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Abstract

Environmental data are often irregularly collected in the time domain due to
various reasons which affect the field sampling schedule. As a result, data sets with
uneven time step and time periods with no measurements are frequently built. Many
problems occur in such data sets when processed owing to that neither statistical
nor spectral analysis methods can easily be applied to them without any specific
pre-treatment. In our study it is demonstrated a unified methodological scheme
especially designed to deal with incomplete and unevenly sampled temporal data
sets. This method consists of the CLEAN algorithm and the Factor analysis. The
proposed methodology is successfully applied to data sets that belong to fwo
sampling sites of the Greek river Strimonas.

Key words: Missing data, Fourier transform, CLEAN algorithm, Factor analysis,
Environmental data

NepiAnyn

Or mepiffalAovuric faoeic dedouévav ovoyva avauetwmiCovy ta mpofliuata me dra-
KT)G Serypatodnyias otov ypovo kar the EAMEIYNG UETPHOEWY Y10 KATOIEG TEPIOOOVC.
To yeyovdg avté sumodier w yphon wwv KLaoikdv pefodwv avaAvonsg ypovoseipv,
o1 omoleg amatoLy oTAbEPS ypovike PHua evedd TOVTOypOVa Ta. YpoviKaG Kevd. E1G6yoDY
OVOKOAIEG TTHV YpHon TWV TEPLOTOTPWY PeBOdwY TOAVSIGOTATHS OTATICUKAC avVAAy-
one. H mapodoa epyasia mpoteiver éva mAfpes usbododoyxo aypue avalvong ypovi-
KGOV TEPLPOAOVTIKDV Sedouévay jue JeryHatoTTiKR avouoioyévela, ato omolo pive-
Tar yphon tov adyopifuov CLEAN xai we Hapayovukne avdivong (Factor Analysis).
O alyopiBuoc CLEAN éyer tyy ikavotnra va avamAdber T¢ apyikés ypovooEIpES TG
féong Sedopévaov yproiuoToIdVTaC PasHaTIKyg aviAvay KaL va. Squiovpyel Kaivobp-
yieg ue otabeps ypovixo fia xar EMeyn kevov. Aoufaver yopa onlady téoo ou-
umApmon wv xkevdv meg faong, doo kar «elvyiavony g dstypatolnqyiogs e H ma-
PAYOVTIKS OVEADTN Opad0TOIEl TIG HETAPANTES, avdioya i Tov TEPIfoirovTIKG unya-
Vigud and tov omoio kG6z pia eAéyyetar xar emTALOY amOKGADTTEL T YOpOKTHPICTIK)
Jypovixn Siaxduavon g kdbe ouadag To ovykexpiuévo uebodoloyixo oyipa epap-
UOTTNRE [E TARPY ETITOYIA 08 j1G SAon VIPOYHUIKDY CEGOUEVIIV UEYEANG yPOVIKIC
meptodov (1980-94) arov motaud Zrpouova.

Aésig whadrd: AlyopiBuoc CLEAN, petacynpationds Fourier, mopayovuxs avd-
Avon, weprfalloviird dedoyéva.
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1."Introduction

Environmental data often suffer from uneven sampling ratio, due to a variety of reasons that
modify researchers’ field planning. Even though a steady sampling ratio intention usually exists,
rarely can it be followed with precision. In addition, it is probable that the in situ sampling can not
be effectuated simultaneously for a relatively big number of variables, resulting to time step
inequalities between them. The above mentioned facts pose great difficulties when attempting to
mine the collected data, as long as neither time series analysis nor many statistical methods can be
applied to the later ones. Although methods of time series analysis have been fnily developed, only
a few examples exist regarding the apphcation of these techniques to environmental data. In most
cases, this is a result of the requirements of the spectral analysis techniques. These techniques are
based on the fast Fourier transformation (FFT) and their major drawback is the requirement of
evenly spaced time series. Thus, the environmental data must undergo a pre-processing process
before study of temporal variation is undertaken. The simplest forms of pre-processing are the
linear or polynomial interpolation of the dataset and the splines. More specifically for
hydrochemical data, simple interpolation techniques have been used in order to fill missing values.
The main disadvantage of those interpolation procedures is that they disregard the general
periodicities of the time series, as they apply locally mathematical formulas, introducimg artefacts
into the original dataset. A number of methods have been proposed for solving the treatment of
incomplete and unevenly spaced data problem without dominantly affecting the results. Among
them the spectral approach nsing the CLEAN algorithm is the most effective one for
reconstructing time series with large or occasional gaps and irregularities in their samphng ratio.
CLEAN algorithm developed by Roberts ef al. (1987) s able to recover effectively most of the lost
information even for a significantly smaller number of data points (Vio ef al. 1992). It has been
successfully applied to the analysis of astronomical and geophysical data (Dreher ef al. 1986,
Duvall et al. 1984, Negi ef al. 1990, Tiwari and Rao 2000). Negi ef al. (1996) applied the CLEAN
algorithm to time series of secular variation of dolomite abundance in deep marine sediments in
order to study the varions quasi-periodic earth processes, mcluding mass extinction phenomena.
Baisch and Bokelmann (1999) used the CLEAN algorithm to investigate temporal changes of
elastic propagation velocities and more recently Helsop and Dekker (2002) nsed it in conjunction
with Monte Carlo simulation to study palaeoclimatic data.

In this paper we present, for the first time as far as we know, an apphcation of CLEAN algorithm
to hydrochemical dala sets in order to convert them into time series with steady time step and
study the temporal variation of the goveming processes affecting their general form. After the
transformation of the data sets using the CLEAN algorithm, multivariate statistical technignes can
be successfully applied in order to group the variables with comparable mechanisms controlling
their temporal variations. It is essential to mention that these techniques are ineffective or even
impossible to apply when not dealing with compact databases (blank free) and this makes suitable
pre-processing of information a high priority issue. Among the multivariate statistical techniques
the Factor Analysis was chosen, as the most effective one. Thus, we demonstrate a methodological
scheme consisting mainly of CLEAN algorithm and Factor analysis and show that it can be
classified as a very important data mining tool which gives great insight into temporal variation of
hydrochemical processes. The whole procedure is unified and automated using the MATLAB
programnung software. A variety of algorithms and scripts have been deployed to execute all the
mathematical, statistical and visualizing operations necessary for the proposed methodology. In
order to test and validate the method, hydrochemical datasets from two sampling sites of
Strimonas River, northern Greece, were analtysed. The data were collected under the inspection of
the Greek nnnistry of agriculture.
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2. ‘Materials and Methods
2.1. Study area

River Strimonas has been monitored intensively for 14 years (1980 to 1994). Over 300 samples
were collected for eacli one of the two sites, Mirtinos and Sidirokastro, at approximately one-
month intervals. All the samples were analyzed for nineteen different physical and chemical water
paraineters, comumon for both sites, such as conductivity (EC) , pH, chloride (Cl), sulphate (SO4),
acidic carbonic (HCO3), total of anions and kations (TAK), sodium (Na), magnesium (Mg),
calcium (Ca), SAR, degree of alkalinity of sodium (Alk), total hardness (TH), dissolved oxygen
(DO), rate of saturation (SAT), nitrite (NO2), nitric (NO3) ammonium (NH4) total phosphorus
(TP), temperature of water (Tw). These two datasets were collected with the sanie procedures and
protocol and were analysed using the standardised methods for water quality analysis.

2.2. Methodology overview

The proposed methodological scheme consists of three main parts: 1) Quality testing and
preparation of the data. This part includes testing of the sampling conditions and detrending of the
variables with significant trend, 2) application of the CLEAN algorithm in order to cleanse the
time series by making their titne step regular and the sampling pomts common for all variables, 3)
application of Factor Analysis to the “CLEANed™ data sets. This step inclndes a) extraction of the
Factor loadings in order to group the variables and to investigate the inajor processes that control
the data structure, b) calculation of the factor scores in order to study the temporal variations of the
factors and 4) visualization and interpretation of the results.

2.3. Quality testing and pre-treatment of the data
2.3.1. Sampling conditions

Prior to the application of the analysis procedures a more detailed study of the sampling conditions
is needed. As to visualize the ordinance of the sampling points witlnn the time domain and judge
whether they are intentional or not, the indicator function is used (Stefanakos and Athanasoulis
2001). This function is defined by:

Equation 1 — Indicator function

1

u(r) = . o
0, 1f vanable value at r is missing

and describes the existing value pattern of the measured data. Plotting of the former function offers
a clear view of the sampling ratio intensions in real time and furthermore the percentage of the
missing values can be estimaled after averaging, nsing a steady time window, equal to the ap-
proxiinate sampling frequency. The reasons why the indicator function is a basic part of the pro-
posed method will be analytically discussed in paragraph 2.4.2.

, if variable value at r is obtained

Moreover, in order to study the correlation between missing values and seasons, an existing-value
diagram is also constructed. The existing-valne diagram represents the existing-value seasonal
averaging, plotted against tiine. The existing-valne function is defined as:

Equation 2— Existing-value function
— J
u(r*y=> u (j,ra)

4=t

where n(j,r*): is the indicator function reindexed using the Buys-Ballot double index
] © seasonal index (3 months)
r* - ranges within a calendar vear.
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2.3.2.-Detrending process

Before continuing with the data mining procedure i.e. application of the CLEAN algorithm and the
Factor analysis technique, it is necessary to detrend the time-series properly. Detrending process
provides a suitable dataset for factorial analysis. The application of factor analysis to the detrended
data correlates time-series with similar periodicities rejecting the correlation between time-series
on the basis of their similar trends. 1t is also generally accepted that detrending improves spectral
analysis results. There is a variety of methods to perforin detrending processes. Notwithstanding,
the dominant trend of the data can be removed just by fitting siraple linear regression (Raike ef al.
2003). We choose the linear regression for our detrending process in view of its simplicity and
suitability concerning our purpose. A main issue of that particular procedure is to detect variables
with significant trends. Judgeless detrending of all our temiporal data, according to their linear re-
gression, wonld be baseless withou(l knowing whether their trends are reliable or not. In our case, a
trend is defined as the presence of a non paramnetric rank correlation between a variable and the
relevant time. As a correlation coefficient we nuse Kendall’s tau-b, which examines only whether
the temporal change is positive or negative, and disregards the magnitude of the change. Ranging
from -1 to +1 it is a measure of the consisteucy of a monotonic relationship (Mitikka and Ekholm
2002). A value of exactly -1 or +1 is obtained only if there is a consistent decrease or increase
throughout the time series. A confidence level of P<0.01 is used. Thus, there is a risk of 1 % that
the test indicated a trend when actually there was no trend. The Kendall’s Tau-b statistical test is
especially suitable for environmental data because (i) it is not particularly sensitive to the missing
values or outliers, and (ii) requires no assuinption of normality (Helsel and Hirsch 1992, Raide et
al. 2003).

2.4. Application of the CLEAN algorithm

As we mentioned in paragraph 2.2, we use the CLEAN algorithm in an effort to modify our data
so that all variables have regular time step and their sampling points are common. After this kind
of cleansing and compacting of the data set, it is ready to be treated as a set of time series. These .
time series can be compared to each other straight forward, without the need of any assumption,
e.g. to consider a value representative for the period it belongs or average per month etc.

2.4.1. Short description of the CLEAN algorithm

CLEAN algoritluu is an effective tool for spectral analysis especially appropriate for unequaily
spaced time series which was introduced by Robert ef ol (1987). This technique is based on a
complex one-dimensional version of the CLEAN decoiuvolution algorithm widely used in image
reconstruction. The main advantages of the algorithin are (i) it removes artifacts related to missing
data; (ii) it provides clean stable peaks (Tiwari and Rao 2000) and (iii) does not require a formal
statistical test (Negi ef al. 1996). Furthermore, Vio et al. (1992) showed that CLEAN algorithm is
able to recover effectively most of the lost information even for significantly fewer number of data
points. In CLEAN method, a raw (dirty) frequency spectrum is calculated using DFT, which
contains real peaks and sidelobes. This dirty spectrum is then iteratively cleaned. The largest
spectral peak is found and is subtracted with its side lobes from the original dirty spectrumn. In the
next iteration, the now largest peak is detected in the residual dirty spectrum and compensated for.
The iterations are repeated untl a defined noise level or number of iterations is reached. After the
CLEANIng of the duty frequency spectrum, all side-lobes are removed. The final CLEAN
spectrun is constructed froni the accumulated clean spectral components, which are produced by
the iterations. Inverse discrete fourier transform is then applied to reconstruct the time-series, using
a predefined time step interval. Usually the timne step interval for the IDFT is defined as the
minimum time difference between the samples, but in our case we will use a -At- equal to that
defined by the harmonic analysis of the indicator functions, as it will be explained in paragraph
2.4.3. The detailed computational procedure governing CLEAN algorithm is given in Robert ef al.
(1987). A briefly description of the equations incorporating CLEAN algorithim has been presented
and discussed by Negi et al. (1990, 1996).
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2.4.2. Set up and convergence of the CLEAN algorithm

A-compatible program was built in MATLAB 7, in order to execute the CLEAN algorithm to all
the variables of a data set. Three inputs are needed to run the CLEAN algorithm. These are: 1) a
matrix of the raw data (with blanks), 2) the time step interval that the time series will have after
applying Inverse Discrete Fourier Transform (iDFT) to the “CLEANed” spectrum and 3) a number
indicating how many iterations will be done before the spectrum is considered “CLEAN" enough
(see paragraph 2.4.1.) .

2.4.3. Determining the output time step interval

After the DFT spectruin of a particular variable has been CLEANed, inverse Discrete Fourier
Transform (IDFT) procedure converts the original data to time series with steady time step. The
recoustruction (inverse transform) is done for a predefined time step output, as far as the input data
had not a particular sampling ratio but in the best case an approximate one (see indicator func-
tion’s spectrum of fig. 1.d. ) . In our method, we propose determination of the time step accordmg
to the mdicator function described in paragraph 2.3.1. in a way that will be discussed below. Fast
Fourier Transform (FFT) analysis is applied to the indicator function that belongs to the best vari-
able’s tine series (i.e. the variable with the least gaps and irregularities) and thus the prevailing
sampling frequency intention according to the field planning is defined. According to the Nyquyst
criterion, the output titne series should have at least double the frequency that the raw ones have.
This frequency is to be used as the time step interval output of the IDFT, when applied to the
CLEANed spectrum.

The choice of the output tume step is particularly esseutial because a time step output smaller than
half the sainpling intension would be pointless and would induce artefacts and noise to the original
time series. On the other hand, time step output bigger than sampling intension would produce
coarse time series and would cause loss of information.

2.4.4, Determining the number of iterations

An easy way to define the number of the iterations that will provide the best results in our analysis
is to repetitively execute CLEAN algorithm to a specified variable by progressively increasing the
iterations number and then plot the iterations number against the misfit of the CLEANed data to
the raw data. Misfit values are calculated according to the formula:

Equation 3 - Misfit function
M(%)=100-(1-o,)

Where: o,.is the correlation coefficient between the raw and the CLEANed data of a variable. As
far as the matrices of the CLEANed and raw data are not of the same length, a new inatrix has to
be created with the same sampling scheme as the raw data by suitably interpolating 1o the
CLEANed one. Thus tlie o, refers to the correlation coefficient between the raw samples of the
variable and the matching ones extracted by interpolating to the CLEANed variable. After a num-
ber of iterations the above equation reaches to convergence. This means that the error induced to
the data because ol their reconsiruction has been minimized. Hence, the iterations number that
corresponds to the convergence point can be safely used as the appropriate one for the CLEAN
algorithim.

Applying the above method to the best and to the worst sampled variable of the dataset on the ba-
sis of their indicator functions, will give a clue about the reliability of the method in view of the
particular data set. We choose 10 determine the iterations number according (o the worst variable
so that no possibility that the algorithm has not reached to convergence for a variable exists.
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2.5. Application of Factor Analysis to the CLEANed data

Having applied the CLEAN algorithm to the data sets, a compact dataset has been created, the de-
pendent variable of which is the time step and the independent ones are the hydrochemical meas-
urements. Groupmg of the variables on the basis of their temporal variations is a very useful task
towards the data mining process. )

2.5.1. Short description of the Factor Analysis method

Factor analysis is a generic termn that describes a variety of mathematical procedures applicable to
the analysis of data matrices. The most important feature of factor techniques is their ability to
reduce a large number of variables down to a smaller number of factors (data reduction technique).

Six main stages or steps in the application of R-mode factor analysis can be recogmzed: (i) a data
mairix (n x m) as basic input is required (where n: observations, m: variables), (i1) the correlation
coefficients matrix among the variables (m x m) are computed, (iii) the -m- eigenvalues and ei-
genvectors are extracted from the correlation matrix, (iv) the selection of the number of factors
using certain criteria, (v) the rotation of factor axes im order to achieve the “simple structure™ of
factor loadings matrix, and (vi) the matrix of factor scores is computed (Papatheodorou e al.
2006).

Table 1 - Centralized presentation of main quantitative parameters.  indicates variables
with significant (sig. Ievel < 0.01) increasing or decreasing trends

Mirkinos Sidirokastro
Kendal's | Missin . Kendal's | Missin .
Sig. level valuesg mishit Sig. level valuesg IHTE
Ty 0.17 14.50% | 0.053% 0.15 12.28% | 0.10%
| E.C | 310°" | 0.00% [042%[1410°™ ] 0.00% | 0.26%
Ph 0.48 7.25% (0.19% 0.06 4.68% | 0.22% |
Cl 0.8 2.17% | 021% 0.02 3.68% | 0.30%

SO, | 10°% | 1522% [ 0.40% | 210°7 | 643% | 0.31%
HCO; | 089 [1522% [0.30% [ 910°% | 6.43% |021%
TAK | 1710°% | 1522% | 0.36% | 510°% | 6.43% | 0.22%
Na 105 [ 1522% [ 0.11% | 510°% | 6.43% | 0.12%
Mg 0.09 15.22% | 0.38% | 7107 | 6.43% | 0.27%
| Ca 0.95 1522% [ 0.22% | 0.001'” | 6.43% | 0.28% |
SAR | 10°% | 15229% [0.08% | 0019 | 6.43% | 0.13%
Alk 10°7 | 15.22% | 0.12% 0.03 7.02% | 0.13%
T.H | 031 [1522% | 037% | 610°% | 6.43% | 0.26%
D.O | 10°% | 1377% | 025% | 10°% | 11.70% | 0.15%
SAT | 10°¢ | 11.59% [ 0.42% | 10°% | 936% | 027%
NO, 0.41 13.77% | 0.11% | 0.08 5.85% | 0.20%
NO; | 10°9 ] 13.77% | 0.29% | 10°9 | 585% | 0.28%
NH; | 3110°C | 14.49% | 0.22% | 510°9 | 7.02% | 0.64%
T.P 107+ 13.77% | 0.15% |  0.92 5.85% | 0.25%

2.5.2. Calculation and interpretation of the factor scores

Afler the number of the factors is decided and the factor loadings are determined, factor scores
were calculated by applying matrix multiplication between the mxn CLEANed data set (D) and the
nxf matrix of the factor loadings (L),
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Equation 4 - Factor scores definition function
Smx fy=D(mxn)-L(nx f)

where -m- is the number of time steps, -n- is the number of the variables and -f- is the number of
factors. In order to emphasize the variables with high loadings and ignore the variables with com-
parably low loadings, the CLEANed data matrix is multiplied by the 3™ power of the factor load-
ings. Use of the third power ensures that the sign of the loadings will not be altered. This is done
bearing in mind that remarkably high positive or low negative loadings in a particular factor indi-
cate variables that are controlled by the same environmental mechanism which however affects
them quite the opposite. Multiplication of a standardized variable with its negative factor loading
causes inversion of its values and thus the corresponding time structure will be emphasized when
added to the variables with high loadings, of the same factor. The forimula for calculating the fac-
tor scores finally used is the following:

Equation S - Factor scores used function

S(mx f)=std iLsrtd [(D(m xn)] <[ L(nx f)ﬂ

where -std- indicates the standardization process. As far as we know, no scientific works using the
factor scores of temporal data in such a manner for teinporal data has ever been done.
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Figure 1 — Sampling structures for Mirkinos site. a) and ¢ ) indicator functions diagram of
Ca and E.C. respetively, b) existing-value diagram of Ca and d) FFT spectrum of the indica-
tor function for E.C.

3. Results
3.1. Sampling inspection and pre-treatment of the data

Mirkinos and Sidirokastro sampling sites were examined for their samnpling scheme according to
the indicator and existing-values functions, described in paragraph 2.3.1. Figure 1.a and b show
characteristic indicator and existing-value diagrams that were created for Ca of Mirkinos site.
Black vertical lines of the indicator function diagram correspond to successfully sampled values
while spaces refer to periods of no sampling. At the existing value diagram the number of samples
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It 1s-obvious that the sampling scheme is quite irregular through the field survey period and there
are time gaps without measurements that lasted even 3 to 6 months. These diagrams offer great
insight to the data and define the vamables to be pre-treated. Figure 1.c shows the indicator
function of E.C. (Mirkinos site) that is the vanable with the best sampling scheme for the
particular site. Even in this case the sampling rate is not even but varies slightly.
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Figure 2 — Set up and convergence of the CLEAN algorithm: a) Centralized misfit diagram
for ten variables of Sidirokastro site and b) “CLEANed” (solid black line) versus “dirty”
spectrum (dashed gray line) of variable E.C., Mirkinos site

Both datasets of Strimonas River were examined for their trends as described in paragraph 0.. Nine
variables with significant trends were located in Mirkinos and thirteen in Sidirokastro sampling
site (see Table 1, Kendal’s Sig. level field). These variables were detrended by subtracting their
fitted linear trend. Detrending process is not essential however it ensures that Factor Analysis will
not correlate variables with similar trends but it will concentrate on periodic similarities.

3.2. Spectral analysis resuits

Two main steps are essential for the application of the CLEAN algorithin (see paragraph 0). These
are a) determination of the output time step of the inverse discrete Fourier transform applied to the
CLEANed spectrum and b) choice of the iterations needed for the misfit (see Equation 3) to reach
convergeiice. FFT spectrum was created (see. Figure 21d) for the indicator function of the most
completely sampled variable (i.e. E.C., Mirkinos site), in order to determine the time series’ tiine
step. Figure 2d suggests a month’s (frequency 0.033 corresponds to 30 days period) main sampling
intension, although smaller periodicities are also apparent in the indicator function’s spectrum (e.g.
7 days). Thus, a Fifteen days’ time step output is chosen to comply with the Nyquyst criterion. To
determine the iterations number 10 randomly selected variables (from Mirkinos site) were used to
create a misfit plot as shown in Figure 2a. An iterations number equal to 3.000 is considered coin-
pletely suitable to all the variables while it provides almost perfect match between the raw and the
CLEANed data.

To further validate the method results, diagrams plotting the initial data versus the processed ones
were created. Figure 3 demonstrates the relation between the CLEANed and the raw data for two
characteristic variables of Mirkinos site (NO; and Ca) that have a sufficient number of periods
characterized by missed samples. These tiine windows are marked in the figures with transparent
grey regions and they include the values predicted by the CLEAN algorithm for the particular pe-
riods. Since environmental data are controlled by periodic phenomena it is secure to consider in-
terpolated data close enough to reality. As far as all raw data points are identified with the pre-
dicted ones, it is certain that the interpolated values reflect the truth.

WYnoeiakn BiBAI0BAKN Oed@pacTog - TuAua MewAoyiag. A.lNM.O.



---0--- Raw s Cleaned_15
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Figure 3 — Initial time series plotted versus the CLEANed ones (15 days time step output).
a) NO; and b) Ca, Mirkinos site

3.3. Factor analysis results

Factor analysis was applied to both datasets of Strimonas River and the prevailing relations
between the variables have been investigated. For both Mirkinos and Sidirokastro sites a six
factors model was decided to be used as the most appropriate. For brevity reasons we will examine
analytically only the two factors with the greater total variance explained. For both sites in the first
factor variables E.C., HCO;, T AK. and T .H. share significantly high positive loadings while the
second factor is characterized by the variables: Na, S.AR. and Alk (Alcalinity of sodium). The
former represents more than 20 % of the total variance of the data and the latter represents inore
than 15 % of the total variance. The first factor corresponds to the mechanisms that control the
salinity and total hardness of the river while the second factor corresponds to human pollution
caused by agricultural activities and urban wastes.

The scores of the two major factors for each site were calculated according 1o Equation 5. A
coinparison between the first two factors of each site and the variables that they represent is
illustrated in Fig. 4. It is obvious that factor scores can reveal the temporal expressions of the
variables that they represent with remarkable accuracy. This is a very useful tool when data mining
is to take place for a data set that consists of a great number of variables. The wariablcs can be
easily grouped according to the mechanisms that they are controlled from and then a characteristic
temporal variation can be visualized for each group.
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Figure 4 — Factor scores plotted versus the variables that they represent. a) and b) first and
second factor of Mirkinos site, ¢) and d) first and second factor of Sidirokastro site
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