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Abstract 

Estimation of the seismicity rate changes caused by a major earthquake is based upon the assump-
tion that the earthquake occurrence can be described by stochastic processes. Three stochastic mod-
els are applied to the data, i.e. the homogeneous Poisson model, the non-homogeneous Poisson
model with two different rate functions, and the Autoregressive model AR(2). The two latter models
seem to be adequate to properly simulate the earthquake production in a given area. The identifi-
cation of the model which best fits the data, enables the estimations of the seismicity rate changes
and the numbers of the earthquakes following a specific main shock.
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1. Introduction 

Many researchers have focused on applying statistics and the probability theory to earthquake se-
quences, in order to study the temporal and spatial distribution of triggered activity following large
earthquakes. A useful tool in statistics for modeling and analyzing spatial data is a point process, which
can be used as a model for random events in time. Many point process models, where each point rep-
resents the time and location of an event, have been proposed (Vere–Jones, 1992; Ogata, 1999; among
others) and several attempts have been made to estimating the changes in earthquake production that
have been caused by a specific event. The special case of seismicity rate decreases (i.e. seismicity
shadows) was also examined in previous studies (Marsan, 2003; Marsan and Nalbant, 2005).

The simplest approach to this goal is to consider a stationary process taking into account only the
background seismicity (Toda et al., 1998, 2002), which however leads to underestimation of the rate
change (Marsan, 2003; Felzer et al., 2003). Then, stationarity cannot be generally assumed and the
declustering of the catalog is a common way to remove nonstationarity from the data (Matthews
and Reasenberg, 1988; Kilb et al., 2000; Gomberg et al., 2001; Wyss and Wiemer, 2000). On the
other hand, aftershocks comprise a major portion of an earthquake catalog including important in-
formation about the rate changes. Therefore other researchers have tried to model the aftershocks
rather than remove them, e.g. Marsan (2003) tested several models such as the autoregressive model,
a sum of N power-laws, proposed by Utsu (1970) as a generalization of the model presented in Ogata
and Shimazaki (1984) and Woessner et al. (2004) and the ETAS model (Ogata, 1988). 
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The purpose of the present work is to study the temporal structure of triggered sequences at short
time scales after a large earthquake. Therefore certain statistical models are applied on data from the
2001 Skyros sequence, i.e. the homogeneous Poisson model, the non–homegeneous Poisson model
and the autoregressive model AR(2). 

2. Methods

In order to analyze the data, firstly the homogeneous and non–homogeneous Poisson model is con-
sidered:

Homogeneous and Non – homogeneous Poisson model: A Poisson process with constant rate λ,
i.e. a time-independent rate, is known as a homogeneous Poisson process. In this case, the
waiting times of the point process are exponentially distributed with a mean μ=1/λ. The ex-
pected number of earthquakes in any interval of length t equals to λt, and the probability
that there are exactly n occurrences in this interval is given by

(1)

By replacing the constant λ with a function λ(t), which gives the rate of earthquakes at time t, the
process becomes a non–homogeneous Poisson process. In this case, the number of earthquakes in
any interval is also time dependent, and the mean rate in an interval [t, t+Δt] is given by

(2)

The probability that there are exactly n occurrences within the specific interval is then given by:

(3)

Two functions expressing λ(t) are tested in the present study, namely

(4)

and 

(5)

both selected because of their property of allowing the rate decaying as time passes; they differ in
that. λ(t) given by equation (4) decays rapidly to zero while λ(t) given by (5) may decay smoothly
to 0 (by a suitable choice of the parameters).

In each case a specific region must be selected, with dimensions a few times larger than the main rup-
ture length. Determining the study area, the threshold magnitude must be defined to ensure the com-
pleteness of the data set. The next step is to define the duration of the earthquake catalog, which depends
on the purpose of the specific study. This means that, naming T0 the time of occurrence of the main
shock, the catalog expands within the interval [T0, T] where T is located several days after T0.

Continuing with the data processing, the time intervals between consecutive events occurring at
times ti (ti are measured from the beginning of the observation period, i.e. T0) are computed and
tested using the chi–square test; the null hypothesis is that the inter–arrival times are exponentially
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distributed with a mean μ. If the null hypothesis is true, then the number of occurrences follows a
Poisson distribution with a rate λ, which is constant during the tested interval (homogeneous Pois-
son process). 

Next, since the rate of the aftershock sequence over the first few days after the main shock is char-
acterized by strong changes, (different) constant rates are assumed over sub–intervals of the time pe-
riod examined. To deal with that, the time interval [T0, T] is separated into short intervals [Ti, Ti+1],
each one tested for its homogeneity as a Poisson process with a rate parameter λi. Each λi is com-
puted taking into consideration the number of events in the respective time interval, which is not nec-
essarily equal in all sub–intervals. The entire set {λi} is then used as the input data to fit the selected
equation that best describes their evolution within [T0, T]. In the present study the equation for the
function λ(t) which is fitted to the data is of the form λ(t)= , and the parameters a and b are es-
timated by the least squares’ method.

Finally, the non–homogeneous Poisson process is assumed to have a rate function of the form

λ(t)= , the parameters a and b being estimated by the maximum likelihood method. This
intensity function can be an increasing or decreasing function, according to whether b>1 or b<1 re-
spectively. Based on the form of λ(t), the aforementioned process is named a process with a Weibull
rate function or simply a Weibull process. The special case of b=1 is the exponential case, which has
a constant hazard rate and is characterized by the memoryless property. The maximum likelihood
estimators for a and b are given by

(6)

Autoregressive Model: Another way to model the sequence of the earthquakes is to consider a ran-
dom variable Z(t), t≥0, representing the number of earthquakes at any time t. The set {Z(t)}, t≥0, con-
stitutes a time series, i.e. a family of stochastic processes. The model which is fitted to the data is
the autoregressive model of order p, p∈N+, abbreviated as AR(p). In statistics, signal processing
e.t.c., AR(p) is often used to model and predict various types of natural phenomena. The AR(p)
model assumes that 

(7)

where φi are the unknown parameters and αt is a white noise function with a zero mean and vari-
ance σ2. The time series is considered to be stationary. Then the parameters φi can be estimated
using several methods, e.g. the Yule–Walker equations which constitute a set of linear equations re-
lating the unknown parameters with the autocorrelations. Τhen:

(8)

where the coefficients ρi , i=1,2,…,p-1 stand for the autocorrelations which give the correlations of
the values of the process against time-shifted versions of themselves. 

3. Models application to the 2001 Skyros sequence

An investigation is now performed to the 2001 Skyros sequence, with the main shock of Mw=6.4 to
have occurred on July 26, 2001 Skyros. Based on the data and results for this sequence from
Karakostas et al. (2003), a region is selected as mentioned before, i.e. a few times larger than the rup-
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ture length. The catalog used was found to be complete for events with Mc>3.5. The events are sep-
arated into two sets, for the time intervals, [T0–tB, T0] and [T0, T0+tA], where T0 is the time of oc-
currence of the main shock and tB and tA denote selected time periods before and after the main
shock, respectively.

3.1 Homogeneous Poisson process

The homogeneous Poisson process assumes constant rates, λB and λA, before and after T0, respec-
tively. It is selected that tB=600 days and tA=4 days and the homogeneous Poisson model is fitted to
the recorded data in order to estimate the number of events in each time interval. The goodness of
fit is tested by means of the chi-square test. Within [T0-tB, T0] 19 events occurred preceding T0
whereas 116 events followed T0, occurring into the interval [T0, T0+tA]. The inter-arrival times of
the earthquakes are then tested for being exponentially distributed. The values of the statistical X2,
the parameter μ of the exponential distribution of times between subsequent events, and the estimated
mean λ (per day) of the two homogeneous Poisson processes, before and after the main shock, are
summarized in Table 1. 

600 days before the main shock there are 19 data, giving a rate of 0.0317 events per day, with a
mean inter-arrival time of length 31.5454 days. On the other hand, 4 days after the earthquake there
are 116 data, which lead to a rate of 29 events per day and a mean inter-arrival time of length 0.034
days. As it is shown in Table 1, those time intervals were tested by means of the chi-square test, and
the statisticals X2 are smaller than the critical value which is equal to 5.02 at the a=0.05 significance
level (for two degrees of freedom).

The following step is to compute the probability of having specific numbers of events in the two dif-
ferent time intervals, using equation (1), where λ takes the values λB and λA. The duration t of the
time period (0, t) appearing in equation (1) can either be smaller or larger than tB and tA. If it is as-
sumed that the process does not change for times outside the intervals [T0-tB, T0] and [T0, T0+tA],
then t can be larger than tB and tA (extrapolation). Then the probability derived via (1) refers to a ho-
mogeneous Poisson process with the same parameter λ as the one estimated within the correspon-
ding interval. The results of this procedure can also be presented using the survival function which
is derived through the Poisson cumulative distribution function given by

(9)

and representing the probability of having up to N earthquakes during the procedure with rate λ. In

Figure 1 the survival functions estimated for the time periods before and after

the main shock are shown; the plots are derived in Matlab by connecting the points , x=0,
1, … . Then, the probabilities of having more (or less) than any number of events can be derived by

Table 1. The values of the means μ of the exponential distributions of the inter–arrival times, and the λ–
rates of the respective Poisson distributions.

time period No of data statistical X2 μ λ

(-600,Τ0) 19 3.9660 31.5454 0.0317

(Τ0, 4) 116 2.1857 0.0340 29
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means of the survival functions, e.g. in Figure 1b the probability of having more than 17 earthquakes
in the interval [1, 2) is 0.989 (18 events are observed), the probability of having more than 25 earth-
quakes during the fifth day is 0.736 (18 events are observed) and the probability of having more than
170 earthquakes in the time interval (5, 10) is 0.600 (36 events are observed). It is obvious that the
homogeneous Poisson model does not fit well the data, especially for large values of t. This obser-
vation leads to a need of replacing the constant rate λ with λ(t).

3.2 Non–homogeneous Poisson process 

Dividing the aftershock sequence into subsets corresponding to short time intervals, each one is
tested for its homogeneity as a Poisson process (using the chi–square test). The length of the inter-
vals is not necessarily the same, whereas there are different values, λi, for the rates of each interval.
The values of means μi (of the exponentially distributed inter–arrival times) and mean λi are shown
in Table 2. In Figure 2 the values of λi are plotted versus time t (in days) after T0 (main shock oc-
currence time), which is mentioned as 0–time. Because of the fact that λ is decaying with time t, for-
mula (4) can be adopted. In order to estimate the values of the parameters a and b in (4), the
least–squares method is applied and the results are given in Table 3. Now, for the first three days after
T0, the time interval is divided into four subintervals and the respective four–different–values of λi

are found.  Fitting the curve λ(t)= to the data is shown in Figure 3. 

If the estimated λ(t) can be accepted also for larger intervals than the first three days since the main
shock, then it comes out that the number of earthquakes during those intervals will not change sig-
nificantly, as the function λ(t) decays to zero rapidly as t increases. It should be mentioned that as-
suming that the process does not change out of the time borders which were set for the parameter
estimation, is a rather arbitrary admission. In Figure 4b the theoretical cumulative number of events
along with the observed data is presented.

In Figure 4a the estimated probabilities of having a number of events in different time intervals are
presented, using the survival function. Equation (3) can be used in this case to estimate the Poisson
probability, where the expected number of events in any interval (t; t+Δt) is λ(t; t+Δt), given by (2);
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Fig. 1: Estimated survival curves of the number of events in the time periods (a) before and (b) after the main
shock, using the homogeneous Poisson model.
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e.g. the probability of having more than 50 earthquakes within the interval [T0, 1] is 0.9993 (78
events are observed), and the probability of having more than 90 earthquakes in the interval [T0, 5]
is 0.111 (134 events are observed). Obviously, the model underestimates the number of events as time
increases, as it is shown in Figure 4b.

3.3 Non–homogeneous Poisson process with a Weibull rate function

In this case equation (5) is used to compute the expected number of events in any time interval as
given in (2) and (3). In Table 4 that follows, the estimated values of parameters a and b for the
Weibull rate functions are shown. These parameters are derived from equations (6) using the max-
imum likelihood method. The values presented in Table 4 come up from different sets of data each
one being a subset of the one that follows. For example, if the data come up from observing only

Table 2. The values of the parameters μ of the
exponential inter-arrival times, and the
rates λ of the Poisson distributions in
subsequent time intervals.

Time period (in days) μ Λ

(Τα0, 0.12) 0,0046 208,3333

(0.12, 0.36) 0,0096 104,1667

(0.36, 1) 0,0217 43,75

(1, 3) 0,0695 14,5

(3, 5) 0,0643 13,5

(5, 9) 0,1390 7,5

(9, 16) 0,2167 4,5714

(16, 36) 0,5936 1,65

Table 3. Estimated rate function
λ(t)=exp(α+b*t), using the least
squares method.

Value Standard Error

α 5,49772 0,10446

b -3,06949 0,66913

Adj. R2= 0,96145

Fig. 2: Rates λi plotted versus time (in days).

Fig. 3: Observed data λi and fitted function λ(t)= ea+bt.
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the first day after T0, then the expected number of events for the following days is overestimated,
as shown in Figure 5. Taking more and more data into account (from the first 2, 3, 4 days etc) the
estimation of the oncoming process comes closer and closer to the observation and the model fits
the data well.

Assuming that the underlying process is the Weibull process which is known up to the third day
after T0, equations (2) and (3) are used to compute the possibility of having specific numbers of
events into several time intervals, and then the survival function is estimated. The results are sum-
marized in Figure 6, and the probabilities of having more (or less) than any number of events can
be derived by means of the survival functions. For example, the probability of having more than 10
earthquakes during the fourth day is 0.8971 (9 events are recorded), and the probability of having
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Table 4. Estimated parameters of the Weibull
distributions

Time period
(in days) estimated a estimated b

(1rst day 9.1338*10-4 0.6257

1rs-2nd day 2.5054* 10-4 0.5085

1rs-3rd day 1.2807* 10-4 0.4647

1rs-4th day 8.7278* 10-5 0.4435

1rs-30th day 8.7228* 10-6 0.3584

Fig. 4: a) Survival functions of the number of events in time periods after the main shock, using the non-ho-
mogeneous Poisson model with λ(t)= ea+bt. b) Cumulative density function of the theoretical number of the af-
tershocks (via the non-homogeneous Poisson model), and the cumulative number of observed data.

Fig. 5: Cumulative number of earthquakes for the
Weibull-rates case for different data set.
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more than 135 earthquakes within [T0, 5] is 0.5128 (134 events are recorded). It turns out that the
model is adequate for describing the earthquake sequence, especially for 1<t<10.

3.4 Autoregressive model AR(p)

The number of earthquakes can be considered as a time series and among the several models deal-
ing with that, the Autoregressive model AR(p) can be chosen and applied to the data, following
Marsan (2003). AR(p) models explain a series of observations where the value of an observation de-
pends on the (values of the) p past observations. Here the random variable Zt of the AR(p) model rep-
resents the number of earthquakes at time t. Finding the order p of the model and using the
Yule-Walker equations to estimate the unknown parameters, the numbers of earthquakes, Zt, in dif-
ferent future time intervals can be estimated. 

The first step is to estimate the partial autocorrelation coefficients in order to determine the order p
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Fig. 6: Survival functions of the number of events in various time periods after the main shock, using the non-
homogeneous Poisson model with λ(t)=α-bbtb-1. 

Fig. 7: a) Sample autocorrelation function (ACF) and b) sample partial autocorrelation function (PACF) for the
number of events of the time period [T0, 20].
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of the model. If p=k, k∈N+, is selected and the kth autocorrelation comes out to be statistically in-
significant, then the last variable may be omitted and the real order of the model is less than k. In
Figure 7 and Table 6 the partial autocorrelation function is shown. In this case the initial assump-
tion is p=3. The values zt taken into account are the number of earthquakes in subsequent time in-
tervals with duration 2.4 hours each. It turns out that the assumption of the order to be 3 must be
rejected (a=0.05), and the order ends up to be p=2. In the correlogram shown in Figure 7, the auto-
correlation coefficients are found to be close to zero for k≥3. The next step is to estimate the pa-
rameters of the AR(2) model, using the Yule-Walker equations given in (8). It is found that φ1=
0,4772 and, φ2= 0,1831, thus

The values of the parameters indicate that the AR(2) is stationary since φ1+φ2<1,φ2-φ1<1, -1<φ2<1.

4. Discussion–Conclusions

In the present study certain statistical models are applied to the 2001 Skyros aftershock sequence,
aiming to figure out whether there is a specific statistical approach of the phenomenon which can
lead to a simulation of its evolution. The earthquakes’ sequence is assumed to be a stochastic process,
following the homogeneous or the non-homogeneous Poisson model. The homogeneous Poisson
model with constant rate λ doesn’t fit well the data, especially in the case of long time periods which
were tested, before and after the main shock. This fact leads to the need of applying a non–homo-
geneous Poisson process with a time dependent rate, λ(t), which is considered to obey two certain
forms (equations (4) and (5)). In the first case the rate λ(t) is rapidly decaying to zero as time t passes,
implying that no events are expected after a few days following the main shock. This was not in ac-
cordance with the observation, as the aftershock sequence does not actually decay to zero in such a
short time interval. In the second case the Weibull-type rate λ(t) is considered (equation 5), and the
associate parameters are estimated using the maximum likelihood method. It turns out that the non–
homogeneous Poisson model fits quite well the data and the results, presented in the previous sec-
tion, show that this model provides a good approach to the aftershock sequence, compared with the
previous model. 

Finally, the earthquake sequence is tested via time series analysis, using the Autoregressive model
of order 2; that is the number of earthquakes at some time interval was supposed to depend linearly
on the number of the earthquakes of the two preceding time intervals. The data analysis shows that
the AR(2) model fits adequately the data. 

Table 5 and 6. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) and the
bounds (a=0.05).

ACF

0.4267

0.3126

0.2079

0.1995

0.2041

Bounds

0.2884

-0.2884

PACF

0.4288

0.2374

0.0465

Bounds

0.2884

-0.2884
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