,

Ma=-§.5, A=10Km} and the Edesss
1990 recocas pastulated to this dvant

Praudovelocity (cm/isec)

Fig. Comparison between the
average response
spectrum (Ms= 6.5, R=20
Km, continuous line)
and the Edessa 1990
records postulated
the previous
{hatched 1lines}).

Lo
event

202 Wneiakn BiBAo6rkn

aftershack,

very good agreement with the proposge

recorded at Messini. Some differen
were observed in the comparison 0
the record of the stronge
afrershock recorded at Kalamata
Figure (6) show the proposed average resp
spectrum for an earthguake of magnitude Ms
recorded at 20Km and |
response spectra of the postulated
herizontal components of the strong
Kalamata earthquake recorded at the
{hatched lines). It can be seen that
periods T<0.2 sec there is a good agree
while for higher periocds the average spectr
predicts much smaller spectral wvalues.
is probably due to the fact that the record
site was within the deformation area of t
=zarthquake and for this reason the recort
were strongly influenced by the near s
effects. Figure (7} shows the postu
response spectra of the two horizon
components (for damping 0%) of the
earthquake (Dec. 21, 1990; Ms=5.9) ret
at Edessa (hatched lines) and the awv
response spectrum of figure (3) dra
continuous line. The three spectra seer
match well for periocds T<(Q.35 sec. For hig
periods the difference is important

ous evernt

{continuous line)

"@ed6@pacTtog” - TuAua Mewloyiag. A.MN.O.



" - Wnplakn Uuhhu?n
pnobabB Lﬁhlﬂﬂ l0call pite conditidBs. Lekidis et al. (1991)

uded thg.t. the predominant period of the local site conditions (T=0.5

g%j 7 ' e b efl theugh they also discuss that
Aemic ! uc erac ; ected

the records.
e.snaled response spectra for the records

our ensemble even though
.?“’““FL.PFEEIEI FEc) koryitg oxceed

order of magnitude, they
tely represent ‘our

pea ility ke parameterize strong ground
? Oh in terms ?Amaﬁta and, epicentral d
w}éing' As it is obvious from the compa 15;&

stance for a given type of

shown in figure (7}, these

: . . ; ‘ate way in order to consider
ly also the local site conditions if they are available. This is due to
fact that the local site conditions affects strongly the frequency
ntent of the ground motion and consequently the degree of damage.

ERMISSEN, S., PERKINS, D., INSHERWOOD, W., GORDON, D., REAGOR, G, and C.
OWARD (1%76). Seismic risk evaluation cof rhe Balkan region. Proc. of
rong Motion on Seismic Zone Maps, II, 172-240.

, A., ROJAHN, C., PEREZ, V., CARYDIS, F. and J. SBOKOS (1978). Seismic
gineering data report Romanian and Greek records. USGS Open file Report
-1022, Menlo-Park, California, pp 221.

(DIS, P., TILFORD, N., BRANDOW, G. and J. JIRSa (1982). The central

Greece earthguake of February-March 1981, NRC-EERI, Washington, pp-160.
ARYDIS, P., DRAKOPOULOS, J., PANTAZOPOULOU, S. and J. TAFLAMBAS (1983).
Evaluation of the June 20 and July 5, 1978, Thessaloniki strong motion
records. In:” The Thessaloniki earthquake of Juns 20, 19%78 and its
seismic sequence”, Papazachos, B. & P. Carydis, (edr.), Technical Chamber
of Greece, Thessaloniki, 231-256.

NOVAN, N. (1972). Earthquake hazard for buildings. Nat. Bureau Stand.
Sci. Series, 46, Bullding Practice for Disaster Mitigation, Boulder,
Colorado.

QOPOULOS, J. (1977). Magnitude estimation as a function of intensities
for shallow shocks in the area of Greece. Proc. Symp. on the Analysis of
‘Seismicity and Seismic Risk, Liblice, Czechoslovakia, 159-172.

INOSA, A. (1977). Particle-velocity attenuation relations of San Fernando
earthquake of February 9, 1971. Bull. Seism. Soc. Am., 67, 1195-1214.
( OPOULOS, A. {(196B). On quantitative determination of earth-quake risk.

“Ann. di Geof., 21, 193-206.

ZMAN, G. and P. JENNINGS (1976). Design spectra for nuclear power plants.
J. Power Division, ASCE, 102, No P02 Proc. paper 12521, 165-178.
HOUSNER, G. (1970). Strong ground motion. In "Earthguake Engineering”, R.
Wiegel (edit), Prentice-Hall, Inc., N.J., 75-91.

EKIDIS V., PITILAKIS, K., MARGARIS, V. THEODULIDIS N. and A. MOUTSAKIS

(1991) . The earthquake of Griva, December 21, 1990. ITSAK rept:91-01, pp.

68.

ﬂ“OPOULOS, K. (1978). The statistics of large earthquake magnitude and an

evaluation on Greek seismicity. PhD., Thesis, University of Edinburg,

pp. 193.

PAPATOANNOU, Ch. (1984). Attenuation of seismic intensities and seismic
hazard in Greece and surrounding area. Ph.D., Thesis, University of

WnoiakA BiBAI0BNAkn "OedppacTtog” - TuAua Mewloyiag. A.MN.O.
203



1_r' B '\JQ-'H' .‘v,d'-l'.l '
r
g

i Thesaalspmkl, pp. 200.

PABRIOANNOT CHY,| PAPAZAGHOS B. ¢/ and E M.! scoRDILIS (1992) . Application of
Line dnpaﬁdgnt and nien-time, dependann selsm;c1ty models in seismic haza
asgessment in Greece. Cah. du CEGS, 6, 53:69.

PAPAZACHOS; "B @ndl Qs [ BARAZACHQU, (11989) . The earthquakes of Greece. Ziti
Publ Co Thessalonlkl rE- 365.

PAPAZACHOS B._F KI&ATZI A. and E. PAPADIMITRIOU {1991). Regicnal focal
‘Mechanisms for earthquakes in the Aegean.area. Pageoph, 136, 405-420.
PAPAZACHOS B ARGARTS ) "B " THEGDUDTDTS!™N. and Ch. PAPAIOANNOU (1992).

Seismic hazard assessment in Greece based on strong motion duration.
Proc. 10WCEE, 1, 425-430. d
PAPAZACHOS, B., PAPAIOANNCU, Ch., MARGARIS, B. and N. THEODULIDIS (1993);
Regionalization of seismic hazard in Greece based on seismic sources.
Natural Hazards, B, 1-18. ]
THEQDULIDIS, N. (1991). Contribution to the study of strong ground motion
in Greece. Ph.D., Thesis, University of Thessaloniki, pp. 500.
THEODULIDIS, N. P. and B. C. PAPAZACHOS (199%2). Dependence of strong gro
motion on magnitude-distance, site geology and macroseismic intensi
for shallow earthquakes in Greece: I, Peak horizontal acceleratio
velocity and displacement. Socil Dynamic and Earthg. Engineer., 11, 387
402.
THEODULIDIS, N. and B. PAPAZACHOS (1994). Dependence of strong groum
motion on magnitude - distance, site geclogy and macroseismic intensit
for shallow earthguakes in Greece: II, Horizental pseudovelocity. Soil
Dynamics and Earthg. Engineer., in press.

Wneoiakr BiBAI0Brkn "Oed¢ppacTog” - TuApa Mewhoyiag. A.MN.O.
204



