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Abstract

On 26 December 2004 and 28 March 2005 occurred two of the largest earthquakes
of the last 40 years between the Indo-Australian and the southeastern Eurasian
plates, with moment magnitudes Mw=9.1 and Mw= 8.6 respectively. Complete data
(mb 2 4.2) of the post-1993 time interval (Fig. 1) have been used to apply Poisson
Hidden Markov Models (PHMM in identifying temporal patterns in the time series
of the two main shocks. Each time series consists of earthquake counts, in given and
constant time units, in the regions determined by the aftershock zones of the two
main shocks. In PHMM each count is generated by one of m Poisson processes, that
are called states. The series of states is unobserved and is, in fact a Markov chain.
The model incorporates a varying seismicity rate; it assigns a different rate to each
state, and detects the changes of the rate over time. In PHMM, unobserved factors
related to the local properties of the region, affect the earthquake occurrence rate.
Estimation and interpretation of the unobserved sequence of states that underlie the
data contribute to a better understanding of the geophysical processes that take
place in the region. We applied PHMM to the time series of earthquakes preceding
the two main shocks, and we estimated the unobserved sequences of states that un-
derlie the data. The results showed that the region of the 26 December 2004 earth-
quake was in state of low seismicity during about 400 days before the earthquake
occurrence. On the contrary, in the region of the 28 March 2005 earthquake a tran-
sition from a state of low seismicity to a state of high seismicity was observed imme-
diately after the occurrence of the big earthquake of 26 December 2004.
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NepiAnyn

Zrig 26 Aexeufpiov 2004 kai oric 28 Maptiov 2005 onueicdBnkay dvo ard TS 1oyvpo-
TEPEG OELOUIKES COVHTEIS TV Tedevtalimv 40 ypovav avausoa oty Ivoo-Avotpatiovi
kou oy Bopeioavarolixsy Evpaciotixs mldxe, ue peyéfn porne Mw=9.1 xar Mw=
8.6, avticrorya. [TAipn dedouéva (mb > 4.2) ¢ pustd 1o 1993 ypoviric nepiddov ypn-
agoroBnray yia ™mv epapuoyi twv AovBavoviwy Movtédwy Mdprofl ue oxond
avoyvVOPITH TV PATEMV TEIGUIKOTHTAS OTIS YPOVOUEIDES TMWV 0DO 1GXDRMDV TEIGLUMOY.
H kdBe ypovooeipd aroteleitar amd TG unviaies guyvoTHIes TV CEICUMOV IOV O-
petofnray oug petaoeiouikés {oveg Twv 0bo kbpiwv getaudv. O kabopiouds v pe-
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TAOEIgUIKOY {OVOY TV JDO0 10YLPOV OEI0UAV fACITTHKE 0T YWPIKH KATAVOU TV
perageionmy tovg. 2ta Aavlavovra poviéia Maprofl n kale mapatipnon napdyeral
ano pla aro m karavoués Poisson o1 omoies ovaudloviar karaotaces. H ypovoaelpa
TWV KATACTACEWV VAL UY TAPUTHPODUEVY] Kal OTHV TPEYLOTIKOTHTIA OMOTEAST pia
Moprofiavy advoida. To poviélo evempariver petafloAlopevo pplué oetoudtyrag,
avriotoLyel OlapopeTikd polud celopixdtiras o kabe kardotaoy kKot avayvapiler tig
petaflolAés rov poBuot cetouikétinTas oro xpovo. Zra Aavlavovra poviéia Maprof,
L TOPATHPODUEVOL TOPUEYOVTES OV TYETILOVIAL UE TIS TOTIKES I010THTES THS TEPLOXHS,
Bewpodvrar ot emevepyodv oto pplud ceiopuxotyrag. H extiunon xou v epunveia e
U maparnpoduevns arxoiovfias Tmv KaTaoTAoE®Y TOD DROKEWVTHL TWV Jedouévav
ovufiéAlovy oy kadvtepy kKatavonon twv I eweooik@y dladikaoidy mov Aaufidvony
xopa oe pia mepioyy. Xnv epappoys pog epapuooaus o Aavlavovra Movtéla Map-
KOf OTIC YPOVOTEIPES TWV OV0 10YVPMYV OEIOHMOV KQl EKTIHHOAUE THY akolovBia Twy
KATAOTATEWY oD VIOKEIVTUL TV ogoouévay. Ta anoteléopara mov eéiyBnoay édei-
av 6u yia mepinon 400 pépes mpiv amd tov 1oyvpo oelouéd tov dexeufipion n mepioxy
Pproxérav oe kataotaon yauning ociouikotyras.  AvnBétag, otny mepioyy Tov Loyy-
pod aeiguob tov Maption mapoatnpnBnke petafory oTHY KaTAoTaon CEICUIKOTHTAL,
and KOTAoTAoH YOUNANC OEITHUIKOTHTAS OF KATAOTAON DYHANG OEIOIKOTHTAS, QUECHS
HETA TOV 1o30p06 ae1oud tov Aexeufipiov.

Aééers wAeadra: Poludc oeiouixomyrag, Moprofiav alvoida, p3 maparipovueves
KOTQOTROEL.

1. Introduction

Seismic events do not occur at regular time intervals, making the use of standard time series rather
difficult. Time series with zeros can not be analysed with standard time series. An idea that is used
in practice for the detection of temporal seismicity variations, is to count the number of events in a
given time period, e.g. one month, and then to examine the resulting series. The Poisson
distribution is the most adequate one to describe counts. One of the most widely known Poisson
properties is that the mean of the counts equals the variance. In some cases, however, the mean is
greater than the variance and the data are ovberdispersed. It is known that Poisson Mixture Models
(PMM) can be applied to overdispersed heterogeneous data (McLachlan and Peel 2000,
Titterington et al. 1985). However, data collected from the same area in successive time intervals
tend to be dependent and, therefore, appropriate models for statistical modeling must
accommodate this dependent structure. A class of models that allows for dependence between the
data in addition to overdispersion is that of PHMM. The PHMM are extensions of the well known
PMM and they decay to PMM in case of independent observations.

[n PHMM each observation is generated by one of m Poisson distributions, called states. These
states are unobserved (i.e. cannot be observed directly), hence the name PHMM. Each state has a
different seismicity rate, while the series of states is in fact a Markov chain. Which state will
generate the next observation depends on which state generated the current observation, through
the transition probability matrix of the Markov chain. PHMM allow us to estimate the unobserved
sequence of states that underlie the observation sequence. In this way we may reveal unknown
properties of the mechanism that generated the data, and classify the observations with precision
and objectivity. A recent PHMM application in identifying seismicity patterns can be found in
(Orfanogiannalki 2006).

PHMM do not assume a constant rate for a long period of time. They incorporate a varying
seismicity rate which is more realistic than a long-term constant rate. In fact, when a long-term
constant rate is assumed short-term variations in seismicity are disregarded, although short-term
variations in seismicity are important for the evaluation of the seismic activity in a region. PHMM
assign a particular rate to each state. In this way, observations are classified according to the rate
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based on the rate that was determined for the previous observation. Additionally, changes to
seismicity rate are detected.
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Figure 1 - Time-magnitude relationship for events occurring in the entire region examined
from 01.01.1973 to 14.03.2006. The cut —off magnitude for completeness has been selected
equal to mb = 4.2 for the post-1993 time interval

2. Data

The data sources are the USGS and ISC earth-
quake data files for the region E defined by the
rectangle with coordinates -1.00°N-15.00°N and
91.00°E —100.00°E. At first, this region was di-
vided into two sub-regions, N and S, based on the
rapture zones of the two big earthquakes of
26.12.04 and 28.03.05, respectively (Lay et al.
2005). The solid line in the map (Fig. 2), shows
the boundary between these two regions; the
black stars correspond to the epicenters of the two
main shocks. According to geophysical evidence,
the rapture in the sub-region N was not uniform
(Ammon ef al. 2005). The rapture started in the
southern part of the region and then propagated to
the north. Based on the progress of the rapture,
we divided sub-regiou N into two smaller regions
N; and N, represented by the two dashed lines
(Fig. 2). Data completeness analysis based on the
magnitude-frequency relationship showed that the
data in all regions are complete for Mb > 4.2 for
the time interval from 1994 onwards. All data sets
are actually discrete valued time series, since they
count the number of events in twenty-three day
time periods. This time unit was selected so as to
have an integer number of periods covering the

time between the two big earthquakes of 26.12.04 .
and 28.03.05. Figure 2 - Map of the area
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- " 3. Poisson hidden markov models: definition and notation

e PHMM are discrete time stochastic processes that consist of an unobserved finite state
Markov chain {C,: teN} having m states and an observed sequence of a non-negative
integer valued stochastic process {S,: teN} such that for all positive integers T,
conditionally on C""={C,:=1,...,T} the random variables S,,....S7are independent.

® The marginal distribution ot S is:

m
ps)= T a fG,14)
J=1
m e_/?’/?,s
Whereal.>0, i=1,, .0, J al.:l andf(slxl)=—[—,s=0,1,..., A20
= S!

e The conditional distribution of S, given C is:

. e# ixlisf
”s!izP(Sz‘=St!Ct=l)= Sf!

s 8 B0 00y 4

i

v
o ]

e The transition probabilities of the Markov chain are:

7y =PC, =I1C,_ =)

i.e. y, is the probability to move from state /, at time /-/, to state j at time 7, for any states
ij=1,...,m and for any time =1,...,T

4. Estimation of the unknown parameters

e Estimation of the parameters of interest is obtained via the EM-algorithm (Dempster e/ al.
1977). The EM-algorithm, though, may be significantly simplified using the “forward” «,(i)
and “backward” b,(i) probabilities introduced by Baum et al. (1970)(i=1,...,m, =1,...,T).

e The "forward” probability a,(i) is the joint probability of the past and present observations
and the current state of the Markov chain:
=P oess, ,C, =1
a (=P ,..8,,C =0)
@ The “backward” probability b,(i) is the conditional probability of the future observations
given the current state of the Markov chain:
b (1)=P(s g B |, =
The computation of the “torward” and “backward” probabilities is based on recursive
algorithms (Leroux et al. 1992).

e The indicator random variables u,(t) and v,(t), where u,()=1, if C~ and 0 otherwise and
op(f)=1 if C.,=j and C~=k are treated as missing data in the EM-algorithm. The EM-
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algorithm is an iterative algorithm that consists of two steps. If we denote as starting values
the values (A;,....4,,71/5....Ymm), the two steps of the EM-algorithm are:

E-step: Calculate (7} and v,(#) using equations | and 2, respectively.
Equation 1 - Calculate u;(?)
010

m

2.ar(i)

i=1

u(

Equation 2 - Calculate v;(2)

a, (l)bt (J)}/gﬂ:\,/

U/k (l) = m
2.ar(0)
i=]

M-step: Update the estimates py, ij=l,...om, 4, i=l,...,m using equations 3 and 4,
respectively.

Equation 3 — Update y

Zujk (t)
Zi“ﬁ )

=2 i=i

(new) _

Vik

Equation 4 — Update 4;
T

u,(0)s,
(new) __ =l
A =

T
2u(t)
r=1

If the difference between the starting values and the new estimated values is less than 107",
stop iterating, otherwise set as starting values the new estimated values and go to the E-step.

The estimation of the unobserved state C, at time /, that underlies the corresponding
observed state S, is based on the probability:

a ()b, (i)
P(C, =i|sl,...,sT)=—;1’—
The state that maximizes the above probability consstitutes an estimate of C,.
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algorithm is an iterative algorithm that consists of two steps. If we denote as starting values
the values (A/,..c.Am P15 s ¥mm)s the two steps of the EM-algorithm are:

® E-step: Calculate (1) and v,(?) using equations 1 and 2, respectively.

Equation 1 - Calculate (1)

a,()b()
m »
2.a,(i)
=l
Equation 2 - Caleulate vj(¢)

u ()=

a (06,

Ujk(i):

m
>ar (i)

i=1
® M-step: Update the estimates yu, iy=l,...,m, 4; i=l,...,m using equations 3 and 4,

respectively.

Equation 3 — Update y

ZUJk (f)
>3 0,0

=2 i=l

(new) _

;V Jk

Equation 4 — Update 4;
T

u, (0)s,
=l

(new) __ ¢
/1,1 -

T

2u, ()
t=1
[f the difference between the starting values and the new estimated values is less than 107,
stop iterating, otherwise set as starting values the new estimated values and go to the E-step.

The estimation of the unobserved state C,, at time ¢, that underlies the corresponding

®
observed state .S, is based on the probability:

a, ()b, ()
PIC =i|s,,....8p)=———
(€ =ilspwsp)==,
.
% a()
i=1
The state that maximizes the above probability consstitutes an estimate of C,.
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5. Analysis

We applied PHMM to the entire region E, as well as to the sub-regions S, N, N; and N,. The model
selection for each region was based on the AIC information criterion (Akaike 1974). Once the
model has been selected (i.e. the number of states was determined), the model parameters
estimates for each region were obtained via the EM-algorithm (Section 4). The Poisson rates and
the transition probability matrix are illustrated in Table 1. Additionally, the unobserved sequence
of states that underlie the data was estimated for each region.

Table 1- Model Parameters estimates

Segment | Number of | Component Aic Log- Parameters estimates
components Number i likelihood
Poisson | Transition Probability
Rates matrix
Ad
E 4 l 707.7 | -337.877 4.85 0 093 0 003
) 8.86 0465 0526 0 0.00
3 961 0.104 0 0.658 0.23
4 0 0 1 0
28.20
S 3 1 3440 | -163.016 1.78 0.966 0.016 0.018
2 4.13 0.133  0.689 0.178
3 13.15 0 0.573 0.427
N 3 1 425.9 | -203.985 1.46 0.490 0.424 0.086
2 5.21 0.406 0495 0.099
3 19.42 0213 0787 0
NI 2 1 2089 | -145.493 | 138 {oou 0-0891
2 5.17 L0.460 0.540
N2 3 1 347.5 | -164.782 1.29 0.742 0206 0.052
2 4.15 0803 0  0.197
3 18.15 0.334 0.666 0

The application of PHMM to the complete data set for the entire region examined showed (Fig. 3)
that the state of seismicity ranges only from 1 to 2 in the interval 1994 — 2002; that is, the
seisinicity is relatively low. From 2002 onwards a transition to higher states of seismicity is
observed; that is, to states 3 and 4, with rates 9.61 and 28.20 (events/23days), respectively (Table
1). To emphasize on the period of the increased seismicity, we narrow the time window examined.
The seismicity states were further investigated for the time interval 2000 — 25.12.2004 (inclusive)
[or sub-regions N, N; and N,, as well as for the time interval 1.1.2000 — 27.3.2005 (inclusive) for
sub-~region S.

Sub-region S was characterized by state 2 before the big earthquake of 26.12.04 which occurred in
sub-rezions N, (Fig. 4b). However, a transition from state 2 to state 3 of high seismicity was
observed immediately after the occurrence of the big earthquake of 26.12.04. This may imply a
triggering effect due to stress transter from N, to S.

In sub-region N, no state of high seismicity is observed (Fig. 4d) before the hig earthquake of
26.12.04. On the contrary, during about 400 days before the earthquake occurrence the state of
seismicity is 1, that is, low seismicity prevails. The low seismicity observed in sub-region N, is
due to the fact that only one strong earthquake occurred in the time interval examined. This event
though was deep and was not followed by aftershocks which would increase the seismicity in the
region. In sub-region N as well as in sub-region &, the state 3 of high seismicity appears at some
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certain points of time (Figs 4a, c}, and these are attributed to aftershock activity associated with
strong earthquake
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Figure 3 - Estimated states, C, that underlie the data against time (in 23-day periods) for the
entire region (£) examined. The zero point of time is 01.01.1994
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Figure 4 - Estimated states, C, that underlie the data against time (in 23-day periods): (a)
sub-region V, (b) sub-region S, (c) sub-region N; and (d) sub-region /V;. The zero point of
time is 01.01.2000 for all the sub-regions examined

6. Conclusions

PHMM provide a diagnostic tool for identifying changes in seismicity states. The model
Incorporates a varying seismicity rate, detects the changes on the rate over time, and assigns a
particular rate for each state. Estimation of the sequence of unobserved states that underlie the data
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l is attained with relative easiness. In the region of the 26.12.04 earthquake during about 400 days

- before the earthquake occurrence the state of seismicity is 1; that is, low seismicity prevails. On

the contrary, in the region of the 28.03.05 earthquake, before it occurred, a transition from state 2
to state 3 of high seismicity was observed immediately after the occurrence of the big earthquake
0f 26.12.04. Our analysis was based on the assumption that the time unit in which we count the
number of events is fixed. It would be interesting to examine how the selection of altemative time
units can change the estimated patterns.
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