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+ DIFFRACTION TOMOGRAPHY WITH STATISTICAL
REGULARIZATION

V. Troyan” G. Ryzhikov™ and A: Correig™™

ABSTRACT

An important feature of diffraction tomography problems is their incorrect-
s. Therefore in the solution of inverse problems it is necessary to use
larization methods which are determined by the type of a priori informa-
n. In connection with the presence of noise in the data measurement,
ference is given to the statistical regularization method. We present the
sneral structure of the statistical algorithm of diffraction tomography and
ve the results of numerical experiments to demonstrate the resolving power
of the observation system.

INTRODUCTION

Traditionally, the application of tomography methods to the retrieval of
edium parameters from seismic cbservations has been based on the model of ray
propagation of seismic waves, as well as with various modifications of Radon
transform for the inversion process (Dines and Lytle, 1979; Ryzhikov and
Troyan, 1985; Nolet, 1987, etc.). In recent years, the interpretation of
inverse dynamical linearized problem, such as diffraction tomography, has been
widely used (Devanie, 1985; Tarantola, 1984, 1987; Carrion, 1986; Ryzhikov and
Troyan, 1988, 1993a,b, 1994). As it is well known, the computational tomography
methods make possible the obtention of two- and three-dimensional fields of
medium parameters from their integral characteristic-projections. The compu-
‘tational tomography applied to seismic experiments can be interpreted as the
‘method for the solution of the inverse seismic problem. In this sense, ray
tomography is relevant to an inverse kinematical seismic problem, whereas
diffraction tomography is relevant to an inverse dynamical problem.

An important feature of the inverse seismic problem is its incorrectness
(decision instability). Therefore, in the solution of inverse problems it is
necessary-the use of regularization methods (Franklin, 1970; Tikhonov, 1963),
which are determined by the kind of a pricri information. Taking into account
the presence of random ncise in the seismic data, preference is given teo the
statistical regularization methods.

The methods in computational tomography have brought new ideas to the
solution and interpretation of inverse seismic problems, as for example the
notion of tomography functional (Ryzhikov and Troyan, 1988, 1994). As well,
two very important procedures in seismic processing such as velocity analysis
and migration are involved in the algorithms of diffraction tomegraphy in an
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‘natural way, which can be interpreted as the functions of the influe

variouswspatial.regions of.the medium.on.a particular sampling of the se
gram. F )

‘=Tt thic paperwe presentthe gene¥al Structure of the statistical algorith
of “@¥ffraction tomography and give the results of numerical experiments
demonstrate theldesclving gower ofithe observation system.

i

THE ALGORITHM OF DIFFRACTION TOMOGRAPHY'

“when problems of diffraction tomograpHy are set, a sampled seismogram u, is
used as input, instead of only arrival times (and amplitudes if attenuation
also computed) of the incoming waves as used in-ray tcmography. The fields
sought-for parameters are elements 6(x) of functiocnal space: 8(x) €8(R’), f
instance, the fields of Lamé’'s elastic parameters A({x) and p(x), density pl
or velocities of P- and S-waves, V. (x) and V_ (%) respectively. The measuren
space is a N-dimensional Euclidean space RY, where N is5 the number of sampl
of the seismogram. The diffraction tomography experiment is determined by t
mapping of the functional space of parameters ©(R’) to the measurement space
the seismogram R°. We can write the model of seismogram as

u; =;(6) +e,, i=1, ~N (1)

where @ (8) is the “transition” operator from the functional space @(R*) @
the measurement space and ¢ 1is the noise component, ¢ belongs to the no
distribution with mathematical expectation zero and covariance matrix
{Troyan, 1982, 1988). If the sounding seismic impluse field is ¢ = ¢ (%, t)
(R°xT) and the source field is f, we may assume that the process of propagati
of the sounding seismic field is described by the linear equation

Le® = £. (2)

The operator L, is determined by the medium properties. The problem cons
now in the re::c:very of the operator L, from the seismeogram. Taking into aceo
the transformation of the sounding seismic signal by the measurement -EI',:_'
channel H, we can write the model (1) as

(= HiL'f v e (3
where H is defined as

4)
Hip = fdetdbe(mx,w ti-t) 8 (x,-x)p(w, x, t) (

weld = {lw: || =1}

where all sought-for properties of the three dimensional medium are
cluded in the operator L. It is not possible teo find an accurate soluti
the problem of the retrieval of @ from the measured available data. Ther
we use the approximate methods for the description of the propagation of
sounding seismic signal in an inhomogeneous medium. Assume that for a ¢
value of 6 we can write

®, = L'f (3)

and consider that the sought for & is close to 8, i.e., 9 =68 =66, W
66«6 . The formal solution in the medium with the field of the paramete
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9= @, +Li' dg0 . (6)

where 5L = L . L is the pernturbation operator. Taking into account (6), the
sral’ model t31 4 LM Al

- @ - nfo. - L' ufhdes

n the model (7), the medium properties are included both in &L, and in g.
fowever, 1f 56 is small enough and if the following condition is satisfied

|25 8Ly (0 -0 )

B(e%)

where E is the operator of the mathematical expectation, ¢ in eguation (7)
be replaced by ¢ . From a physical point of view, the inequality (B) means
fhat the model error is much less than the measurement error. Taking (8] into
jeccount the model (7} can be rewritten as

<1, (8}

up = Hyfo, + Lg'8Lee ] + &,. (%)

" The error £ includes both the random error < and the error relevant te the
gtermined part of the model. By introducing the scalar product

(Hﬂ)r,v,n’{fﬂm,x, t)sniw, x, £) dxdQ (109
v

the model (3} ~an = t-writt—i g

u; = {hil"‘o)v_,._g * (hJILn;l&LDWo)V'T_Q + B (11)
By reducing the experimental data by the known value u” = <h [g> _ = we
ain
gy = (bylLo'8Le® o)y, 1o “ Eav (12)
where u = u - u

In the perturbatlon operator &L_ we can isolate the monotonous function
, with respect to which the perturbatlon operator will be linear. Taking
o account the fact that in seismic tomography the operator &L, is close to
local one, eguation (12) can be rewritten as

= (L hy|8Ly@ o), ;o ¢ &
= ((G;hiii,,’mo)r_alvw&» < By . (13)

‘where G = L™ is the Green's operator, G* means conjugated operator and L’
5 defined as

6 -
Lt gy = (hlne o), o (14)
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W Blﬂhluﬂnﬂn |
#'The mte; 1 kernel of the functional relative to v(86) is known
olhl:_ : MPI# @fc"ro an, 1988) and is defined

(" ou:ls l’"‘)ﬂ' (18 ) .
il
| where Lp ~I'“-.IH uherﬁg%nlngteld in a knoyn reference medium 6, ¢ is

tlned By L A ef d by L7¢  =h, ;. the reversed outgoing field
't:ha-. !"ecez.ver Loy z the operator 5 & interaction of the fields

o

Takin«-g-into account equation (15)m the model (13) can be written

(16)
where d = Pv+E

d=|8.%, . 04T, T=|8. 6, 47

(Pu1| (Piz| ~ (Prsd [vi)
P = (P21| {P2z| ~ (Pan R [va)

(P {(Pwz|  (Prd [V )

To build up the reconstructing algorithm, taking into account (15} we wriﬂ
the model (16) as

up = Yo(Pus v, (38)) + e, (17)
M

For an arbitrary linear functional 1 (.) we shall seek for a sclution in th
form of a linear combinarion of measurements

Itv) = ;::,uj = (a,u (18)
where

I(v) = (1|v).

For example, the functicnal l{v) can have the physical sense of the
value of the sought for field in the vicinity of the point X

3 1 a b
L2 Tapa (3 R A3 el K £ o) a0
where H(x} is the Heaviside step function

H(xy =1, x20
0, x<0D .

The error of the solution can be obtained in the form

no= 1) - Y@ (B [v,)) - (e E) (20)
2

= (d-(e.p)lve) - X (=0 pu)lv,) - (a,e)

wep
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- i 1 o ‘
considey as a solution the function ltv}=*a,u) which minimizes the
£ ke “binear | Formio frtheserroyy, =

- arg inf {(A - Q") k(A -Q'u)i B (21)
, 1s the 1dentity -'ﬂ'i:é%:ator with dimension of the number of

(Pyy f%“ “ (P (X” 10 -0

—2)
(PaalX)| = (Puy(x)| 0 0 - 1

[o(x)| ~ (1{x)| ~ (o(x)] ©O - O
| ‘ 2

1 -
M+ 1 M+N {2—,;\

The operator K must be positive. An optimal estimation of & is given by

= (QKOQ*) QKA (24)

The statistical interpretaticn of the operator K and the estimation o is
following. Let the set of fields {v (&8)} be characterized by the gaussian
asure and the randem component by a normal distribution. Then the sclution
obtained by the minimization of the mean sqguare of the retrieval error
E(n“ ), and the integral operator K has the meaning of the covariance operator

k”l"l - k"a"u k*l‘

K = w kv'v,, kv,l

k., - Kk k.,

A Wy,

NUMERICAL EXPERIMENTS

' Some numerical experiments have been carried out to investigate the resolv-
power of the observation system formed by a regular net of 3-component
eophones. To simplify the computation the following assumptions have been
made: the reference medium is homogeneous and boundless, the incident wave
field is a plane P-wave with a given shape of signal and normal to wave front.
To scan the resolving power we placed the testing mask into the concrete domain
of the recovering medium. This testing mark was formed by regular net of point
diffractors, which were used for computing the synthetic seismogram. The
geometry of these experiments is illustrated in figure 1. All results are
presented in the scale induced by the characteristic wave length A of the
inc:.dent P-wave in the reference medium {\.FT = 4000 m/s, V_= 2000 m/s). The P-
wave velocity inside of scatters is equal to 3300 m/s. Synthetic seismograms
are constructed in accordance with modified Born's approximation. The image of
the test mask is recovered by the treatment of several experiments differed
with normals to wave fronts and probably with shapes. In our experiments the
incident plane waves are characterized with normals n_, n. and n,, such that (n_,
E) =1, (n, =N2/2, (n, e) = -v¥2/2, where (e, &, e) are unlt coordinate
véctors For 'r:he imitation of a real seismogram noise £ is added, with
Wneiakn BiBAIoBAkn "OedppacTog” - Turpa MewAoyiag. A.M.O.
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. mathematical expectati
= 0 and covariance E£e’ =g
We deal with the resol
power of diffract
tomography controlled
parameters such as
distance between geophol
in our observation syst
Figures 2 to 4 represent
series of numeri
experiments distinguished
distance d between geopho
in regular net (0.5A, 3X
5N respectively), whereas
level of noise is 5% and
two incident plane waves
e )1=N2/2, (n., e) = - A2
are used for the generati
ot synthetic seismograms.
best recovery of testing
is reached for d = 3K,

o
-

A\ sesasgose

A

\..‘..‘....

Fig. 1: Geometry of the numerical experiments: figure 3.
A is the plane (z = ) of regular net ot
geophenes (d 1s a step of the net), B

DISCUSSION AND CONC

is the plane (y = constant} of the tesc o E

iy g il ) The following po
mask. The step between scatters along o )
the z-axis is 1.5k and the step along summarize the main fea
the ®-axis 15 1.0A. n, n and n. are the ot the diffracts
normals, lying in the B plane, %o Lhe tomography:
incident plane P-wave: (n, e) = L. 1. Indiffraction tomog
(n., &) =\N2/2, (n, e)= —N2/2

there is not any ne

1
2
a5
a'<$
oA
g
T
e
Fig. 2: i-component diffraction seismogram computed for the geophone profiles
(d = 0.54). The seismogram contains 5% of no.se.
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two incident plane waves with normals

generated

is added to the synthetic smogram. The step d

R o
3 :}‘:\“‘ '.:\- 3
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Fig. 4: Same as figure 2 expect for

distinguish the different phases of the wave for the interpretation as
well as the parameters of the waves such as the arrival times or amplitudes,
as necessary in ray tomography. In the general case of diffraction
tomocgraphy one uses all set of sampled seismegrams without any preliminary
processing. This peint is very important for the practical application of
the method of temography.

f'2. In diffraction tomography use is made of a more adequate physical model
of the process of propagation of seismic waves, based on the linearized

Wneiakn BiBAoBRkn "@edppacTog” - Tunua MewAoyiag. A.M.0.
233




approximationy of the rScdttering theory witi respect to ray tomogra
In'ray téomogiaphy the tomogtaphy functionall is singular, localized a
the ray Connecting souxce and receiverygand the weight along the ray 1is
‘constant. At{the contrary, in diffragtion tomography every element of thi
‘spatial region Ras'itsiown weight'. Bralysis of the tomography functio
makes’ it possible to understand distinctly how a concrete measurement
connectédwitila péstibld wafidtion of the parameters of the medium
dif ferent spatial points, which permits to estimate the spatial regior
with* respect te which|al given system off gbservation is informative.
4. The resulets of numerical experiments#shew that the suggested modifi-§

tions of ‘the diffraction tomography methed allows us to recover th

medium imaging in the rather wide space domain. This effect is due

gathering of the seismic information from set of experiments. The numerica

experiments can be used for he design of =seismic real experiments.

G,
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